大学高等数学下考试题库附答案

合集下载

高数下册试题及答案

高数下册试题及答案

高数下册试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x) = x^3 - 3x,求f'(x)。

A. 3x^2 - 3B. x^2 - 3xC. 3x^2 + 3D. 3x^2 - 3x答案:A2. 设函数f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) - cos(x)D. -sin(x) + cos(x)答案:B3. 求极限lim(x→0) (sin(x)/x)的值。

A. 0B. 1C. 2D. 3答案:B4. 若函数f(x) = e^x,则f'(x)等于:A. e^xB. e^(-x)C. x * e^xD. 1答案:A二、填空题(每题5分,共20分)1. 已知曲线y = x^2 + 2x + 1,求该曲线在x = 1处的切线斜率。

答案:42. 设函数f(x) = ln(x),则f'(x) = ________。

答案:1/x3. 求定积分∫(0,1) x^2 dx的值。

答案:1/34. 若函数f(x) = x^3 - 6x^2 + 9x + 15,求f'(x)。

答案:3x^2 - 12x + 9三、解答题(每题10分,共60分)1. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值。

答案:首先求导数f'(x) = 3x^2 - 12x + 11。

令f'(x) = 0,解得x = 1 和 x = 11/3。

计算f''(x) = 6x - 12,可以判断x = 1处为极大值点,x = 11/3处为极小值点。

极大值为f(1) = 0,极小值为f(11/3) = -2/27。

2. 计算定积分∫(0,2) (3x^2 - 2x + 1) dx。

答案:首先求原函数F(x) = x^3 - x^2 + x。

高数下册期末考试和答案

高数下册期末考试和答案

高数下册期末考试和答案一、选择题(每题4分,共40分)1. 已知函数f(x)=x^3-3x+2,求f'(x)的值。

A. 3x^2-3B. x^2-3xC. 3x^2-3xD. x^3-3x^2答案:A2. 求极限lim(x→0) (sin(x)/x)的值。

A. 0B. 1C. 2D. -1答案:B3. 已知函数f(x)=e^x,求f'(x)的值。

A. e^xB. -e^xC. 0D. 1答案:A4. 求定积分∫(0,1) x^2 dx的值。

A. 1/3B. 1/2C. 1D. 2答案:A5. 已知函数f(x)=ln(x),求f'(x)的值。

A. 1/xC. xD. -x答案:A6. 求定积分∫(0,1) e^x dx的值。

A. e-1B. eC. 1D. 0答案:A7. 已知函数f(x)=x^2,求f''(x)的值。

A. 2xB. 2C. 0答案:B8. 求极限lim(x→∞) (1/x)的值。

A. 0B. 1C. ∞D. -∞答案:A9. 已知函数f(x)=x^3,求f'(x)的值。

A. 3x^2B. 3xC. x^2D. x^3答案:A10. 求定积分∫(0,1) 1/x dx的值。

A. ln(1)-ln(0)B. ln(1)-ln(1)C. ln(2)-ln(1)D. ln(1)-ln(2)答案:C二、填空题(每题5分,共30分)11. 已知函数f(x)=x^2-4x+3,求f'(x)的值。

______答案:2x-412. 求极限lim(x→0) (1-cos(x))/x的值。

______答案:013. 已知函数f(x)=x^4-6x^2+8,求f'(x)的值。

______答案:4x^3-12x14. 求定积分∫(0,1) x^3 dx的值。

______答案:1/415. 已知函数f(x)=e^(-x),求f'(x)的值。

高数下考试题和答案

高数下考试题和答案

高数下考试题和答案一、选择题(每题4分,共20分)1. 函数f(x)=x^3-3x+1在x=0处的导数为()。

A. 0B. 1C. -1D. 3答案:B2. 曲线y=x^2+2x-3的拐点坐标为()。

A. (-1, -2)B. (1, -2)C. (-1, -4)D. (1, 0)答案:A3. 函数y=e^x的不定积分为()。

A. xe^x + CB. e^x + CC. e^x - x + CD. x^2e^x + C答案:B4. 计算定积分∫(0,1) x^2 dx的值为()。

A. 1/3B. 1/2C. 1/4D. 1/6答案:B5. 函数y=x^2-4x+3的极值点为()。

A. x=1B. x=2C. x=3D. x=4答案:B二、填空题(每题4分,共20分)6. 函数f(x)=x^2-4x+3的最小值为________。

答案:-17. 计算定积分∫(-1,1) e^(-x^2) dx的值约为________。

答案:1.462658. 函数y=ln(x)的导数为________。

答案:1/x9. 函数y=x^3-3x^2+2x的二阶导数为________。

答案:6x-610. 计算定积分∫(0,π) sin(x) dx的值为________。

答案:2三、计算题(每题10分,共30分)11. 计算不定积分∫(x^2-2x+1) dx。

解:∫(x^2-2x+1) dx = (1/3)x^3 - x^2 + x + C12. 求函数y=x^3-3x+2在x=1处的切线方程。

解:首先求导数y'=3x^2-3,代入x=1得y'|_{x=1}=0,切线斜率为0。

切点为(1,0),因此切线方程为y=0。

13. 计算定积分∫(0,2) (x^2-2x+1) dx。

解:∫(0,2) (x^2-2x+1) dx = [(1/3)x^3 - x^2 + x](0,2) = (8/3 - 4 + 2) - (0) = 2/3四、应用题(每题10分,共30分)14. 一个物体从高度h=100米处自由落下,忽略空气阻力,求物体落地时的速度v。

高等数学下册试题(题库)及参考答案

高等数学下册试题(题库)及参考答案

高等数学下册试题库一、选择题(每题4分,共20分)1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( A ) A )5 B ) 3 C ) 6 D )9…解 AB ={1-1,2-0,1-2}={0,2,-1},|AB |=5)1(20222=-++.2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}.3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k解c ={-1,-2,5}=-i -2j +5k .—4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:(C )A )2πB )4π C )3π D )π 解 由公式(6-21)有21112)1(211)1(1221cos 2222222121=++⋅-++⨯-+⨯+⨯=⋅⋅=n n n n α,因此,所求夹角321arccos πα==.5. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D )01=-+y x . 【解 由于平面平行于z 轴,因此可设这平面的方程为0=++D By Ax 因为平面过1M 、2M 两点,所以有⎩⎨⎧=+-=+020D B A D A解得D B D A -=-=,,以此代入所设方程并约去)0(≠D D ,便得到所求的平面方程01=-+y x6.微分方程()043='-'+''y y y x y xy 的阶数是( D )。

大一高数下考试题及答案

大一高数下考试题及答案

大一高数下考试题及答案一、选择题(每题4分,共20分)1. 极限的定义中,当x趋近于a时,f(x)的极限为L,是指对于任意给定的正数ε,存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<ε。

这个定义描述的是()。

A. 函数在某点的连续性B. 函数在某点的可导性C. 函数在某点的极限D. 函数在某点的间断性答案:C2. 以下哪个函数是偶函数?()A. f(x) = x^2 + xB. f(x) = x^3 - xC. f(x) = cos(x)D. f(x) = sin(x)答案:C3. 以下哪个积分是收敛的?()A. ∫(1/x)dx 从1到∞B. ∫(1/x^2)dx 从1到∞C. ∫(1/x^3)dx 从1到∞D. ∫(1/x)dx 从0到1答案:B4. 以下哪个级数是发散的?()A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 1/2^2 + 1/3^2 + 1/4^2 + ...D. 1 + 1/2 + 1/3 + 1/4 + ...答案:D5. 以下哪个是二阶导数?()A. f''(x) = 2xB. f'(x) = 2xC. f(x) = x^2D. f'(x) = 2答案:A二、填空题(每题4分,共20分)1. 函数f(x) = x^3 - 3x在x=0处的导数是________。

答案:02. 函数f(x) = e^x的不定积分是________。

答案:e^x + C3. 函数f(x) = sin(x)的不定积分是________。

答案:-cos(x) + C4. 函数f(x) = x^2在区间[0,1]上的定积分是________。

答案:1/35. 函数f(x) = x^2 + 2x + 1的极值点是________。

答案:x = -1三、计算题(每题10分,共30分)1. 计算极限:lim(x→0) [(x^2 + 1) / (x^2 - 1)]。

高等数学下期末试题(((七套附答案)))

高等数学下期末试题(((七套附答案)))
(A)单调增加;(B)单调减少;
(C)单调增加且单调减少;(D)可能增加;可能减少。
4、已知向量 与向量 则 为.
(A)6(B)-6
(C)1(D)-3
5、已知函数 可导,且 为极值, ,则 .
(A) (B) (C)0 (D)
三.计算题(3小题,每题6分,共18分)
1、求极限
2、求极限
3、已知 ,求
四. 计算题(每题6分,共24分)
.已知函数 ,则 。
.已知 ,则 。
.设L为 上点 到 的上半弧段,则 。
.交换积分顺序 。
.级数 是绝对收敛还是条件收敛?。
.微分方程 的通解为。
二.选择题(每空3分,共15分)
.函数 在点 的全微分存在是 在该点连续的( )条件。
A.充分非必要 B.必要非充分 C.充分必要 D.既非充分,也非必要
1、已知 ,求 。
2、求过点 且平行直线 的直线方程。
3、利用极坐标计算 ,其中D为由 、 及 所围的在第一象限的区域。
四.求解下列各题(共 分,第 题 分,第 题 分)
、利用格林公式计算曲线积分 ,其中L为圆域 : 的边界曲线,取逆时针方向。
、判别下列级数的敛散性:
五、求解下列各题(共 分,第 、 题各 分,第 题 分)
.平面 与 的夹角为( )。
A. B. C. D.
.幂级数 的收敛域为( )。
A. B. C. D.
.设 是微分方程 的两特解且 常数,则下列( )是其通解( 为任意常数)。
A. B.
C. D.
. 在直角坐标系下化为三次积分为( ),其中 为 , 所围的闭区域。
A. B. C. D.
三.计算下列各题(共 分,每题 分)

高数下试题及答案

高数下试题及答案

高数下试题及答案一、选择题(每题4分,共40分)1. 函数f(x)=x^3-3x+1的导数是()A. 3x^2-3B. x^3-3C. 3x^2-3xD. 3x^2-3x+1答案:A2. 函数f(x)=e^x的不定积分是()A. e^x+CB. e^x-CC. xe^x+CD. xe^x-C答案:A3. 函数f(x)=x^2+2x+1的极值点是()A. x=-1B. x=1C. x=0D. x=2答案:A4. 函数f(x)=x^3-3x+1的拐点是()A. x=-1B. x=1C. x=0D. x=2答案:C5. 函数f(x)=x^2+2x+1的二阶导数是()A. 2x+2B. 2x+1C. 2D. 2x答案:C6. 函数f(x)=x^3-3x+1的泰勒级数展开式是()A. x^3-3x+1+o(x^2)B. x^3-3x+1+o(x^3)C. x^3-3x+1+o(x^4)D. x^3-3x+1+o(x^5)答案:B7. 函数f(x)=e^x的泰勒级数展开式是()A. 1+x+x^2/2!+x^3/3!+o(x^3)B. 1+x+x^2/2!+x^3/3!+o(x^4)C. 1+x+x^2/2!+x^3/3!+o(x^5)D. 1+x+x^2/2!+x^3/3!+o(x^6)答案:A8. 函数f(x)=x^2+2x+1的不定积分是()A. x^3/3+x^2+CB. x^3/3+x+CC. x^3/3+x^2+CD. x^3/3+x^2+C答案:C9. 函数f(x)=x^3-3x+1的不定积分是()A. x^4/4-3x^2/2+x+CB. x^4/4-3x^2/2+x+CC. x^4/4-3x^2/2+x+CD. x^4/4-3x^2/2+x+C答案:A10. 函数f(x)=e^x的不定积分是()A. e^x+CB. e^x-CC. xe^x+CD. xe^x-C答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3-3x+1的二阶导数是_________。

《高等数学(下)》试题及参考答案

《高等数学(下)》试题及参考答案

《高等数学(下)》习题答案一、单选题1、向量、垂直,则条件:向量、的数量积是(B)A充分非必要条件B充分且必要条件C必要非充分条件D既非充分又非必要条件2、当x→0时,y=ln(1+x)与下列那个函数不是等价的(C)Ay=x By=sinx Cy=1-cosx Dy=e^x-13、如果在有界闭区域上连续,则在该域上(C)A只能取得一个最大值B只能取得一个最小值C至少存在一个最大值和最小值D至多存在一个最大值和一个最小值4、函数f(x)在点x0极限存在是函数在该点连续的(A)A必要条件 B充分条件 C充要条件 D无关条件5、向量与向量平行,则条件:其向量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件 D既非充分又非必要条件6、当x→0时,下列变量中(D)为无穷小量Aln∣x∣ Bsin1/x Ccotx De^(-1/x^2)7、为正项级数,设,则当时,级数(C)A发散 B收敛 C不定 D绝对收敛8、设f(x)=2^x-1,则当x→0时,f(x)是x的(D)。

A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无穷9、已知向量,,,求向量在轴上的投影及在轴上的分量(A)A27,51 B25,27 C25,51 D27,2510、函数f(x)在点x0极限存在是函数在该点连续的(A)A必要条件 B充分条件 C充要条件 D无关条件11、下面哪个是二次曲面中椭圆柱面的表达式(D)A B C D12、曲线y=x/(x+2)的渐进线为(D)Ax=-2 By=1 Cx=0 Dx=-2,y=113、向量、的夹角是,则向量、的数量积是(A)A BC D14、当x→0时,函数(x²-1)/(x-1)的极限 (D)A等于2 B等于0 C为∞ D不存在但不为∞15、平面上的一个方向向量,平面上的一个方向向量,若与垂直,则(C)A BC D16、设φ(x)=(1-x)/(1+x),ψ(x)=1-³√x则当x→0时(D)Aφ与ψ为等价无穷小 Bφ是比ψ为较高阶的无穷小Cφ是比ψ为较低阶的无穷小 Dφ与ψ是同价无穷小17、在面上求一个垂直于向量,且与等长的向量(D)A B C D18、当x→0时,1/(ax²+bx+c)~1/(x+1),则a,b,c一定为(B)Aa=b=c=1 Ba=0,b=1,c为任意常数 Ca=0,b,c为任意常数 Da,b,c为任意常数19、对于复合函数有,,则(B)A B C D20、y=1/(a^2+x^2)在区间[-a,a]上应用罗尔定理, 结论中的点ξ=(B).A0 B2 C3/2 D321、设是矩形:,则(A)A B C D22、对于函数的每一个驻点,令,,,若,,则函数(A)A有极大值 B有极小值 C没有极值 D不定23、若无穷级数收敛,且收敛,则称称无穷级数(D)A发散 B收敛 C条件收敛 D绝对收敛24、交错级数,满足,且,则级数(B)A发散 B收敛 C不定 D绝对收敛25、若无穷级数收敛,而发散,则称称无穷级数(C)A发散B收敛 C条件收敛 D绝对收敛26、微分方程的通解是(B)A B C D27、改变常数项无穷级数中的有限项,级数的敛散性将会(B)A受到影响 B不受影响 C变为收敛 D变为发散28、设直线与平面平行,则等于(A)A2 B6 C8 D1029、曲线的方向角、与,则函数关于的方向导数(D)A BC D30、常数项级数收敛,则(B)A发散 B收敛 C条件收敛 D绝对收敛31、为正项级数,若存在正整数,当时,,而收敛,则(B)A发散 B收敛 C条件收敛 D绝对收敛32、下面哪个是二次曲面中椭圆抛物面的表达式(A)A B C D33、已知向量垂直于向量和,且满足于,求(B)A B C D34、平面上的一个方向向量,直线上的一个方向向量,若与垂直,则(B)A B C D35、下面哪个是二次曲面中双曲柱面的表达式(C)A B C D36、若为无穷级数的次部分和,且存在,则称(B)A发散 B收敛 C条件收敛 D绝对收敛37、已知向量两两相互垂直,且求(C)A1 B2 C4 D838、曲线y=e^x-e^(-x)的凹区间是(B)A(-∞,0) B(0,+∞) C(-∞,1) D(-∞,+∞)39、下面哪个是二次曲面中双曲抛物面的表达式(B)A B C D40、向量与轴与轴构成等角,与轴夹角是前者的2倍,下面哪一个代表的是的方向(C)A BC D41、下面哪个是二次曲面中单叶双曲面的表达式(A)A BC D42、函数y=3x^2-x^3在区间[1,3]上的最大值为(A)A4 B0 C1 D343、曲线y=lnx在点(A)处的切线平行于直线y=2x-3A(1/2,-1n2) B(1/2,-ln1/2) C(2,ln2) D(2,-ln2)44、若f(x)在x=x0处可导,则∣f(x)∣在x=x0处(C)A可导 B不可导 C连续但未必可导 D不连续45、y=√x-1 在区间[1, 4]上应用拉格朗日定理, 结论中的点ξ=(C).A0 B2 C44078 D346、arcsinx+arccos=(D)A∏ B2∏ C∏/4 D∏/247、函数y=ln(1+x^2)在区间[-1,2]上的最大值为(D)A4 B0 C1 Dln548、函数y=x+√x在区间[0,4]上的最小值为(B)A4 B0 C1 D349、当x→1时,函数(x²-1)/(x-1)*e^[(1/x-1)]的极限 (D)A等于2 B等于0 C为∞ D不存在但不为∞50、函数y=3x^2-x^3在区间[1,3]上的最大值为(A)A4 B0 C1 D3二、判断题1、由及所确定的立体的体积(对)2、y=∣x∣在x=0处不可导(对)3、设,,,且,则(错)4、对于函数f(x),若f′(x0)=0,则x0是极值点(错)5、二元函数的极小值点是(对)6、若函数f(x)在x0处极限存在,则f(x)在x0处连续(错)7、设是由轴、轴及直线所围城的区域,则的面积为(错)8、函数f(x)在[a,b]在内连续,且f(a)和f(b)异号,则f(x)=0在(a,b)内至少有一个实数根(对)9、若积分区域是,则(对)10、下列平面中过点(1,1,1)的平面是x=1(对)11、设,其中,,则(对)12、若函数f(x)在x0的左、右极限都存在但不相等,则x0为f(x)的第一类间断点(对)13、函数的定义域是(对)14、对于函数f(x),若f′(x0)=0,则x0是极值点(错)15、二元函数的两个驻点是,(对)16、y=ln(1-x)/(1+x)是奇函数(对)17、设表示域:,则(错)18、若函数f(x)在x0处连续,则f(x)在x0处极限存在(对)19、设是曲线与所围成,则(对)20、有限个无穷小的和仍然是无穷小(对)21、设,则(错)22、函数在一点的导数就是在一点的微分(错)23、函数在间断(对)24、罗尔中值定理中的条件是充分的,但非必要条件(对)25、设不全为0的实数使,则三个向量共面(对)26、函数z=xsiny在点(1,∏/4)处的两个偏导数分别为1,1(错)27、微分方程的一个特解应具有的形式是(对)28、设圆心在原点,半径为R,面密度为a=x²+y²的薄板的质量为RA(面积A=∏R²)(错)29、函数的定义域是整个平面(对)30、1/(2+x)的麦克劳林级数是2(错)31、微分方程的通解为(错)32、等比数列的极限一定存在(错)33、设区域,则在极坐标系下(对)34、函数极限是数列极限的特殊情况(错)35、,,则(对)36、sin10^0的近似值为017365(对)37、二元函数的极大值点是(对)38、定义函数极限的前提是该函数需要在定义处的邻域内有意义(对)39、将在直角坐标下的三次积分化为在球坐标下的三次积分,则(对)40、微分是函数增量与自变量增量的比值的极限(错)41、方程x=cos在(0,∏/2)内至少有一实根(错)42、微分方程y``+3y`+2y=0的特征根为1,2(错)43、f〞(x)=0对应的点不一定是曲线的拐点(对)44、求曲线x=t,y=t2,z=t3在点(1,1,1)处的法平面方程为(x-1)+2(y-1)+3(z-1)=0(对)45、1/x的极限为0(错)46、y=e^(-x^2) 在区间(-∞,0)(1,∞)内分别是单调增加,单调增加(错)47、导数和微分没有任何联系,完全是两个不同的概念(错)48、有限个无穷小的和仍然是无穷小(对)49、求导数与求微分是一样的,所以两者可以相互转化(对)50、在空间直角坐标系中,方程x²+y²=2表示圆柱面(对)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学高等数学下考试题库附答案This manuscript was revised by the office on December 10, 2020.《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ()..4 C 向量j i b k j i a+=++-=2,2,则有().A.a ∥bB.a ⊥b 3,π=b a .4,π=b a3.函数1122222-++--=y x y x y 的定义域是().(){}21,22≤+≤y xy x .(){}21,22<+<y x y x (){}21,22≤+<y xy x (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是().0=⋅b a 0 =⨯b a 0 =-b a 0=+b a 函数xy y x z 333-+=的极小值是().2-1-设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz=().2222-22-若p 级数∑∞=11n pn收敛,则(). p 1<1≤p 1>p 1≥p 幂级数∑∞=1n nnx 的收敛域为().[]1,1-()1,1-[)1,1-(]1,1-幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是().x -11x -22x -12x-21微分方程0ln =-'y y y x 的通解为().x ce y =x e y =x cxe y =cx e y =二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D .4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程x e y y 23=-'在00==x y 条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫⎝⎛31,1,求此曲线方程.试卷1参考答案一.选择题CBCADACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()x e x C C y 221-+=.三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ().12131415设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为(). 6π4π3π2π函数()22arcsin y x z +=的定义域为().(){}10,22≤+≤y xy x .(){}10,22<+<y x y x()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x .()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为(). .4 C 函数22232y x xy z --=的极大值为(). .1 C 1-21设223y xy x z ++=,则()=∂∂2,1xz ()..7 C 若几何级数∑∞=0n n ar 是收敛的,则().1≤r 1≥r 1<r 1≤r 幂级数()n n x n ∑∞=+01的收敛域为().[]1,1-[)1,1-(]1,1-()1,1-级数∑∞=14sin n nna 是().A.条件收敛B.绝对收敛C.发散D.不能确定 10.微分方程0ln =-'y y y x 的通解为().cx e y =x ce y =x e y =x cxe y =二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xy e z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x +的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y条件下的特解为______________________________. 三.计算题(5分⨯6)1.设k j b k j i a 32,2+=-+=,求.b a⨯ 2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2)1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dtx d -=22.当0=t 时,有0x x =,0v dt dx =)试卷2参考答案一.选择题CBABACCDBA.二.填空题1.211212+=-=-z y x . 2.()xdy ydx e xy +. 3.488=--z y x . 4.()∑∞=-021n n nx .5.3x y =. 三.计算题1.k j i238+-. 2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂. 3.22,z xy xzy z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 5.x x e C e C y --+=221. 四.应用题 1.316. 2.00221x t v gt x ++-=.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式2-3的值为()45A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为() A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为() A 、2B 、3C 、4D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为() A 、,22,22B 、,2222-C 、22-22-D 、22-,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为() A 、z y z R x --,B 、z y z R x ---,C 、zyz R x ,--D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为()(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为()A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为()A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是() A 、一阶B 、二阶C 、三阶D 、四阶10、微分方程y``+3y`+2y=0的特征根为() A 、-2,-1B 、2,1C 、-2,1D 、1,-2二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

直线L 3:之间的夹角为与平面062321221=-+=-+=-z y x zy x ____________。

2、()的近似值为________,sin100的近似值为___________。

3、二重积分⎰⎰≤+Dy x D d 的值为1:,22σ___________。

4、幂级数的收敛半径为∑∞=0!n nx n __________,∑∞=0!n nn x 的收敛半径为__________。

5、微分方程y`=xy 的一般解为___________,微分方程xy`+y=y 2的解为___________。

三、计算题(本题共6小题,每小题5分,共30分) 1、用行列式解方程组-3x+2y-8z=172x-5y+3z=3 x+7y-5z=22、求曲线x=t,y=t 2,z=t 3在点(1,1,1)处的切线及法平面方程.3、计算⎰⎰===Dx y x y D ,xyd 围成及由直线其中2,1σ.4、问级数∑∞=-11sin )1(n n ?,?n 收敛则是条件收敛还是绝对若收敛收敛吗5、将函数f(x)=e 3x 展成麦克劳林级数6、用特征根法求y``+3y`+2y=0的一般解四、应用题(本题共2小题,每题10分,共20分) 1、求表面积为a 2而体积最大的长方体体积。

相关文档
最新文档