(完整版)新人教版八年级数学下册勾股定理知识点和典型例习题

合集下载

人教版八年级下册数学 17.1 勾股定理 同步习题(含答案)

人教版八年级下册数学 17.1 勾股定理 同步习题(含答案)

17.1 勾股定理同步习题知识点1 勾股定理1.如图,以直角三角形的三边a,b,c为边或直径,分别向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数是()A.1B.2C.3D.42.若一个直角三角形的两直角边的长分别为a,b,斜边长为c,则下列关于a,b,c的关系式中不正确的是()A.b2=c2-a2B.a2=c2-b2C.b2=a2-c2D.c2=a2+b23.一直角三角形的两边长分别为3和4,则第三边长为()A.5B. 7C.2D.5或74.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.105.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10B.8C.6或10D.8或106.在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.5知识点2 勾股定理与面积的关系7.如图,字母B所代表的正方形的面积是()A.12B.13C.144D.1948.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为()A.3B.4C. 5D.79.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.8010.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13B.26C.47D.94易错点考虑问题不全面而漏解(分类讨论思想)11.若一个直角三角形的三边长分别为a,b,c,且a2=9,b2=16,则c2为()A.25B.7C.7或25D.9或16提升训练考查角度1 利用勾股定理求直角三角形中的边长12.如图,在△ABC中,CD⊥AB于D,AC=4,BC=3,DB=.(1)求DC的长;(2)求AB的长.考查角度2 利用勾股定理求三角形的面积13.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.如图,作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形面积探究培优拔尖角度1 利用勾股定理解非直角三角形问题(倍长中线法)14.如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)求△ABC中BC边上的高.拔尖角度2 利用勾股定理解四边形问题(补形法)15.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=6,CD=4,求: (1)AB的长;(2)四边形ABCD的面积.参考答案解:因为直角三角形的三边为a,b,c,所以应用勾股定理可得a2+b2=c2.第一个图形中,首先根据等边三角形的面积的求法,表示出3个等边三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第二个图形中,首先根据圆的面积的求法,表示出3个半圆形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积,然后根据a2+b2=c2,可得S1+S2=S3.2.【答案】C3.【答案】D解:当两直角边长分别为3和4时,斜边长为=5;当斜边长为4时,另一条直角边长为=.故选D.4.【答案】C5.【答案】C解:根据题意画出图形,如图①所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得BD==8,CD==2,此时BC=BD+CD=8+2=10;如图②所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得BD==8,CD==2,此时BC=BD-CD=8-2=6,则BC的长为6或10.故选C.6.【答案】A解:如图,过A点作AF⊥BC于F,连接AP,因为在△ABC中,AB=AC=5,BC=8,所以BF=4,所以在Rt△ABF中,AF2=AB2-BF2=9,所以AF=3,所以×8×3=×5×PD+×5×PE,即12=×5(PD+PE),解得PD+PE=4.8.7.【答案】C8.【答案】D解:利用勾股定理求出正方形的边长为10,阴影部分的面积为正方形面积与直角三角形面积之差.10.【答案】C11.错解:A诊断:容易忽略a,c为直角边长,b为斜边长这种情况,故很容易错选A.正解:C解题策略:解答此题要用分类讨论思想.此题有两种情况:a,b为直角边长,c为斜边长和a,c为直角边长,b为斜边长,利用勾股定理即可求解.12.解:(1)在Rt△BCD中,DC2=BC2-BD2=32-=,所以DC=.(2)在Rt△ACD中,AD2=AC2-CD2=42-=,所以AD=,所以AB=AD+BD=+=5.13.解:在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x,由勾股定理得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,所以152-x2=132-(14-x)2,解得x=9.在Rt△ABD中,AD===12.所以S△ABC=BC·AD=×14×12=84.14.解:(1)∵DB⊥BC,BC=4,CD=5,∴BD==3.(2)如图,延长BD至E,使DE=BD,连接AE.∵D是AC的中点,∴AD=DC.在△BDC和△EDA 中,∴△BDC≌△EDA(SAS),∴∠DAE=∠DCB,∴AE∥BC.∵BD⊥BC,∴BE⊥AE.∴BE为△ABC中BC边上的高,∴BE=2BD=6.15.解:(1)如图,延长AD,BC交于点E,在Rt△ABE中,∠A=60°,∴∠E=30°.在Rt△CDE中,CD=4,∴CE=2CD=8,∴BE=BC+CE=6+8=14.设AB=x,则有AE=2x,根据勾股定理得:x2+142=(2x)2,解得x=,则AB=.(2)在Rt△CDE中,∠CDE=90°,∴DE===4.∴S=S△ABE-S△CDE 四边形ABCD =·AB·BE-·CD·DE=××14-×4×4=.。

人教数学八年级下册《勾股定理》典型例题分析.docx

人教数学八年级下册《勾股定理》典型例题分析.docx

初中数学试卷桑水出品《勾股定理》典型例题分析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。

公式的变形:a2 = c2- b2, b2= c2-a2 。

2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。

3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。

注意:①勾股数必须是正整数,不能是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数。

常见勾股数有:(3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15)4、最短距离问题:主要运用的依据是两点之间线段最短。

二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )A. S 1- S 2= S 3B. S 1+ S 2= S 3C. S 2+S 3< S 1D. S 2- S 3=S 14、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。

5、在直线l 上依次摆放着七个正方形(如图4所示)。

2023年人教版八年级下册数学第十七章勾股定理第1课时勾股定理(1)

2023年人教版八年级下册数学第十七章勾股定理第1课时勾股定理(1)
∴c= 52+52=5 2.
(2)∵在aRt△ABC中,∠C=90°,a=3,c=7,
∴b= 72-32=2 10.
·数学
·数学
9.【例3】(北师8上P4)求斜边长为17 cm、一条直角边长为15 cm的直角三角形的面积. 解:另一条直角边长= 172-152=8(cm), 故直角三角形的面积为15×8÷2=60(cm2). 小结:掌握勾股定理与直角三角形的面积公式.
解:E的面积=(A的面积+B的面积)+(C的 面积+D的面积)=(122+162)+(92+122)= 400+225=625.
·数学 8.【例2】(人教8下P24)设直角三角形的两条直角边长分别为 a和b,斜边长为c. (1)已知a=6,c=10,求b; (2)已知a=5,b=12,求c; (3)已知c=25,b=15,求a. 解:(1)b= c2-a2= 102-62=8.
在Rt△ABD中,∠B=45°,AB= 2,
∴AD2+BD2=AB2=2,AD=BD,
∴AD=1,
在Rt△ADC中,∠C=30°, ∴AC=2AD=2.
答案图
·数学
知识点四:勾股定理的简单计算
在Rt△ABC中,∠C=90°,a,b,c是△ABC的三边.
a2+b2
(1)c=
(已知a,b,求c);
c2-b2
(2)a=
(已知b,c,求a);
(3)b= c2-a2 (已知a,c,求b).
6.写出下列直角三角形中未知边的长度.
(1)
(2)
2 13
53
·数学
·数学
a2 + b2 = c2 . 用图形表示为:
·数学
2.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,则 AB的长为 13 .

人教版八年级下《17.1.1勾股定理》练习含答案

人教版八年级下《17.1.1勾股定理》练习含答案

《勾股定理》练习一、选择——基础知识运用1.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.42.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC 能作出()A.2个B.3个C.4个D.6个3.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.54.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c25.一个钝角三角形的两边长为3、4,则第三边可以为()A.4 B.5 C.6 D.76.如图所示,三个正方形中两个的面积分别为S1=169,S2=144,则S3=()A.50 B.25 C.100 D.30二、解答——知识提高运用7.在四边形ABCD中(见图),线段BC长5,∠ABC为直角,∠BCD为135°,AC=AD,而且点A到边CD的垂线段AE的长为12,线段ED的长为5,求四边形ABCD的面积。

8.画一个直角三角形,分别以它的三条边为边向外作等边三角形,要求:(1)画出图形;(2)探究这三个等边三角形面积之间的关系,并说明理由。

9.已知△ABC是边长为2的等边三角形,△ACD是一个含有30°角的直角三角形,现将△ABC 和△ACD拼成一个凸四边形ABCD.(1)画出四边形ABCD;(2)求出四边形ABCD的对角线BD的长。

10.如图所示.从锐角三角形ABC的顶点B向对边作垂线BE.其中AE=3√3,AB=5√3,∠EBC=30°,求BC。

人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结

人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结

八年级下册第18章.勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=⑵228BC AB AC =-=题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴224AC AB BC =-=, 2.4AC BCCD AB⋅==DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中2290,2BED BE BD DE ∠=︒=-=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4. ( 2014•安徽省,第8题4分)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C .4 D . 5考点: 翻折变换(折叠问题).分析: 设BN =x ,则由折叠的性质可得DN =AN =9﹣x ,根据中点的定义可得BD =3,在Rt △ABC 中,根据勾股定理可得关于x 的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。

人教版八年级数学下册《勾股定理》(提高)知识点讲解及例题解析

人教版八年级数学下册《勾股定理》(提高)知识点讲解及例题解析

勾股定理(提高)知识点讲解及例题解析【学习目标】1. 1. 掌握勾股定理的内容及证明方法,能够熟练地运用勾股掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.定理由已知直角三角形中的两条边长求出第三条边长. 2. 2. 掌握勾股定理,能够运用勾股定理解决简单的实际问题,掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.会运用方程思想解决问题.3. 3. 熟练应用勾股定理解决直角三角形中的问题,进一步运熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.用方程思想解决问题. 【要点梳理】【勾股定理 知识要点】 要点一、勾股定理直角三角形两直角边的平方和等于斜边的平方直角三角形两直角边的平方和等于斜边的平方..如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=. 要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系的数量关系. .((2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的来,达到了解决问题的目的. .((3)理解勾股定理的一些变式:)理解勾股定理的一些变式:222a c b =-,222b c a =-, ()222c a b ab =+- 要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(方法一:将四个全等的直角三角形拼成如图(11)所示的正方形的正方形. .图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(方法二:将四个全等的直角三角形拼成如图(22)所示的正方形的正方形. .图(图(22)中,所以.方法三:如图(方法三:如图(33)所示,将两个直角三角形拼成直角梯形梯形. .,所以.要点三、勾股定理的作用 1.1. 已知直角三角形的任意两条边长,求第三边;已知直角三角形的任意两条边长,求第三边; 2.2. 用于解决带有平方关系的证明问题;用于解决带有平方关系的证明问题; 3. 3. 利用勾股定理,作出长为利用勾股定理,作出长为的线段的线段..【典型例题】类型一、勾股定理的应用1、如图所示,在多边形ABCD 中,中,AB AB AB==2,CD CD==1,∠,∠A A =4545°,∠°,∠°,∠B B =∠=∠D D =9090°,求多边形°,求多边形ABCD 的面积.的面积.【答案与解析】解:延长AD AD、、BC 相交于点E∵ ∠∠B =9090°,∠°,∠°,∠A A =4545°° ∴ ∠∠E =4545°,∴°,∴°,∴ AB AB AB==BE BE==2 ∵ ∠∠ADC ADC==9090°,∴°,∴°,∴ ∠∠DCE DCE==4545°,°,°, ∴ CD CD==DE DE==1∴ 12222ABE S=´´=△,111122DCE S =´´=△.∴ 13222ABE DCE ABCD S S S =-=-=△△四边形.【总结升华】求不规则图形的面积,关键是将其转化为规则的图形(如直角三角形、正方形、等腰三角形等),转化的方法主要是割补法,然后运用勾股定理求出相应的线段,解决面积问题.决面积问题. 举一反三:【变式】(20182018•西城区模拟)已知:如图,在△ABC,•西城区模拟)已知:如图,在△ABC,•西城区模拟)已知:如图,在△ABC,BC=2BC=2BC=2,,S △ABC =3=3,∠ABC=135°,求,∠ABC=135°,求AC AC、、AB 的长.的长.【答案】解:如图,过点A 作AD⊥BC 交CB 的延长线于D , 在△ABC 中,∵S △ABC =3=3,,BC=2BC=2,, ∴AD===3=3,,∵∠ABC=135°,∵∠ABC=135°,∴∠ABD=180°﹣135°=45°,∴∠ABD=180°﹣135°=45°, ∴AB=AD=3, BD=AD=3BD=AD=3,,在Rt△ADC 中,中,CD=2+3=5CD=2+3=5CD=2+3=5,, 由勾股定理得,由勾股定理得,AC=AC===.2、已知直角三角形斜边长为2,周长为26+,求此三角形的面积.形的面积.【思路点拨】欲求Rt Rt△的面积,只需求两直角边之积,而由△的面积,只需求两直角边之积,而由已知得两直角边之和为6,结合勾股定理又得其平方和为4,于是可转化为用方程求解. 【答案与解析】解:设这个直角三角形的两直角边长分别为a b 、,则,则2222262a b a b ì++=+ïí+=ïî 即即2264a b a b ì+=ïí+=ïî①②将①两边平方,得2226a ab b ++= ③③ ③-②,得22ab =,所以1122ab =因此这个直角三角形的面积为12.【总结升华】此题通过设间接未知数a b 、,通过变形直接得出12ab 的值,而不需要分别求出a b 、 的值.本题运用了方程思想解决问题.思想解决问题.3、(2018春•黔南州期末)春•黔南州期末)长方形纸片长方形纸片ABCD 中,中,AD=4cm AD=4cm AD=4cm,,AB=10cm AB=10cm,按如图方式折叠,使点,按如图方式折叠,使点B 与点D 重合,折痕为EF EF,,求DE 的长.的长.【思路点拨】在折叠的过程中,在折叠的过程中,BE=DE BE=DE BE=DE.从而设.从而设BE 即可表示AE AE.在直角三角形.在直角三角形ADE 中,根据勾股定理列方程即可求解.中,根据勾股定理列方程即可求解. 【答案与解析】解:设DE=xcm DE=xcm,则,则BE=DE=x BE=DE=x,,AE=AB AE=AB﹣﹣BE=10BE=10﹣﹣x ,△ADE 中,中,DE DE 22=AE 22+AD 22,即x 22=(1010﹣﹣x )22+16+16..∴x=(cm cm)). 答:答:DEDE 的长为cm.思路点拨】其中一只猴子从另一只猴子从B→D→A于是这个问题可化归到直角三角形中利用勾股定理解决.举一反三:【变式】如图①,有一个圆柱,它的高等于12cm ,底面半径等于3cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【答案】解:如图②所示,由题意可得:解:如图②所示,由题意可得: 12AA ¢=,12392A B p ¢=´´=在在Rt Rt△△AA AA′′B 中,根据勾股定理得:中,根据勾股定理得: 22222129225AB AA A B ¢¢=+=+=则则AB AB==15cm .所以需要爬行的最短路程是所以需要爬行的最短路程是15cm .。

(完整版)八年级勾股定理典型练习题含答案

(完整版)八年级勾股定理典型练习题含答案

八年级勾股定理典型练习题含答案一、选择题1、下列各组数中,能构成直角三角形的是A:4,5,B:1,1:6,8,11 D:5,12,22、在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为 A:26B:1 C:20D:213、在平面直角坐标系中,已知点P的坐标是,则OP 的长为 A:3B:4C:5D:74、在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a的长为 A: B:C:5D:、等边三角形的边长为2,则该三角形的面积为A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为A、 B、C、8D、9、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A、3cmC、6cm22B、4cm D、12cm228、若△ABC中,AB?13cm,AC?15cm,高AD=12,则BC 的长为 A、1 B、 C、14或4D、以上都不对二、填空题1、若一个三角形的三边满足c?a?b,则这个三角形是2、木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面。

3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。

2224、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为。

5、如右图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=___________。

E6、一只蚂蚁从长为4cm、宽为cm,高是cm的FC长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是____________cm。

7、将一根长为15㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围是________________。

新人教版八年级数学下册勾股定理知识点和典型例习题1

新人教版八年级数学下册勾股定理知识点和典型例习题1

新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2。

勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5。

勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,c b a H G FE DC B A b ac b a c c a b c a b a b c c b aE D C B A时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版八年级下册勾股定理全章知识点和典型例习题基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数c ba HG FE D C B A b a c ba cc a b c a b a b c c b a E DC B A7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:A B C 30°D C B A AD B C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长题型二:利用勾股定理测量长度例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.题型三:勾股定理和逆定理并用——例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41=那么△DEF 是直角三角形吗?为什么?注:本题利用了四次勾股定理,是掌握勾股定理的必练习题。

题型四:利用勾股定理求线段长度——例题4 如图4,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.题型五:利用勾股定理逆定理判断垂直——例题5 有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?题型六:旋转问题:例题6 如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长.变式 如图,△ABC 为等腰直角三角形,∠BAC=90°,E 、F 是BC 上的点,且∠EAF=45°,试探究222BE CF EF 、、间的关系,并说明理由.题型七:关于翻折问题例题7 如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.变式 如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿直线AD 翻折,点C 落在点C ’的位置,BC=4,求BC ’的长.题型八:关于勾股定理在实际中的应用:例1、如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?题型九:关于最短性问题例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)变式:如图为一棱长为3cm的正方体,把所有面都分为9个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下地面A点沿表面爬行至右侧面的B点,最少要花几秒钟?三、课后训练:一、填空题1.如图(1),在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.图(1)2.种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做 ㎝。

3.已知:如图,△ABC 中,∠C = 90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且BC = 8cm ,CA = 6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于 cm4.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。

另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_____________________米。

5.如图是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_____________.二、选择题1.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或252.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( )A 、121B 、120C 、132D 、不能确定3.如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( )A 、60∶13B 、5∶12C 、12∶13D 、60∶1694.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )A 、24cm2B 、36cm2C 、48cm2D 、60cm25.等腰三角形底边上的高为8,周长为32,则三角形的面积为( )A 、56B 、48C 、40D 、326.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( )A 、450a 元B 、225a 元C 、150a 元D 、300a 元7.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE C O A B D EF 第3题图 D B C A 第4题图 2032A B 150°20m 30m 第6题图 A B E D C 第7题图 A B C8.在△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为A .42B .32C .42或32D .37或339. 如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( )(A )直角三角形 (B)锐角三角形 (C)钝角三角形 (D)以上答案都不对三、计算1、如图,A 、B 是笔直公路l 同侧的两个村庄,且两个村庄到直路的距离分别是300m 和500m ,两村庄之间的距离为d(已知d2=400000m2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小。

相关文档
最新文档