2019中考总复习一次函数专题
2019年中考数学总复习第一部分系统复习成绩基石第三章函数及其图像第10讲一次函数课件ppt版本

解:(Ⅰ)当x=20时,方式一的总费用为100+20×5=200(元),方式 二的费用为20×9=180(元), 当游泳次数为x时,方式一费用为100+5x,方式二的费用为9x, 故答案为:200,100+5x,180,9x. (Ⅱ)方式一,令100+5x=270,解得x=34. 方式二,令9x=270,解得x=30. ∵34>30, ∴选择方式一付费方式,他游泳的次数比较多. (Ⅲ)令100+5x<9x,得x>25, 令100+5x=9x,得x=25, 令100+5x>9x,得x<25, ∴当20<x<25时,小明选择方式二的付费方式更合算, 当x=25时,小明选择两种付费方式一样合算,
第三章 函数及其图象
第10讲 一次函数
考点1 一次函数的概念、图象与性质
1.一次函数的概念:一般地,如果有y=kx+b(k,b为常数,且
),
那么k≠y0叫做x的一次函数.特别地,当b= 时,一次0函数y=kx+b就成
为y=kx(k为常数,k≠0),此时y叫做x的正比例函数.
2.一次函数的图象和性质
解:(1)把C(m,4)代入一次函数y=- 1 x+5,
可得4=-
1 2
m+5,解得m=2,
2
∴C(2,4),
设l2的解析式为y=ax,则4=2a,解得a=2, ∴l2的解析式为y=2x.
(2)如图,过点C作CD⊥AO于点D,CE⊥BO于点E,则CD=4,CE=
1.待定系数法:先根据明确的函数关系,设出函数关系式中 的 未知系数 ,再根据所给的条件求出待定的系数的值,从而求 出函数关系式的方法,叫做待定系数法,其中设出的未知系数称 为待定系数.
2.用待定系数法求函数表达式的一般步骤 (1)根据明确的函数关系设出函数表达式的一般形式; (2)把已知条件即自变量与函数的对应值代入到所设的“一般形式”中, 得到关于待定系数的方程或方程组; (3)解方程或方程组求出 待定系数 的值; (4)将解得的待定系数的值代回所设的一般形式,即得到函数的表达 式. 3.一次函数图象的平移
2019年中考数学复习-一次函数

2019年中考数学复习:一次函数
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢
一次函数
一、定义与定义式:
自变量x和因变量y有如下关系:y=kx+b,则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx
二、一次函数的性质:
的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
列表;
描点;
连线,可以作出一次函数的图像
——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
2.性质:在一次函数上的任意一点P,都满足等式:y=kx+b。
一次函数与y 轴交点的坐标总是表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:
已知点请确定过点A、B的一次函数的表达式。
设一次函数的表达式为y=kx+b。
因为在一次函数上的任意一点P,都满足等式y=kx+b。
所以可以列出2个方程:
解这个二元一次方程,得到k,b的值。
最后得到一次函数的表达式。
五、一次函数在生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
设水池中原有水量S。
g=S-ft。
六、常用公式:
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
2019年中考数学知识点总结:一次函数

2019年中考数学知识点总结:一次函数“2019年中考数学知识点总结:一次函数”,更多20XX中考复习指导等信息,请及时关注中考网!2019年中考数学知识点总结:一次函数1、定义定义1:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数。
定义2:一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数。
当b=0时,y=kx+b即y=kx,是正比例函数。
所以说正比例函数是一种特殊的一次函数。
2、一次函数的图象及其性质正比例函数的图象及性质:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,称为直线y=kx。
y=kx 经过象限升降趋势增减性k>0 三、一从左向右上升 y随着x的增大而增大k0时,直线y=kx+b从左向右上升,即y随着x的增大而增大;当k0,b>0 三、二、一从左向右上升 y随着x的增大而增大k>0,b0 二、一、四从左向右下降 y 随着x的增大而减小k 0和k0;当x 时,y0 b>0 B、k>0 b07、若直线y=kx -3经过点(3,0)则k= 。
8、已知一次函数的图象经过点(-1,-1)和(2,5)两点。
求这个一次函数的解析式。
9、为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的。
研究表明:假设课桌的高度为ycm,椅子的高度(不含靠背)为xcm,则y应是x的一次函数。
下表列出两套符合条件的课桌椅的高度:第一套第二套椅子高度x(cm)桌子高度y(cm)(1)请确定y与x的函数关系式(不要求x的取值范围);(2)现有一把的椅子和一张高的桌子,它们是否配套?10、某校准备在甲、乙两家公司为毕业班学生制作一批纪念册。
甲公司提出:每册收材料费5元,另收设计费1500元;乙公司提出:每册收材料费8元,不收设计费。
(1)请写出制作纪念册的册数x与甲公司的收费y1(元)的函数关系式;(2)请写出制作纪念册的册数x与乙公司的收费y2(元)的函数关系式;(3)若学校需要400册纪念册,你认为选择哪家公司较好?11、如图,一次函数y=kx+b的图象经过点(1,4)和(3,8),与x轴、y轴分别交于点A、B。
2019年中考一次函数问题专题复习(共19张PPT)

B
M A x y=-0.5x
O
小结
学习路径
数
式
方程
函数
知识发展路径 思考:二次函数可以怎么复习?
ax2 bx c 0
二次函数
一元二次方程 一元二次不等式(高中)
ax 2 bx c 0
当堂检测
1.一次函数y kx 3与y 3x 6的图象的交点在x轴上,求k的值.
2.设二次函数y1 a( x x1 )( x x2 )(a 0, x1 x2 )的图象与一次函数 y2 dx e(d 0)的图象交于点( x1 ,0),若函数y y2 y1的图象与x轴仅有一个 交点,则( ) A. a( x1 x2 ) d C. a( x1 x2 )2 d B. D. a( x2 x1 ) d a( x1 x2 ) 2 d
x 3 _ . 范围为 ______
一元一次不等式
你能构造一个一次函数来解决问题吗?
一次函数问题专题复习
置换角度
九年级:再探函数
5.函数y 2 x 1的图象与x轴有交点吗?与x轴交点 的横坐标可以看成是哪个方程的解?图象在x轴上 方时,求x的取值范围.
在同一平面直角坐标系中,再画出另一条直线 y x 2.
• 8. (2018•淮安)如图,在平面直角坐标系中,一 次函数y=kx+b的图象经过点A(﹣2,6),且与x轴 相交于点B,与正比例函数y=3x的图象相交于点C, 点C的横坐标为1. • (1)求k、b的值; 1 • (2)若点D在y轴负半轴上,且满足S△COD= 3 S△BOC ,求点D的坐标.
函数
转化
方程
第二组
中考数学一次函数复习(大全)

2019 中考数学一次函数复习(大全)2019 中考数学一次函数复习:在某一个变化过程中,设有两个变量x 和 y,若是可以写成y=kx+b(k 为一次项系数≠0,k≠0,b 为常数, ),那么我们就说 y 是 x 的一次函数,其中x是自变量, y 是因变量。
形如y=kx+b (k, b 为常数, k ≠0)的函数叫一次函数。
【表达式】(斜截式较常用。
仅当斜率 k 存在时才能使用斜截式和点斜式)一般式: ax+by+c=0斜截式: y=kx+b点斜式: y-y0=k(x-x0)截距式: x/a+y/b=1(a , b 分别为 x, y 轴上的截距 )两点式: (y-y1)/(x-x1)=(y2-y1)/(x2-x1)【一次函数的性质】 2019 中考数学考点解析之一次函数的性质【一次函数图像画法】(1)列表:表中给出一些自变量的值及其对应的函数值。
(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
“教书先生”生怕是街市百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人敬慕甚或敬畏的一种社会职业。
可是更早的“先生”第1页/共4页看法其实不是源于教书,最初出现的“先生”一词也其实不是有教授知识那般的含义。
《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?” 等等,均指“先生”为父兄或有学问、有道德的长辈。
其实《国策》中自己就有“先生长辈,有德之称”的说法。
可见“先生” 之原意非真切的“教师”之意,倒是与现在“先生”的称呼更凑近。
看来,“先生”之本源含义在于礼貌和尊称,其实不是具学问者的专称。
称“老师”为“先生”的记录,首见于《礼记 ?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之教授知识者”,与教师、老师之意基本一致。
一般地,y=kx+b(k ,b 是常数, k≠ 0)的图象过 (0,b)和 (-b/k ,0)两点即可画出。
2019年全国中考题汇编 用一次函数解决问题 专题练习

用一次函数解决问题中考汇编一.选择题(共6小题)1.(2019•辽阳)一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B 村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25h后两人相遇;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min或65min时两人相距2km.其中正确的个数是()A.1个B.2个C.3个D.4个2.(2019•聊城)某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15B.9:20C.9:25D.9:30 3.(2019•台湾)小涵与阿嘉一起去咖啡店购买同款咖啡豆,咖啡豆每公克的价钱固定,购买时自备容器则结帐金额再减5元.若小涵购买咖啡豆250公克且自备容器,需支付295元;阿嘉购买咖啡豆x公克但没有自备容器,需支付y元,则y与x的关系式为下列何者?()A.y=x B.y=x C.y=x+5D.y=x+54.(2019•威海)甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的.施工时间/天123456789累计完成施工量/米3570105140160215270325380下列说法错误的是()A.甲队每天修路20米B.乙队第一天修路15米C.乙队技术改进后每天修路35米D.前七天甲,乙两队修路长度相等5.(2019•东营)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢6.(2019•鄂尔多斯)在“加油向未来”电视节目中,王清和李北进行无人驾驶汽车运送货物表演,王清操控的快车和李北操控的慢车分别从A,B两地同时出发,相向而行.快车到达B地后,停留3秒卸货,然后原路返回A地,慢车到达A地即停运休息,如图表示的是两车之间的距离y(米)与行驶时间x(秒)的函数图象,根据图象信息,计算a、b 的值分别为()A.39,26B.39,26.4C.38,26D.38,26.4二.填空题(共8小题)7.(2019•阜新)甲、乙两人分别从A,B两地相向而行,匀速行进甲先出发且先到达B地,他们之间的距离s(km)与甲出发的时间t(h)的关系如图所示,则乙由B地到A地用了h.8.(2019•济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.9.(2019•大连)甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离y(单位:m)与甲行走时间x(单位:min)的函数图象,则a﹣b=.10.(2019•重庆)一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小明家到学校的路程为米.11.(2019•株洲)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为.12.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t的函数图象,则两图象交点P的坐标是.13.(2019•重庆)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是米.14.(2018•朝阳)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x=h时,两车相遇;③当x=时,两车相距60km;④图2中C点坐标为(3,180);⑤当x=h或h时,两车相距200km.其中正确的有(请写出所有正确判断的序号)三.解答题(共26小题)15.(2019•永州)在一段长为1000的笔直道路AB上,甲、乙两名运动员均从A点出发进行往返跑训练.已知乙比甲先出发30秒钟,甲距A点的距离y(米)与其出发的时间x (分钟)的函数图象如图所示,乙的速度是150米分钟,且当乙到达B点后立即按原速返回.(1)当x为何值时,两人第一次相遇?(2)当两人第二次相遇时,求甲的总路程.16.(2019•恩施州)某县有A、B两个大型蔬菜基地,共有蔬菜700吨.若将A基地的蔬菜全部运往甲市所需费用与B基地的蔬菜全部运往甲市所需费用相同.从A、B两基地运往甲、乙两市的运费单价如下表:甲市(元/吨)乙市(元/吨)A基地2025B基地1524(1)求A、B两个蔬菜基地各有蔬菜多少吨?(2)现甲市需要蔬菜260吨,乙市需要蔬菜440吨.设从A基地运送m吨蔬菜到甲市,请问怎样调运可使总运费最少?17.(2019•徐州)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?18.(2019•宁夏)在综合与实践活动中,活动小组对学校400米的跑道进行规划设计,跑道由两段直道和两端是半圆弧的跑道组成.其中400米跑道最内圈为400米,两端半圆弧的半径为36米.(π取3.14).(1)求400米跑道中一段直道的长度;(2)在活动中发现跑道周长(单位:米)随跑道宽度(距最内圈的距离,单位:米)的变化而变化.请完成下表:跑道宽度/米012345…跑道周长/米400…若设x表示跑道宽度(单位:米),y表示该跑道周长(单位:米),试写出y与x的函数关系式:(3)将446米的跑道周长作为400米跑道场地的最外沿,那么它与最内圈(跑道周长400米)形成的区域最多能铺设道宽为1.2米的跑道多少条?19.(2019•鸡西)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?20.(2019•深圳)有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发电多少度?(2)A、B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾两倍,求A厂和B厂总发电量的最大值.21.(2019•吉林)甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.(1)m=,n=;(2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.22.(2019•齐齐哈尔)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.23.(2019•长春)已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为千米/时,a=,b=.(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.24.(2019•镇江)学校数学兴趣小组利用机器人开展数学活动.在相距150个单位长度的直线跑道AB上,机器人甲从端点A出发,匀速往返于端点A、B之间,机器人乙同时从端点B出发,以大于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员探究这两个机器人迎面相遇的情况,这里的”迎面相遇“包括面对面相遇、在端点处相遇这两种.【观察】①观察图1,若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为30个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度;②若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为40个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度;【发现】设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.兴趣小组成员发现了y与x的函数关系,并画出了部分函数图象(线段OP,不包括点O,如图2所示).①a=;②分别求出各部分图象对应的函数表达式,并在图2中补全函数图象;【拓展】设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第三次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.若这两个机器人第三次迎面相遇时,相遇地点与点A之间的距离y不超过60个单位长度,则他们第一次迎面相遇时,相遇地点与点A之间的距离x的取值范围是.(直接写出结果)25.(2019•绥化)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?26.(2019•鸡西)小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明,小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y (米)与小强所用时间x(分钟)之间的函数图象如图所示.(1)求函数图象中a的值;(2)求小强的速度;(3)求线段AB的函数解析式,并写出自变量的取值范围.27.(2019•襄阳)襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如下表所示:有机蔬菜种类进价(元/kg)售价(元/kg)甲m16乙n18(1)该超市购进甲种蔬菜10kg和乙种蔬菜5kg需要170元;购进甲种蔬菜6kg和乙种蔬菜10kg需要200元.求m,n的值;(2)该超市决定每天购进甲、乙两种蔬菜共100kg进行销售,其中甲种蔬菜的数量不少于20kg,且不大于70kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60kg的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y(元)与购进甲种蔬菜的数量x(kg)之间的函数关系式,并写出x的取值范围;(3)在(2)的条件下,超市在获得的利润额y(元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的盈利率不低于20%,求a的最大值.28.(2019•淮安)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x 之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.29.(2019•黄冈)某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?30.(2019•常德)某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y 元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.31.(2019•山西)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.32.(2019•绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.33.(2019•温州)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.34.(2019•无锡)“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y(km)与出发时间之间的函数关系式如图1中线段AB所示.在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离x(km)与出发时间t(h)之间的函数关系式如图2中折线段CD﹣DE﹣EF所示.(1)小丽和小明骑车的速度各是多少?(2)求点E的坐标,并解释点E的实际意义.35.(2019•泰州)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y(元/kg)与质量x(kg)的函数关系.(1)求图中线段AB所在直线的函数表达式;(2)小李用800元一次可以批发这种水果的质量是多少?36.(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=﹣x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.37.(2019•济宁)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.38.(2019•湖州)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA和折线B﹣C﹣D分别表示甲、乙离开小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x≤30时s关于x的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)39.(2019•连云港)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.40.(2019•德州)下表中给出A,B,C三种手机通话的收费方式.收费方式月通话费/元包时通话时间/h超时费/(元/min)A30250.1B50500.1C100不限时(1)设月通话时间为x小时,则方案A,B,C的收费金额y1,y2,y3都是x的函数,请分别求出这三个函数解析式.(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为;若选择方式B最省钱,则月通话时间x的取值范围为;若选择方式C最省钱,则月通话时间x的取值范围为;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.答案与解析一.选择题(共6小题)1.(2019•辽阳)一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B 村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25h后两人相遇;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min或65min时两人相距2km.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】根据图象与纵轴的交点可得出A、B两地的距离,而s=0时,即为甲、乙相遇的时候,同理根据图象的拐点情况解答即可.【解答】解:由图象可知A村、B村相离10km,故①正确,当1.25h时,甲、乙相距为0km,故在此时相遇,故②正确,当0≤t≤1.25时,易得一次函数的解析式为s=﹣8t+10,故甲的速度比乙的速度快8km/h.故③正确当1.25≤t≤2时,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s=kt+b 代入得,解得∴s=8t+10当s=2时.得2=8t﹣10,解得t=1.5h由1.5﹣1.25=0.25h=15min同理当2≤t≤2.5时,设函数解析式为s=kt+b将点(2,6)(2.5,0)代入得,解得∴s=﹣12t+30当s=2时,得2=﹣12t+30,解得t=由﹣1.25=h=65min故相遇后,乙又骑行了15min或65min时两人相距2km,④正确.故选:D.【点评】此题为一次函数的应用,渗透了函数与方程的思想,重点是读懂图象,根据图象的数据进行解题.2.(2019•聊城)某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15B.9:20C.9:25D.9:30【分析】分别求出甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数关系式,求出两条直线的交点坐标即可.【解答】解:设甲仓库的快件数量y(件)与时间x(分)之间的函数关系式为:y1=k1x+40,根据题意得60k1+40=400,解得k1=6,∴y1=6x+40;设乙仓库的快件数量y(件)与时间x(分)之间的函数关系式为:y2=k2x+240,根据题意得60k2+240=0,解得k2=﹣4,∴y2=﹣4x+240,联立,解得,∴此刻的时间为9:20.故选:B.【点评】本题考查了一次函数的应用,解题的关键:(1)熟练运用待定系数法就解析式;(2)解决该类问题应结合图形,理解图形中点的坐标代表的意义.3.(2019•台湾)小涵与阿嘉一起去咖啡店购买同款咖啡豆,咖啡豆每公克的价钱固定,购买时自备容器则结帐金额再减5元.若小涵购买咖啡豆250公克且自备容器,需支付295元;阿嘉购买咖啡豆x公克但没有自备容器,需支付y元,则y与x的关系式为下列何者?()A.y=x B.y=xC.y=x+5D.y=x+5【分析】根据若小涵购买咖啡豆250公克且自备容器,需支付295元,可得咖啡豆每公克的价钱为(295+5)÷250=(元),据此即可y与x的关系式.【解答】解:根据题意可得咖啡豆每公克的价钱为:(295+5)÷250=(元),∴y与x的关系式为:.故选:B.【点评】本题主要考查了一次函数的应用,根据题意得出咖啡豆每公克的单价是解答本。
2019年最新中考数学总复习:一次函数专题(优秀课件)

讲
第
2.(2010·龙岩中考)函数 y=kx+b的图象如图所示,当 y<0时,x的取值范围
十
三
讲
是
.
【答案】 x>2
2020/11/22
复习目标
知识回顾
重点解析
探究拓展
真题演练
3.(2011·福州质检)已知函数 y=2x+b,当 b取不同的数值时,可以得到许多不同的 第
十
直线,这些直线必定( )
一 讲
把 y=26代入 y=3x-10,得:x=12.
小明四月份交水费 18元,说明用水量介于 0至 10吨之间,
把 y=18代入 y=2x,得:x=9.
三月份比四月份多用(12-9)吨水,即四月份比三月比节约用水 3吨.
2020/11/22
真题演练
第 十 一 讲
第 十 二 讲
第 十 三 讲
复习目标
知识回顾
第
十
种原料多少千克时,总费用最少?
二
讲
【解析】 (1)依题意,得 600x+400(20-x)≥480×20,
第
十
三
讲
解得 x≥8.∴至少需要购买甲种原料 8千克.
(2)y=9x+5(20-x),∴y=4x+100.∵k=4>0,
∴y随 x的增大而增大.∵x≥8,∴当 x=8时,y最小.
∴购买甲种原料 8千克时,总费用最少.
真题演练
第 十 一 讲
.
第
十
二
讲
第 十 三 讲
2020/11/22
复习目标
知识回顾
重点解析
探究拓展
真题演练
5.如图,点 A、B 、C 在一次函数 y=-2x+m 的图象上,它们的横坐标依次为-1,1,2,分 第
2019年中考数学真题分类汇编—一次函数

3
, 15);( 3)从点 B 到终点,图象也是一条线段,端点坐
2
3
标为( , 15)和( 2,20) .反映乙的运动的函数图象是一条线段,端点坐标为(
2
5
0,0),( , 20) .符合题意的
3
只有 A ,故选择 A .
【解后反思】 行程问题中的数量关系是:路程 =速度 ×时间,在分析行程问题有关的问题时要抓住这个关系,并
( 0, b)在 x 轴下方,故 y=kx+b 的图像为选项 B.
【解后反思】 一次函数的图象及性质如下表所示:
一次函数
y= kx+b( k≠0)
k、 b 符号
k> 0
k<0
b> 0
b< 0
b= 0
b>0
b< 0
b= 0
图象
y
y
y
y
y
y
O
xO
xO
xO
xO
xO
x
性质
y 随 x 的增大而增大
y 随 x 的增大而减小
一次函数
一、选择题
1. ( 安徽, 9, 4 分) 一段笔直的公路 AC 长 20 千米,图中有一处休息点 B,AB 长 15 千米 .甲、乙两名长跑爱
好者同时从点 A 出发 .甲以 15 千米 / 时的速度匀速跑至点 B,原地休息半小时后,再以 10 千米 /时的速度匀速跑
至终点 C;乙以 12 千米 /时的速度匀速跑至终点 C. 下列选项中,能正确反映甲、乙两人出发后
A .第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】 C
【逐步提示】 本题考查了一次函数的性质,解题的关键是掌握一次函数的图像特征.根据
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019总复习一次函数专题1如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣32直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A.x≤3 B.x≥3 C.x≥﹣3 D.x≤03已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限4如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)5如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y (cm2)关于x(cm)的函数关系的图象是()A.B.C.D.6点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A.B.C.D.7如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度8将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为_________.9若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.10在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.11若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第象限12如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____________.13甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.14为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第秒.2. (2016·吉林·8分)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示.(1)甲的速度是60km/h;(2)当1≤x≤5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距220km.【考点】一次函数的应用.【分析】(1)根据图象确定出甲的路程与时间,即可求出速度;(2)利用待定系数法确定出y乙关于x的函数解析式即可;(3)求出乙距A地240km时的时间,乘以甲的速度即可得到结果.【解答】解:(1)根据图象得:360÷6=60km/h;(2)当1≤x≤5时,设y乙=kx+b,把(1,0)与(5,360)代入得:,解得:k=90,b=﹣90,则y乙=90x﹣90;(3)令y乙=240,得到x=,则甲与A地相距60×=220km,故答案为:(1)60;(3)2203. (2016·江西·6分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.【考点】两条直线相交或平行问题;待定系数法求一次函数解析式;勾股定理的应用.【分析】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC 的面积为4,求得CO 的长,再根据点A 、C 的坐标,运用待定系数法求得直线l 2的解析式.【解答】解:(1)∵点A (2,0),AB =∴BO ===3∴点B 的坐标为(0,3);(2)∵△ABC 的面积为4 ∴×BC ×AO =4 ∴×BC ×2=4,即BC =4 ∵BO =3 ∴CO =4﹣3=1 ∴C (0,﹣1)设l 2的解析式为y =kx +b ,则,解得∴l 2的解析式为y =x ﹣18.(2016·孝感)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级.经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种、B 种树木每棵各多少元;(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠.请设计一种购买树木的方案,使实际所花费用最少,并求出最少的费用. 解:(1)设A 种、B 种树木每棵分别为a 元、b 元,则⎩⎪⎨⎪⎧2a +5b =600,3a +b =380.解得⎩⎪⎨⎪⎧a =100,b =80. 答:A 种、B 种树木每棵分别为100元、80元.(2)设购买A 种树木为x 棵,则购买B 种树木为(100-x)棵, 则x ≥3(100-x),解得x ≥75. 设实际付款总金额为y 元,则y =0.9[100x +80(100-x)]=18x +7 200. ∵18>0,∴y 随x 的增大而增大. ∴x =75时,y 最小.即x =75,y 最小=18×75+7 200=8 550.∴当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少费用为8 550元.7.(2016·泰安)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9 000元;购买10副横拍球拍比购买5副直拍球拍多花费1 600元. (1)求两种球拍每副各多少元;(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.解:(1)设直拍球拍每副x 元,横拍球拍每副y 元,由题意,得⎩⎪⎨⎪⎧20(x +10×2)+15(y +10×2)=9 000,5(x +10×2)+1 600=10(y +10×2).解得⎩⎪⎨⎪⎧x =220,y =260.答:直拍球拍每副220元,横拍球拍每副260元.(2)设购买直拍球拍m 副,则购买横拍球拍(40-m)副,由题意,得 m ≤3(40-m).解得m ≤30.设买40副球拍所需的费用为w 元,则w =(220+2×10)m +(260+2×10)(40-m) =-40m +11 200.∵-40<0,∴w 随m 的增大而减小.∴当m =30时,w 取最小值,w 最小=-40×30+11 200=10 000(元).答:购买直拍球拍30副,购买横拍球拍10副时,费用最少,最少为10 000元.1.(2016·德州)下列函数中,满足y 的值随x 的值增大而增大的是( B ) A .y =-2x B .y =3x -1 C .y =1xD .y =x 22.(2015·眉山)关于一次函数y =2x -1的图象,下列说法正确的是( B ) A .图象经过第一、二、三象限 B .图象经过第一、三、四象限 C .图象经过第一、二、四象限 D .图象经过第二、三、四象限 3.(2015·宁德)已知点A(-2,y 1)和点B(1,y 2)是如图所示的一次函数y =2x +b 图象上的两点,则y 1与y 2的大小关系是( A )A .y 1<y 2B .y 1>y 2C .y 1=y 2D .y 1≥y 24.(2016·陕西)设点A(a ,b)是正比例函数y =-32x 的图象上任意一点,则下列等式一定成立的是( D )A .2b +3b =0B .2a -3b =0C .3a -2b =0D .3a +2b =0 5.(2016·河北)若k ≠0,b<0,则y =kx +b 的图象可能是( B )6.(2016·呼和浩特)已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( A )A .k >1,b <0B .k >1,b >0C .k >0,b >0D .k >0,b <0 7.(2016·宜宾)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( C )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度 8.(2016·钦州)已知正比例函数y =kx 的图象经过点(1,2),则k =2.9.将正比例函数y =2x 的图象向上平移3个单位,所得直线的解析式为y =2x +3. 10.(2014·毕节)如图,函数y =2x 和y =ax +4的图象相交于点A(m ,3),则不等式2x ≥ax +4的解集为x ≥32.11.(2016·荆州)若点M(k -1,k +1)关于y 轴的对称点在第四象限内,则一次函数y =(k -1)x +k 的图象不经过第一象限. 12.(2016·长春)如图,在平面直角坐标系中,正方形ABCD 的对称中心与原点重合,顶点A 的坐标为(-1,1),顶点B 在第一象限.若点B 在直线y =kx +3上,则k 的值为-2.13.(2016·宜昌)如图,直线y =3x +3与两坐标轴分别交于A ,B 两点. (1)求∠ABO 的度数;(2)过点A 的直线l 交x 轴正半轴于C ,AB =AC ,求直线l 的函数解析式.解:(1)对于y =3x +3,令x =0,则y = 3. ∴A 点的坐标为(0,3), ∴OA = 3.令y =0,则x =-1,∴OB =1. 在Rt △AOB 中,tan ∠ABO =OAOB= 3.∴∠ABO =60°.(2)在△ABC 中,AB =AC ,又AO ⊥BC , ∴BO =CO ,∴C 点的坐标为(1,0).设直线l 的函数解析式为y =kx +b(k ,b 为常数),依题意,有⎩⎨⎧3=b ,0=k +b.解得⎩⎨⎧k =-3,b = 3.∴直线l 的函数解析式为y =-3x + 3.14.(2013·河池)华联超市欲购进A ,B 两种品牌的书包共400个.已知两种书包的进价和售价如下表所示.设购进A 种书包x 个,且所购进的两种书包能全部卖出,获得的总利润为w 元.品牌 进价(元/个)售价(元/个)A 47 65 B3750(1)求w 关于x 的函数关系式;(2)如果购进两种书包的总费用不超过18 000元,那么该商场如何进货才能获利最大?并求出最大利润.(提示:利润=售价-进价) 解:(1)由题意,得w =(65-47)x +(50-37)(400-x) =5x +5 200.∴w 关于x 的函数关系式为w =5x +5 200. (2)由题意,得47x +37(400-x)≤18 000,解得x ≤320. ∵w =5x +5 200,∴k =5>0,∴w 随x 的增大而增大.∴当x =320时,w 最大=6 800.∴进货方案是A 种书包购买320个,B 种书包购买80个,才能获得最大利润,最大利润为6 800元.15.(2016·新疆)暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间? (2)求线段AB 对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?解:(1)从小刚家到该景区乘车一共用了4 h. (2)设AB 段图象的函数解析式为y =kx +b. ∵A(1,80),B(3,320)在AB 上,∴⎩⎪⎨⎪⎧k +b =80,3k +b =320.解得⎩⎪⎨⎪⎧k =120,b =-40. ∴y =120x -40(1≤x ≤3).(3)当x =2.5时,y =120×2.5-40=260, 380-260=120(km).故小刚一家出发2.5小时时离目的地120 km.16.(2016·枣庄)如图,点A 的坐标为(-4,0),直线y =3x +n 与坐标轴交于点B ,C ,连接AC.若∠ACD =90°,则n 的值为-433.17.(2016·重庆A 卷)甲,乙两人在直线道路上同起点,同终点,同方向,分别以不同的速度匀速跑步1 500米,先到终点的人原地休息.已知甲先出发30秒后,乙才出发.在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示.则乙到终点时,甲距终点的距离是175米.18.如图,已知A ,B 分别是x 轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA 交y 轴于点C(0,2),直线PB 交y 轴于点D ,S △AOP =6.(1)求△COP 的面积;(2)求点A 的坐标和p 的值;(3)若S △BOP =S △DOP ,求直线BD 的解析式.解:(1)作PE ⊥y 轴于点E , ∵P 点的横坐标是2,则PE =2. ∴S △COP =12OC·PE =12×2×2=2.(2)∵S △AOC =S △AOP -S △COP =6-2=4, 又S △AOC =12OA·OC ,∴12×OA ×2=4.∴OA =4. ∴点A 的坐标是(-4,0).设直线AP 的解析式是y =kx +b ,则⎩⎪⎨⎪⎧-4k +b =0,b =2.解得⎩⎪⎨⎪⎧k =12,b =2.则直线AP 的解析式是y =12x +2.当x =2时,y =3,即p =3.(3)设直线BD 的解析式为y =ax +c(a ≠0), ∴D(0,c),B(-ca ,0).∵S △BOP =S △DOP ,∴12OD·2=12OB·3,即c =-3c 2a . ∵P(2,3),∴2a +c =3. ∴⎩⎪⎨⎪⎧2a +c =3,c =-3c 2a .解得⎩⎪⎨⎪⎧a =-32,c =6. ∴直线BD 的解析式是y =-32x +6.。