中考复习二次函数复习课优质课件PPT
合集下载
中考复习§二次函数PPT优秀课件

,对称轴为
;
(2)求抛物线的表达式及m,n的值;
(3)请在图中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点
P'用平滑的曲线连接起来,猜想该曲线是哪种曲线;
(4)设直线y=m(m>-2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请
A.0 B.-1 C.- 1 D.- 1
2
4
答案 D 依题意得,该二次函数图象的对称轴为y轴. ∴-(a+2)=0,解得a=-2. ∴方程可化为-4x2+1=0,设方程两根分别为x1,x2,
∴x1·x2=-1 ,故选D.
4
解题关键 明确该抛物线的对称轴为y轴是解题关键.
2.(2020贵州贵阳,10,3分)已知二次函数y=ax2+bx+c的图象经过(-3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3,则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是
A.ab<0 B.一元二次方程ax2+bx+c=0的正实数根在2和3之间 C.a= m 2
3
D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t> 1 时,y1<y2
3
答案
D
∵抛物线的开口向上,∴a>0,根据对称轴在y轴右侧可知-
b 2a
>0,∴b<0,所以ab<0,A选项结论正
确;根据题图可知,一元二次方程ax2+bx+c=0的负实数根在-1和0之间,根据图象的对称性可知,一元二次
中考数学专题《二次函数》复习课件(共18张PPT)

(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
《二次函数》中考总复习PPT课件

y轴(直线 ( 0,0 ) x=0) ( 0,k )
直线 ( h,0 ) x=h ( h,k )
当 | a | 的值越大时,抛物线开口越小,函数值 y 变化越快。 当 | a | 的值越小时,抛物线开口越大,函数值 y 变化越慢。 只要a相同,抛物线的形状(开口大小和开口方向)就相同。
点评:二次函数的几种表现形式及图像
特别注意:在实际问题中画函数的图像时要注意自变量的取值范围,若图像是直线, 则画图像时只取两个界点坐标来画(包括该点用实心点,不包括该点用空心圈);若是二 次函数的图像,则除了要体现两个界点坐标外,还要取上能体现图像特征的其它一些 点来画
3、二次函数y=x2-x-6的图象顶点坐标是_(_—_12_,_-_—2_45)___ 对称轴是__x_=_—12_____。
当 -2<x<3
时,y<0
4、二次函数y=ax2+bx+c(a≠0)与 一次函数y=ax+c在同一坐标系内 的大致图象是C ( )
y
y
y
y
x
o
x
o
x
o
o
x
(A)
(B)
(C)
(D)
5、
已知二次函数
y 1 x2 x 3
2
2
(1)求抛物线开口方向,对称轴和顶点M的坐标。 (2)设抛物线与y轴交于C点,与x轴交于A、B两 点,求C,A,B的坐标。 (3)x为何值时,y随的增大而减少,x为何值时, y有最大(小)值,这个最大(小)值是多少? (4)求ΔMAB的周长及面积。 (5)x为何值时,y<0?x为何值时,y>0?
(5)y=a(x-h)2 +k(a≠ 0)
2.定义的实质是:ax²+bx+c是整式,自变量x的最 高次数是二次,自变量x的取值范围是全体实数.
中考二次函数复习课件【优质PPT】

x=2,y最大值=3
练习 根据下列条件,求二次函数的解析式。
(1)、图象经过(-1,3), (1,3) , (2,6) 三点;
(2)、图象的顶点(2,3), 且经过点(3,1) ;
(3)、图象经过(0,0), (12,0) ,且最高点
的纵坐标是3 。
顶点(6,3)
解法一设解析式为y=a(x-0)(x-12)
令y=1.4,则-0.2x2+3.2=1.4
B x解得x=-3或x=3 ∴M(-3,1.4),N(3,1.4) ∴MN=6 20 答:横向活动范围是6米。
练习、已知二次函数y=ax2-5x+c的图象如图。
(1)、当x为何值时,y随x的增大而增大; (2)、当x为何值时,y<0。 (3)、求它的解析式和顶点坐标y ;
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
2021/10/10
14
5一.待般定式系数y法=a求x解2+b析x式+c (a≠0) 顶点式 y=a(x-h)2+k (a≠0)
交点式 y=a(x-x1)(x-x2) (a≠0)
6–
3–
-2 -1
12
练习 根据下列条件,求二次函数的解析式。
二次函数的图象是一条 对称轴平行于 y 轴.
抛物线
,它是 轴
对称图形,其
2021/10/10
2
y 3.二次函数的图象及性质y
0
x
0
x
抛物线 顶点坐标 对称轴 开口方向
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a
二次函数复习(共36张PPT)

y=ax2+bx+c的图 方程ax2+bx+c=0
象和x轴交点
的根
b2-4ac
有两个交点
方程有两个不相等的 b2-4ac>0
实数根
只有一个交点
方程有两个相等的 b2-4ac=0
实数根
没有交点
方程没有实数根 b2-4ac<0
函数的图象
y
.
. ox
y
o
x
y
o
x
根据下列表格中二次函数y=ax2+bx+c的自变量与函数 值的对应值,判断方程ax2+bx+c =0
(4)函数的自变量x的取值范围:任意实数
当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范
围.
二次函数的一般形式:
• 函数y=ax2+bx+c
– 其中a、b、c是常数 – 切记:a≠0 – 右边一个x的二次多项式(不能是分式或根式)
二次函数的特殊形式:
当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
向上
直线X=-h
(-h,k)
a < 0 向下
图象的平移规律:
对于抛物线y=a(x+h)2+k的平移有以下规律: (1)、平移不改变 a 的值; (2)、h决定图象沿x轴方向左右平移,左+右— (3)、k决定图象沿y轴方向上下平移,上+下—
知识运用
(坐1标)是抛物线,图(y0象=,0过)x32 第2的开口向一象、,限对上二称;轴是
二次函数 开 口 方 向 对 称 轴 顶 点 坐 标
y = ax 2
a > 0 向上 直线X=0 a < 0 向下 (或y轴)
二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
第22章《二次函数》复习课PPT课件(人教版)

形?若存在,求点N的坐标;若不存在,请说明理由
三、课堂练习
N M
N
重视知识归纳; 重视基本概念; 重视典型题型; 重视每日小练; 重视错题整理; 避免盲目大意。
九年级数学
第22章 《二次函数》 复习(2)
定形图 性 义式象 质
坦洲实验中学初三数学
一、知识回顾
归纳知识:
(1)开a口的向符上号:由抛物a线>0的开口y 方向确定
开口向下
(2)c的符号:
a<0
o
x
由抛物线与y轴的交点位置确定.
交点在y轴正半轴
c>0
y
交点在y轴负半轴
c<0
交点是坐标原点
c=0
ox
∴ OE=DE=1.5 即D(1.5,-1.5)
设直线OD为y=kx,代入D点坐标得y= -x
令x2-2x-3 = -x
二、典型例题
证明: b2-4ac=[-(2m-1)]2-4×1×(m2-m-2) =4m2-4m+1-4m2+4m+8 =9
即b2-4ac >0 ∴ 抛物线与x轴有两个不同的交点
三、课堂练习
C
一次函数y=ax+b经过的象限与a, b符号关系 A选项,经过一二四象限, a<0, b>0 B选项,经过一二三象限,a>0, b>0 C选项,经过一三四象限, a>0, b<0 D选项,经过一三四象限,a>0, b<0
三、课堂练习
·B
A2
6
三、课堂练习
-1·
·5
与x,y轴交点
-5·
二、典型例题
解:令x=0,解得y=m2-m-2 令y=0,得x2-(2m-1) x+m2-m-2=0 [x-(m-2)][x-(m+1)]=0
三、课堂练习
N M
N
重视知识归纳; 重视基本概念; 重视典型题型; 重视每日小练; 重视错题整理; 避免盲目大意。
九年级数学
第22章 《二次函数》 复习(2)
定形图 性 义式象 质
坦洲实验中学初三数学
一、知识回顾
归纳知识:
(1)开a口的向符上号:由抛物a线>0的开口y 方向确定
开口向下
(2)c的符号:
a<0
o
x
由抛物线与y轴的交点位置确定.
交点在y轴正半轴
c>0
y
交点在y轴负半轴
c<0
交点是坐标原点
c=0
ox
∴ OE=DE=1.5 即D(1.5,-1.5)
设直线OD为y=kx,代入D点坐标得y= -x
令x2-2x-3 = -x
二、典型例题
证明: b2-4ac=[-(2m-1)]2-4×1×(m2-m-2) =4m2-4m+1-4m2+4m+8 =9
即b2-4ac >0 ∴ 抛物线与x轴有两个不同的交点
三、课堂练习
C
一次函数y=ax+b经过的象限与a, b符号关系 A选项,经过一二四象限, a<0, b>0 B选项,经过一二三象限,a>0, b>0 C选项,经过一三四象限, a>0, b<0 D选项,经过一三四象限,a>0, b<0
三、课堂练习
·B
A2
6
三、课堂练习
-1·
·5
与x,y轴交点
-5·
二、典型例题
解:令x=0,解得y=m2-m-2 令y=0,得x2-(2m-1) x+m2-m-2=0 [x-(m-2)][x-(m+1)]=0
初中数学《二次函数》复习课名师教学PPT课件

3.某商场试销一种成本为每件60元的服装,规定试销期 间销售单价不低于成本单价,且获利不得高于45%,经 试销发现,销售量y(件)与销售单价x(元)符合一次 函数y=kx+b,且x=65时,y=55;x=75时,y=45;
(1)求一次函数的解析式;
(2)若该商场获得利润为W元,试写出利润W与销售单 价x之间的关系;销售单价定为多少时,商场可获得最 大利润,最大利润是多少元?
(3)若该商场所获得利润不低于500元,试确定销售单 价x的范围.
二次函数在几何问题中的应用
1.为了节省材料,某水产养殖户利用水库的岸堤(岸堤 足够长)为一边,用总长为80m的围网在水库中围成了 如图所示的①②③三块矩形区域,而且这三块矩形区 域的面积相等.设BC的长度为xm,矩形区域ABCD的 面积为ym2.
A.图象关于直线x=1对称 B.函数y=ax2+bx+c(a≠0)的 最小值是-4 C.抛物线y=ax2+bx+c(a≠0)与x轴 的两个交点的横坐标分别是-1,3 D.当x<1时,y随x的增大而增大
2.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的 取值范围是(B)
A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3
1 x
2.已知函数y=(m2+m)x2+mx+4为二次函数,则m的取值
范围是( C)
A.m≠0 B.m≠-1 C.m≠0,且m≠-1 D.m=-1
3.矩形的周长为24cm,其中一边为xcm(其中x>0), 面积为ycm2,则这样的矩形中y与x的关系可以写成 ( B)
A.y=x2 C. y=12-x2
B.y=(12-x)x D.y=2(12-x)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考复习课:二次函数
E-mail: 2005.4
2021/02/01
1
二次函数复习
1. 一般地,如果_y_=_a_x2_+_b_x_+_c(_a_≠_0),
那么y叫做x的二次函数;
23..它 当的_图_象 _是 时_ ,_ 开抛_ 口物_ 向线_上;;
4.它的a>对0轴是____; 5.顶点坐标为_x_=- 2_ba ___;
BO
Ax
∴OC=2,点C(0,-2) C
2021/02/01
14
练习、已知二次函数y=ax2-5x+c的图象如图。
(1)、当x为何值时,y随x的增大而增大; (2)、当x为何值时,y<0。 (3)、求它的解析式和顶点坐标y ;
O
x
2021/02/01
15
Thank you
感谢聆听 批评指导
汇报人:XXX 汇报日期:20XX年XX月XX日
2021/02/01
13
例2、已知抛物线y=ax2+bx+c与x轴正、 负半轴分别交于A、B两点,与y轴负半轴交 于点C。若OA=4,OB=1,∠ACB=90°, 求抛物线解析式。
解: ∵点A在正半轴,点B在负半轴
OA=4,∴点A(4,0) y
OB=1, ∴点B(-1,0)
又 ∵ ∠ACB=90° ∴OC2=OA·OB=4
∴二次函数的解析式为y=-2(x-1)2+2
即: y=-2x2+4x
2021/02/01
12
练习1、已知抛物线y=ax2+bx-1的 对称轴是x=1 ,最高点在直线y=2x+4上。 (1)求抛物线解析式.
(2)求抛物线与直线的交点坐标.
解:∵二次函数的对称轴是x=1
∴图象的顶点横坐标为1 又∵图象的最高点在直线y=2x+4上 ∴当x=1时,y=6 ∴顶点坐标为( 1 , 6)
感谢您的观看!本教学内容具有更强的时代性和丰富性,更适合学习需要和特点。为了 方便学习和使用,本文档的下载后可以随意修改,调整和打印。欢迎下载!
2021/02/01
16
1、二次函数y=
1 2
x2+2x+1写成顶点式为:
y=__12__(x_+_2_)_2_-1_,对称轴为_x_=_-2__,顶点为_(-_2_,__-_1)
2、已知二次函数y=-
1 2
x2+bx-5的图象的
顶点在y轴上,则b=_0__。
2021/02/01
7
求抛物线解析式的三种方法
1、已知抛物线上的三点,通常设解析式为 ____y_=_a_x_2_+_b_x_+_c_(_a_≠0)
最大值是2,图象顶点在直线y=x+1上,
并且图象经过点(3,-6)。求a、b、c。
解:∵二次函数的最大值是2
∴抛物线的顶点纵坐标为2
又∵抛物线的顶点在直线y=x+1上
∴当y=2时,x=1
∴顶点坐标为( 1 , 2)
∴设二次函数的解析式为y=a(x-1)2+2
又∵图象经过点(3,-6)
∴-6=a (3-1)2+2 ∴a=-2
6.与y轴的交点坐(-标2ba为, 4a_4ca-b_2 ) _.
2021/02/01
(0,c) 2
6、当a>0时,图象有最_低_点, 函数有最__值小,
x_<-_2b_a ,y随x的增大而减小, x_>-_2b_a ,y随x的增大而增大;
7、当a<0时,图象有最_高_点, 函数有最__值大,
__xx<>_ _-- 22bb_ _aa , ,yy随 随xx的 的增增大大而而增减大小,.
2021/02/01
3
8、a决定了抛物线的开_口_方_向_和_形_状_;
对称轴由___决定;
a和b
c决定了图象与_____轴的交点位置;
y
2021/02/01
4
9、若抛物线与x轴没有交点,则_△_<_0_;
若抛物线与x轴有一个交点,则____; △=0
若抛物线与x轴有两个交点,则___,
若两交点坐标分别为( x1,0)、△(>x20,0) 则x1 +x2=__, x1 x2=__,
2、已知抛物线顶点坐标(h, k),通常设 抛物线解析式为_y_=_a_(_x_-_h_)2_+_k_(_a_≠_0_)
3、已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式为_y_=_a_(_x_-_x_1)_(_x_-x_2_) (a≠0)
2021/02/01
8
1、已知抛物线的图象经过点(1,4)、 (-1,-1) 、 (2,-2),设抛物线解析式为________________, y=ax2+bx+c(a≠0) 根据题意得:
两交点的距离ba 为|x1
-x2
|c =
a
b2 4ac
2021/02/01
|a|
5
练习1、填表
抛物线
开口 对称轴
顶点坐标
y=a(x–h)2+k(a>0) 向上 x=h
(h,k)
y=ax2+bx+c(a<0) 向下
x=-
b 2a(-b 2a来自,4ac-b2 )
4a
2021/02/01
6
练习(四) 填空
10
练习 根据下列条件,求二次函数的解析式。 (1)、图象经过(0,0), (1,-2) , (2,3) 三点; (2)、图象的顶点(2,3), 且经过点(3,1) ;
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
2021/02/01
11
例1、已知二次函数y=ax2+bx+c的
4=a+b+c -1=a-b+c -2=4a+2b+c
2021/02/01
9
2、已知抛物线的顶点坐标(-2,3) ,设抛物 线解析式为_y_=_a_(x_+__2_)2_+_3_(_a_≠_0_)_, 若图象还过点 (1,4) ,可得__4_=__a_(1_+_2_)_2_+_3__.
2021/02/01
E-mail: 2005.4
2021/02/01
1
二次函数复习
1. 一般地,如果_y_=_a_x2_+_b_x_+_c(_a_≠_0),
那么y叫做x的二次函数;
23..它 当的_图_象 _是 时_ ,_ 开抛_ 口物_ 向线_上;;
4.它的a>对0轴是____; 5.顶点坐标为_x_=- 2_ba ___;
BO
Ax
∴OC=2,点C(0,-2) C
2021/02/01
14
练习、已知二次函数y=ax2-5x+c的图象如图。
(1)、当x为何值时,y随x的增大而增大; (2)、当x为何值时,y<0。 (3)、求它的解析式和顶点坐标y ;
O
x
2021/02/01
15
Thank you
感谢聆听 批评指导
汇报人:XXX 汇报日期:20XX年XX月XX日
2021/02/01
13
例2、已知抛物线y=ax2+bx+c与x轴正、 负半轴分别交于A、B两点,与y轴负半轴交 于点C。若OA=4,OB=1,∠ACB=90°, 求抛物线解析式。
解: ∵点A在正半轴,点B在负半轴
OA=4,∴点A(4,0) y
OB=1, ∴点B(-1,0)
又 ∵ ∠ACB=90° ∴OC2=OA·OB=4
∴二次函数的解析式为y=-2(x-1)2+2
即: y=-2x2+4x
2021/02/01
12
练习1、已知抛物线y=ax2+bx-1的 对称轴是x=1 ,最高点在直线y=2x+4上。 (1)求抛物线解析式.
(2)求抛物线与直线的交点坐标.
解:∵二次函数的对称轴是x=1
∴图象的顶点横坐标为1 又∵图象的最高点在直线y=2x+4上 ∴当x=1时,y=6 ∴顶点坐标为( 1 , 6)
感谢您的观看!本教学内容具有更强的时代性和丰富性,更适合学习需要和特点。为了 方便学习和使用,本文档的下载后可以随意修改,调整和打印。欢迎下载!
2021/02/01
16
1、二次函数y=
1 2
x2+2x+1写成顶点式为:
y=__12__(x_+_2_)_2_-1_,对称轴为_x_=_-2__,顶点为_(-_2_,__-_1)
2、已知二次函数y=-
1 2
x2+bx-5的图象的
顶点在y轴上,则b=_0__。
2021/02/01
7
求抛物线解析式的三种方法
1、已知抛物线上的三点,通常设解析式为 ____y_=_a_x_2_+_b_x_+_c_(_a_≠0)
最大值是2,图象顶点在直线y=x+1上,
并且图象经过点(3,-6)。求a、b、c。
解:∵二次函数的最大值是2
∴抛物线的顶点纵坐标为2
又∵抛物线的顶点在直线y=x+1上
∴当y=2时,x=1
∴顶点坐标为( 1 , 2)
∴设二次函数的解析式为y=a(x-1)2+2
又∵图象经过点(3,-6)
∴-6=a (3-1)2+2 ∴a=-2
6.与y轴的交点坐(-标2ba为, 4a_4ca-b_2 ) _.
2021/02/01
(0,c) 2
6、当a>0时,图象有最_低_点, 函数有最__值小,
x_<-_2b_a ,y随x的增大而减小, x_>-_2b_a ,y随x的增大而增大;
7、当a<0时,图象有最_高_点, 函数有最__值大,
__xx<>_ _-- 22bb_ _aa , ,yy随 随xx的 的增增大大而而增减大小,.
2021/02/01
3
8、a决定了抛物线的开_口_方_向_和_形_状_;
对称轴由___决定;
a和b
c决定了图象与_____轴的交点位置;
y
2021/02/01
4
9、若抛物线与x轴没有交点,则_△_<_0_;
若抛物线与x轴有一个交点,则____; △=0
若抛物线与x轴有两个交点,则___,
若两交点坐标分别为( x1,0)、△(>x20,0) 则x1 +x2=__, x1 x2=__,
2、已知抛物线顶点坐标(h, k),通常设 抛物线解析式为_y_=_a_(_x_-_h_)2_+_k_(_a_≠_0_)
3、已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式为_y_=_a_(_x_-_x_1)_(_x_-x_2_) (a≠0)
2021/02/01
8
1、已知抛物线的图象经过点(1,4)、 (-1,-1) 、 (2,-2),设抛物线解析式为________________, y=ax2+bx+c(a≠0) 根据题意得:
两交点的距离ba 为|x1
-x2
|c =
a
b2 4ac
2021/02/01
|a|
5
练习1、填表
抛物线
开口 对称轴
顶点坐标
y=a(x–h)2+k(a>0) 向上 x=h
(h,k)
y=ax2+bx+c(a<0) 向下
x=-
b 2a(-b 2a来自,4ac-b2 )
4a
2021/02/01
6
练习(四) 填空
10
练习 根据下列条件,求二次函数的解析式。 (1)、图象经过(0,0), (1,-2) , (2,3) 三点; (2)、图象的顶点(2,3), 且经过点(3,1) ;
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
2021/02/01
11
例1、已知二次函数y=ax2+bx+c的
4=a+b+c -1=a-b+c -2=4a+2b+c
2021/02/01
9
2、已知抛物线的顶点坐标(-2,3) ,设抛物 线解析式为_y_=_a_(x_+__2_)2_+_3_(_a_≠_0_)_, 若图象还过点 (1,4) ,可得__4_=__a_(1_+_2_)_2_+_3__.
2021/02/01