小学奥数举一反三·达标测试:5年级
最新版小学奥数举一反三五年级A版

小学奥数(举一反三)五年级-A第1周平均数(一)练习1:1.这次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。
问:甲、丁各得多少分?2.甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。
求四人的平均体重是多少千克?3.甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。
三个小组各植树多少棵?练习2:1.两组学生进行跳绳比赛,平均每人跳152下。
甲组有6人,平均每人跳140下,乙组平均每人跳160下。
乙组有多少人?2.有两块棉田,平均每100平方米产量是92.5千克,已知一块田是500平方米,平均每100平方米产量是101.5千克;另一块田平均每100平方米产量是85千克。
这块田是多少平方米?3.把甲级糖和乙级糖混在一起,平均每千克卖7元,乙知甲级糖有4千克,每千克8元;乙级糖有2千克,乙级糖每千克多少元?练习3:1.一个技术员带4个普通工人完成一项工作,每个普通工人各得200元,这位技术员的收入比他们5人的平均收入还多80元。
问这位技术员得多少元?2.小宇与五名同学一起参加数学竞赛,那五名同学的成绩分别为79分、82分、90分、85分、84分,小宇的成绩比6人的平均成绩高5分。
求小宇数学成绩。
3、两组工人加工零件,第一组有30人,平均每人加工60个零件。
第二组有25人,平均每人比两组工人加工的平均数多6个。
两组工人平均每人加工多少个零件?练习4:1.小明前几次数学测验的平均成绩是84分,这次要考100分,才能把数学平均成绩提高到86分,问这是他第几次数学测验?2.老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。
如果师生合起来算,正好平均每人做了7朵,求有多少个同学在做花?3.小明前五次数学测验的平均成绩是88分。
奥数举一反三(五年级)全word百度文库

奥数举一反三(五年级)全word百度文库一、拓展提优试题1.如图,7×7的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是.12533421542.如图,从A到B,有条不同的路线.(不能重复经过同一个点)3.某次入学考试有1000人参加,平均分是55分,录取了200人,录取者的平均分与未录取的平均分相差60分,录取分数线比录取者的平均分少4分.录取分数线是分.4.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距千米.5.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)6.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.7.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).8.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).9.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.10.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.11.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.12.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块.13.如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a﹣b×c的值是.14.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.15.(7分)对于a、b,定义运算“@”为:a@b=(a+5)×b,若x@1.3=11.05,则x=.【参考答案】一、拓展提优试题1.解:首先理解题目,找出唯一填法的空格,例如第一行第一个1,与其唯一相邻的空白空格必须为1,以此类推,第二行第一个5也具有唯一相邻空格.逆推得出唯一图形.相加求和为150.故答案为150.2.解:如图,因为,从A到B有5条直连线路,每条直连线路均有5种不同的路线可以到达B点,所以,共有不同线路:5×5=25(条),答:从A到B,有25条不同的路线,故答案为:25.3.解:设录取者的平均成绩为X分,我们可以得到方程,200X+(1000﹣200)×(X﹣60)=55×1000,200X+800(X﹣60)=55000,1000X﹣48000=55000,1000X=103000,X=103;所以录取分数线是103﹣4=99(分).答:录取分数线是99分.故答案为:99.4.解:顺水速度为:24+3+3=30(千米/小时);甲、乙两港相距:5÷(+),=5÷,=(千米);答:甲、乙两港相距千米.故答案为:.5.解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是 151.故答案为:151.6.解:6÷2=3(组)11时30分﹣8是=3时30分=210分210×2÷3=420÷3=140(分钟)答:每人打了140分钟.故答案为:140.7.解:可以组成下列质数:2、3、5、7、61、89,一共有6个.答:用1、2、3、5、6、7、8、9这8个数字最多可以组成 6个质数.故答案为:6.8.解:设矩形的长为am,宽为bm,且a≥b,根据题意,a+b=17,由于a,b均为整数,因此(a,b)的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8),故答案为8.9.解:依题意可知:经过了乘以3,再逆序排列,再加上2得到的数字是2015.那么要求原来的数字可以逆向思维求解.2015﹣2=2013,再逆序变成3102,再除以3得3102÷3=1034.故答案为:103410.解:原式=++++=++++=×(﹣+﹣+…+﹣)=×()=5+24=29故答案为:2911.解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.12.解:依题意可知:第一层的共有4个角满足条件.第二层的4个角是4面红色,去掉所有的角块其余的符合条件.分别是3+2+3+2=10(个);共10+4=14(个);故答案为:1413.解:依题意可知:3a+2与17是对立面,3a+2=17,所以a=5;7b﹣4与10是对立面,7b﹣4=10,所以b=2;a+3b﹣2c与11的对立面,5+3×2﹣2c=11,所以c=0;所以a﹣b×c=5故答案为:514.解:10÷2=5(颗)18÷2=9(颗)此时A有:26﹣10+9=25(颗)此时C有:25×4=100(颗)原来C有:100﹣9﹣5=86(颗)答:松鼠C原有松果 86颗.故答案为:86.15.解:由定义可知:x@1.3=11.05,(x+5)1.3=11.05,x+5=8.5,x=8.5﹣5=3.5故答案为:3.5。
五年级举一反三奥数题及答案B版

五年级举一反三奥数题及答案B版五年级的奥数题目通常包含一些基础的数学概念和逻辑推理,以下是一些典型的五年级奥数题目及其答案:1. 题目:一个数列的前三项是1,2,3,从第四项开始,每一项都是前三项的和。
求第10项的值。
答案:数列的前几项为1,2,3,6,9,21,45,110,253,610。
第10项的值为610。
2. 题目:有5个盒子,每个盒子里分别装有1,2,3,4,5个球。
现在要从这些盒子里取出6个球,使得取出的球的总数为10。
问有多少种不同的取法?答案:可以有以下取法:(1, 2, 3, 4),(1, 2, 3, 5),(1, 2, 4, 5),(1, 3, 4, 5),(2, 3, 4, 5)。
共有5种不同的取法。
3. 题目:一个正方形的边长增加10%,它的面积增加了多少百分比?答案:假设原正方形边长为x,则面积为x^2。
增加10%后,新的边长为1.1x,面积为(1.1x)^2 = 1.21x^2。
面积增加了(1.21x^2 -x^2) / x^2 = 0.21,即增加了21%。
4. 题目:一个班级有40名学生,其中25名学生参加了数学竞赛,20名学生参加了英语竞赛。
如果至少有5名学生同时参加了数学和英语竞赛,那么只参加数学竞赛的学生有多少人?答案:设同时参加数学和英语竞赛的学生人数为x,则只参加数学竞赛的学生人数为25 - x,只参加英语竞赛的学生人数为20 - x。
根据题意,25 + 20 - x ≥ 40 + 5,解得x ≤ 5。
因此,只参加数学竞赛的学生人数至少为25 - 5 = 20人。
5. 题目:一个数字,去掉它的最高位数字后,剩下的数字是原数字的1/4。
这个数字是多少?答案:设原数字为abcd(a为最高位数字),则根据题意有abcd = 4(bcd) + a。
由于a是最高位数字,所以a只能是1或2。
如果a=1,则bcd = 1/4abcd,这是不可能的。
如果a=2,则bcd = 2(bcd) + 2,解得bcd = 2。
小学奥数举一反三(五年级最新版)(1)

【思路导航】1.因为三角形ABD 与三角形ACD 等底等高,所以面积相等。
因此,三角形ABO 的面积和三角形DOC 的面积相等,也是6平方厘米。
2.因为三角形BOC 的面积是三角形DOC 面积的2倍,所以BO 的长度是OD 的2倍,即三角形ABo 的面积也是三角形AOD 的2倍。
所以,三角形AOD 的面积是6÷2=3平方厘米。
练习3:1 .如下图,图中B0=2D0,阴影部分的面积是4平方厘米,求梯形ABCD 的面积是多少平方厘米?2 .下图的梯形ABCD 中,下底是上底的2倍,E 是AB 的中点。
那么梯形ABCD 的面积是三角形BDE 面积的多少倍?3 .下图梯形ABCD 中,AD=7厘米,BC=12厘米,梯形高8厘米,求三角形BOC 的面积比三角形AOD 的面积大多少平方厘米?【思路导航】(1)因为CE=3AE,所以,三角形ADC 的面积是三角形ADE面积的4倍,是20X(1+3)=80平方厘为;(2)又因为DC=2BD,所以,三角形ABD 的面积是三角形ADC 面积的一半,是80÷2=40平方厘米。
因此三角形ABC 的面积是80+40=120平方厘主。
练习4:1 .把下图三角形的底边BC 四等分,在下面括号里填上“>"、"V”或“二”。
甲的面积()乙的面积。
2 .如图,在三角形ABe 中,D 是BC 的中点,E 、F 是AC 的三等分点。
己知三角形的面积是求三角形CDE 的面积。
BD=2厘米,DE=4厘米,EC=2厘米,F 是AE 的中点,三角形ABC 的BC 边上阴影面积是多少平方厘米?【例题4】在三角形ABC 中,角形ABC 的面积。
DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三108平方厘米, 3.下图中,的高是4厘米,【例题5]边长是9厘米的正三角形的面积是边长为3厘米的正三角形面积的多少倍?【思路导航】题中的已知条件不能计算出两种三角形的面积,我们可以用边长是3厘米的正三角形拼一个边长是9厘米的正三角形,从而看出它们之间的倍数关系。
小学奥数举一反三B版5年级数学

目录第1周平均数 (1)第2周等差数列 (3)第3周长方形、正方形的周长 (5)第4周长方形、正方形的面积 (8)第5周分类数图形 (11)第6周尾数和余数 (14)第7周一般应用题(一) (16)第8周一般应用题(二) (18)第9周一般应用题(三) (20)第10周数阵 (22)期中测试(一) (25)第11周周期问题 (27)第12周盈亏问题 (30)第13周长方体和正方体(一) (32)第14周长方体和正方体(二) (34)第15周长方体和正方体(三) (36)第16周倍数问题(一) (38)第17周倍数问题(二) (40)第18周组合图形的面积(一) (42)第19周组合图形的面积(二) (45)第20周数字趣味题 (48)期末测试(一) (50)第21周假设法解题 (52)第22周作图法解题 (54)第23周分解质因数(一) (56)第24周分解质因数(二) (58)第25周最大公约数 (60)第26周最小公倍数(一) (62)第27周最小公倍数(二) (64)第28周行程问题 (66)第29周行程问题(二) (68)第30周行程问题(三) (70)期中测试(二) (72)第31周行程问题(四) (74)第32周算式谜 (76)第33周包含与排除 (78)第34周转换问题 (80)第35周估值问题 (82)第36周火车行程问题 (84)第37周简单列举 (86)第38周最大最小问题 (88)第39周推理问题 (90)期末测试(二) (92)第1周平均数基础卷1. 期中考试过后, 李玲同学语文、数学的平均成绩为91分, 语文、英语的平均成绩为88分, 数学、英语的成绩为93分, 李玲三门功课各得多少分?2. 奶糖和水果糖混合起来, 成为什锦糖, 平均每千克售价9.13元, 已知奶糖有35千克, 每千克10.3元, 水果糖每千克8.5元, 那么有多少千克水果糖?3. 7位同学进行跳绳比赛, 平均每人跳148下。
苏教版小学奥数举一反三(五年级)全图文百度文库

苏教版小学奥数举一反三(五年级)全图文百度文库一、拓展提优试题1.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.2.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.3.有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.4.先将从1开始的自然数排成一列:123456789101112131415…然后按一定规律分组:1,23,456,7891,01112,131415,…在分组后的数中,有一个十位数,这个十位数是.5.将等边三角形纸片按图1所示步骤折叠3次(图1中的虚线是三边的中点的连线),然后沿两边的重点的边减去一角(如图2).将剩下的纸片展开、平铺,得到的图形是A6.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年岁,(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)7.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.8.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是.9.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.10.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.11.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.12.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.13.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了千克面粉.14.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.15.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.【参考答案】一、拓展提优试题1.解:如图延长BA和EF交于点O,并连接AE,由正六边形的性质,我们可知S ABCM=S CDEN=S EF AK=六边形面积,根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,△AKP,△CMQ,△ENR三个三角形是一样的,有KP=RN,AP=ER,RP=PQ,=,则=,=,由鸟头定理可知道3×KP×AP=RP×PQ,综上可得:PR=2KP=RE,那么由三角形AEK是六边形面积的,且S△APK ,=S△AKES△APK=S ABCDEF=47,所以阴影面积为47×3=141故答案为141.2.解:一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8,(1)当N=x8,则九个约数分别是:1,x,x2,x3,x4,x5,x6,x7,x8,其中有3个约数A、B、C且满足A×A=B×C,不可能.(2)当N=x2y2,则九个约数分别是:1,x,y,x2,xy,y2,x2y,xy2,x2y2,其中有3个约数A、B、C且满足A×A=B×C,①A=x,B=1,C=x2,则x+1+x2=79,无解.②A=xy,B=1,C=x2y2,则xy+1+x2y2=79,无解.③A=xy,B=x,C=xy2,则xy+x+xy2=79,无解.④A=xy,B=x2,C=y2,则xy+x2+y2=79,解得:,则N=32×72=441.⑤A=x2y,B=x2y2,C=x2,则x2y+x2y2+x2=79,无解.故答案为441.3.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.解:2007÷3=669,又因为,每一个循环周期中有2个奇数,1个偶数,所以前2007个数中偶数的个数是:1×669=669;答:前2007个数中,有699是偶数.故答案为:699.4.解:方法一:据分组律可得:从131415向后为1617181,92021222,324252627,2829303132(十位数),…;方法二:位数之前应该有1+2+3+…+9=45位.1位数有9位,10﹣19有20位,20﹣27有16位,所以十位数的开头应为28,为2829303132.故填:2829303132.5.解:找一剪刀与一等边三角形纸片,按题中所示步骤进行操作,最后得到的图形是A,故答案为:A.6.解:先用估值的方法大概确定一下维纳的年龄范围.根据174=83521,184=104976,194=130321,根据题意可得:他的年龄大于或等于18岁;再看,183=5832,193=6859,213=9261,223=10648,说明维纳的年龄小于22岁.根据这两个范围可知可能是18、19、20、21的一个数.又因为20、21无论是三次方还是四次方,它们的尾数分别都是:0、1,与“10个数字全都用上了,不重也不漏”不符,所以不用考虑了.只剩下18、19这两个数了.一个一个试,18×18×18=5832,18×18×18×18=104976;19×19×19=6859,19×19×19×19=130321;符合要求是18.故答案为:18.7.解:(6+2)×[(5×6)÷2]=8×15,=120(个).答:小松鼠一共储藏了120个松果.故答案为:120.8.解:根据分析,在2000~2020之间排除掉奇数,剩下的偶数还可以排除掉不能被3整除的偶数,最后只剩下:2004、2010、2016,再将三个数分别分解质因数得:2004=2×2×3×167;2010=2×3×5×67;2016=2×2×2×2×2×3×3×7,显然2014和2010的质因数在1~9中不到7个,不符合题意,排除,符合题意的只有2016,此时2016的因数分别是:2、3、4、6、7、8、9.故答案是:2016.9.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.10.解:假设每人每分钟修大坝1份洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=(450﹣400)÷25=50÷25=2(份)大坝原有的份数45×10﹣2×45=450﹣90=360(份)14人修好大坝需要的时间360÷(14﹣2)=360÷12=30(分钟)答:14人修好大坝需30分钟.故答案为:30.11.解:根据分析:这个数除以2,3,4,5均余1,那么这个数减去1后就能同时被2,3,4,5整除;2,3,4,5的最小公倍数是60,则这个数为60的倍数加1.又因为这个数大于1,所以这个数最小是61.故答案为:61.12.解:依题意可知:结果的首位是2,那么在第二个结果中的首位还是2.再根据第一个结果中有一个1,那么就是有和数字5相乘以后数字1的进位同时十位数字是偶数才能满足条件,第一个乘数的个位数字只能是2或者3才能满足进位是1.当第一个乘数尾数是2时,首位数字无论是哪一个偶数都不能得到200多的结果.不满足题意.当第一个乘数尾数是3时,来看看偶数的情况.23×9=207.43,63,83无论乘以数字几都不能构成百位十位是20的结果.故是23×95=2185,那么23+95=118.故答案为:11813.解:根据分析,因面和水的比为3:2,即每一份水需要:3÷2=1.5份面粉,现在有5千克水,则需要面粉:5×1.5=7.5千克,而现有面粉量为:1.5千克,故还须加:7.5﹣1.5=6千克,分三次加入,则每次须加入:6÷3=2千克.故答案是:2.14.解:设既带水壶又带水果的为x人,则参加春游的同学共有2x人,由题意可得:80+70﹣x+6=2x156﹣x=2x3x=156x=52则2x=2×52=104答:则参加春游的同学共有104人.故答案为:104.15.解:10÷2=5(颗)18÷2=9(颗)此时A有:26﹣10+9=25(颗)此时C有:25×4=100(颗)原来C有:100﹣9﹣5=86(颗)答:松鼠C原有松果 86颗.故答案为:86.。
小学奥数举一反三五年级1-40完整版

第一周平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。
一箱苹果多少个?分析与解答:(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。
1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)练习一1,一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。
问:甲、丁各得多少分?2,甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。
求四人的平均体重是多少千克?3,甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。
三个小组各植树多少棵?例2 一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。
求这个班男生有多少人?分析:女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。
全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。
小学奥数举一反三五年级(全)

第一周平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。
一箱苹果多少个?分析与解答:(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。
1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)练习一1,一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。
问:甲、丁各得多少分?2,甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。
求四人的平均体重是多少千克?3,甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。
三个小组各植树多少棵?例2 一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。
求这个班男生有多少人?分析:女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。
全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级奥数题举一反三
例题:1
一辆货车和一辆客车同时从甲地开往乙地,货车5小时可以到达,客车每小时的速度比货车快12千米,可比货车提前1.2小时到达乙地。
甲、乙两地间的距离是多少千米?
举一反三:
1、下午放学时,哥哥和弟弟同时从学校步行回家。
弟弟用15分钟到家,哥哥每分钟比弟弟多行20米,比弟弟提前5分钟到家,求学校与家之间的距离。
2、甲、乙两列火车同时从A地开往B地,甲车8小时可以到达,乙车每小时比甲车多行20千米,比甲车提前2小时到达。
求A、B两地之间的距离。
3、一辆货车和一辆客车同时从甲地开往乙地,客车3。
8小时可以到达,货车每小时比客车慢12千米,比客车晚1.2小时到达。
甲、乙两地间的距离是多少千米?
例题:2
甲、乙两人练习跑步,如果甲让乙先跑10米,那么甲跑5秒钟可追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙。
问:甲、乙两人的速度各是多少?
举一反三:
1、小亮和小刚两人练习跑步,如果小亮让小刚先跑12米,那么小亮跑6秒钟可以追上小刚;如果小亮让小刚先跑4秒钟,那么小亮8秒钟就能追上小刚。
问:小亮和小刚两人的速度各是多少?
2、小王和小李两人练习跑步,如果小王让小李先跑600米,那么小王跑5分钟可追上小李;如果小王让小李先跑2分钟,那么小王跑4分钟就能追上小李。
问:小王和小李两人的速度各是多少?
3、甲、乙两名田径运动员进行短跑训练,甲每秒的速度比乙每秒的速度的多米。
甲在乙后2米处起跑,同时跑了6秒后,甲到达终点,乙还差1米。
甲、乙两人每秒各跑多少米?
例题:3
甲、乙两车同时同地出发去同一目的地,甲车每小时行40千米,乙车每小时行35千米,途中甲车停车3小时,结果甲车比乙车迟到1小时到达目的地,问两地之间的距离是多少千米?
举一反三:
1、甲、乙同时从A地出发去B地,甲每小时行8千米,乙每小时行6千米,甲中途有事休息了2小时,结果与乙同时到达B地,问A、B两地之间的距离。
2、A、B两地相距20千米,甲、乙二人同时从A地出发去B地,甲骑自行车每小时行10千米,乙步行每小时行5千米。
甲在途中修车停留一段时间,乙到B地后,甲再骑车行2千米才到达B地,问甲修车用了多长时间?
3、一辆货车以每小时40千米的速度从甲地驶往乙地,出发1小时后,一辆面包车以每小时60千米的速度也从甲地驶往乙地,比货车早半小时到达乙地,求甲、乙两地间的路程。
例题:4
小王和小明两人同时骑摩托车从甲地开往乙地,行了一段时间后,小王离乙地还有42千米,小明离乙地还有6千米,已知小王每小时行40千米,每小时比小明慢12千米。
甲、乙两地相距多少千米?
举一反三:
1、刘叔叔和黄叔叔同时骑摩托车从A地开往B地,行了一段时间后,刘叔叔离B地还有42千米,黄叔叔离B地还有3千米,已知刘叔叔每小时行41千米,每小时比黄叔叔慢12千米,A、B两地相距多少千米?
2、甲地和乙地相距40千米,平平和兵兵由甲地骑车去乙地,平平每小时行14千米,兵兵每小时行17千米,当平平走了6千米后,兵兵才出发,当兵兵追上平平时,距乙地还有多少千米?
3、小军家离少年宫4800米,小军从家出发,以每分钟60米的速度步行去少年宫,爸爸在15分钟后骑自行车从家里出发去追赶小军,自行车的速度是每分钟240米。
爸爸追上小军后到达少年宫又折回,过了不久又与小明相遇,那么相遇处离少年宫有多远?
例题:5
小龙和小虎分别从相距18千米的西村和东村同时向东而行,小龙骑自行车每小时行14千米,小虎步行每分钟走5千米。
几小时后小龙可以追上小虎?
举一反三:
1、甲、乙两人同时从相距36千米的A、B两地相向而行,乙在前甲在后,甲每小时行15千米,乙每小时行6千米,几小时后甲可追上乙?
2、解放军某部从营地出发,以每小时12千米的速度向目的地前进,4小时后部队有急事,派通讯员骑摩托车以每小时行60千米的速度前去联络,多长时间后,通讯员能追上队伍?
3、一辆快车和一辆慢车同时从甲地开往乙地。
快车每小时行108千米,慢车每小时行72千米,慢车比快车迟1小时到达乙地,求甲、乙两地间的距离。
例题:6
哥哥每分钟走60米,弟弟每分钟走50米。
当两人同时从同一地点背向走了4分钟后,哥哥掉头去追弟弟,追上弟弟时哥哥共走了多少米?
举一反三:
1、小红每分钟走65米,小菊每分钟走55米。
两人同时从同一地点出发,背向走了2分钟,小红掉头去追小菊,追上小菊时小红共走了多少米?
2、小强每分钟走70米,小亮每分钟走60米,两人同时从同一点背向走了3分钟,小强掉头去追小亮,追上小亮时小强共走了多少米?
3、甲、乙两人住在一起,骑车同去旅行,甲每小时行10千米,乙的速度是甲的一半。
同时出发半小时后,甲想起还未带相机,立即回家取,拿上相机再追乙。
假如速度不变,甲需几小时追上乙?。