测试技术与信号处理(第三版)课后习题详解
测试技术与信号分析处理 课后习题解答 第三章

3.7 用一个时间常数未0.35S 的一阶装置去测量周期分别为1S 、2S 、5S 的正弦信号,问A (ω)误差为多少?解:τ1 =1S, τ2 =2S, τ3 =5Sω1 =2π/1=2 , ω2 =2π/2= , ω3 =2π/5由式(3.16) A(ω)=1)(12+τω 得幅值比:A 1(ω)=1)1/235.0(12+⨯π =0.413A 2(ω)=1)2/235.0(12+⨯π =0.673A 3(ω)= 1)5/235.0(12+⨯π =0.915误差1 = [1-A 1(ω)]×100%=(1-0.41) ×100% = 58.6%误差2 = [1- A 2(ω)]×100%=(1-0.67)×100% = 32.7%误差3 = [1- A 3(ω)]×100%=(1-0.92) ×100% = 8.5%3.8 求周期信号x(t)=0.5cos10t +0.2cos(100t-45°)通过传递函数为 H(s) = 1005.01+S 的装置后所得到的稳态响应。
解:把原信号分成两个信号:x 1( t ) = 0.5 cos10t , x 2 ( t ) = 0.2cos(100t-45°)ω1= 10S -1, ω2=100S -1由一阶系统的幅频特性 A(ω)=1)(12+τω , 知第一个信号的幅值比 A 1(ω)=1)10005.0(12+⨯ = 0.99875输出幅值A 0=A 1(ω) ×0.5 = 0.99875×0.5 = 0.499第二个信号的幅值比:A 2(ω) =1)100005.0(12+⨯ =0.89443φ1(ω)= -arc tan τω1= -arc tan(10×0.005)= - 2.86° .φ2(ω)= -arc tan τω2= -arc tan(100×0.005)= 26.57°所以,周期信号的稳态响应为:x (t) = 0.499cos(10 t - 2.86°)+0.179cos(100 t - 71.57°)3.9 想用一个一阶系统作100Hz 正弦信号的测量,如要求限制振幅误差在5%以内。
数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

第 1 章
时域离散信号和时域离散系统
6. 给定下述系统的差分方程, 试判定系统是否是因果稳定系统, 并说明
理由。
1 N 1 N k 0 (2) y(n)=x(n)+x(n+1)
第 1 章
(2) 令输入为
x(n-n0) 输出为
Байду номын сангаас
时域离散信号和时域离散系统
y′(n)=2x(n-n0)+3
y(n-n0)=2x(n-n0)+3=y′(n)
故该系统是非时变的。 由于 T[ax1(n)+bx2(n)]=2ax1(n)+2bx2(n)+3 T[ax1(n)]=2ax1(n)+3 T[bx2(n)]=2bx2(n)+3 T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)] 故该系统是非线性系统。
m
第 1 章
时域离散信号和时域离散系统
题7图
第 1 章
时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
第 1 章
解法(二)
时域离散信号和时域离散系统
采用解析法。 按照题7图写出x(n)和h(n)的表达式分别为
n n0 k n n0
|x(k)|≤|2n0+1|M, 因
此系统是稳定的; 假设n0>0, 系统是非因果的, 因为输出
信号处理与测试技术习题及答案

第一章习题:一、填空题1、电量分为和,如电流、电压、电场强度和电功率属于;而描述电路和波形的参数,如电阻、电容、电感、频率、相位则属于。
2、传感器输出的经过加工处理后,才能进—步输送到记录装置和分析仪器中。
3、现代科学认为,、、是物质世界的三大支柱。
4、与三大支柱相对应,现代科技形成了三大基本技术,即、、。
5、传感技术是人的的扩展和延伸;通信技术是人的的扩展和延伸;计算机技术是人的的延伸。
6、、、技术构成了信息技术的核心。
二、简答题1、举例说明信号测试系统的组成结构和系统框图。
2、举例说明传感技术与信息技术的关系。
3、分析计算机技术的发展对传感测控技术发展的作用。
4、分析说明信号检测与信号处理的相互关系。
三、参考答案(-)填空题1、电能量、电参量、电能量、电参量2、电信号、信号调理电路3、物质、能量、信息4、新材料技术、新能源技术和信息技术5、感官(视觉、触觉)功能、信息传输系统(神经系统)、信息处理器官(大脑)功能6、传感、通信和计算机第二章习题:一、填空题1、确定性信号可分为和两类。
2、信号的有效值又称为,它反映信号的。
3、概率密度函数是在域,相关函数是在域,功率谱密度是在域上描述随机信号。
4、周期信号在时域上可用、和参数来描述。
5、自相关函数和互相关函数图形的主要区别是。
6、因为正弦信号的自相关函数是同频率的,因此在随机噪声中含有时,则其自相关函数中也必然含有,这是利用自相关函数检测随机噪声中含有的根据。
7、周期信号的频谱具有以下三个特点:_________、________、_________。
8、描述周期信号的数学工具是__________;描述非周期信号的数学工具是________。
9、同频的正弦信号和余弦信号,其相互相关函数是的。
10、信号经典分析方法是和。
11、均值E[x(t)]表示集合平均值或数学期望,反映了信号变化的,均方值反映信号的。
12、奇函数的傅立叶级数是,偶函数的傅立叶级数是。
测试技术与信号处理课后答案

测试技术与信号处理课后答案机械工程测试技术基础习题解答教材:机械工程测试技术基础,熊诗波 黄长艺主编,机械工业出版社,2006年9月第3版第二次印刷。
第一章 信号的分类与描述1-1 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|c n |–ω和φn –ω图,并与表1-1对比。
解答:在一个周期的表达式为00 (0)2() (0)2T A t x t T A t ⎧--≤<⎪⎪=⎨⎪≤<⎪⎩积分区间取(-T/2,T/2)000000002202002111()d =d +d =(cos -1) (=0, 1, 2, 3, )L T T jn tjn tjn t T T n c x t et Aet Ae tT T T Ajn n n ωωωππ-----=-±±±⎰⎰⎰所以复指数函数形式的傅里叶级数为 001()(1cos )jn tjn t n n n Ax t c ejn e n∞∞=-∞=-∞==--∑∑ωωππ,=0, 1, 2, 3, n ±±±L 。
(1cos ) (=0, 1, 2, 3, )0nI nR A c n n n c ⎧=--⎪±±±⎨⎪=⎩L ππ图1-4 周期方波21,3,,(1cos)00,2,4,6,nAnAc n nnn⎧=±±±⎪==-=⎨⎪=±±±⎩LLπππ1,3,5,2arctan1,3,5,200,2,4,6,nInnRπncπφncn⎧-=+++⎪⎪⎪===---⎨⎪=±±±⎪⎪⎩LLL没有偶次谐波。
其频谱图如下图所示。
1-2 求正弦信号0()sinx t xωt=的绝对均值xμ和均方根值rms x。
解答:00002200000224211()d sin d sin d cosT TT Txx x x x μx t t xωt tωt tωtT T T TωTωπ====-==⎰⎰⎰rmsx====1-3 求指数函数()(0,0)atx t Ae a t-=>≥的频谱。
(完整版)测试技术课后答案全集—第三版

《绪论》0-1叙述我国法定计量单位的基本内容。
答:我国的法定计量单位是以国际单位制(SI)为基础并选用少数其他单位制的计量单位来组成的。
1.基本单位根据国际单位制(SI),七个基本量的单位分别是:长度——米(Metre)、质量——千克(Kilogram)、时间——秒(Second)、温度——开尔文(Kelvn)、电流——安培(Ampere)、发光强度——坎德拉(Candela)、物质的量——摩尔(Mol>。
它们的单位代号分别为:米(m))、千克(kg)、秒(s)、开(K)、安(A)、坎(cd)、摩(mol)。
国际单位制(SI)的基本单位的定义为:米(m)是光在真空中,在1/299792458s的时间间隔内所经路程的长度。
千克(kg)是质量单位,等于国际千克原器的质量。
秒(s)是铯-133原子基态的两个超精细能级间跃迁对应的辐射9192631770个周期的持续时间。
安培(A)是电流单位。
在真空中,两根相距1m的无限长、截面积可以忽略的平行圆直导线内通过等量恒定电流时,若导线间相互作用力在每米长度上为2×10-7N,则每根导线中的电流为1A。
开尔文(K)是热力学温度单位,等于水的三相点热力学温度的1/273.16。
摩尔(mol)是一系统的物质的量,该系统中所包含的基本单元数与0.012kg碳-12的原子数目相等。
使用摩尔时,基本单元可以是原子、分子、离子、电子及其他粒子,或是这些粒子的特定组合。
坎德拉(cd)是一光源在给定方向上的发光强度,该光源发出频率为540×1012Hz的单色辐射,且在此方向上的辐射强度为1/683W/sr。
2.辅助单位在国际单位制中,平面角的单位——弧度和立体角的单位——球面度未归入基本单位或导出单位,而称之为辅助单位。
辅助单位既可以作为基本单位使用,又可以作为导出单位使用。
它们的定义如下:弧度(rad)是一个圆内两条半径在圆周上所截取的弧长与半径相等时,它们所夹的平面角的大小。
数字信号处理第三版习题答案

数字信号处理第三版习题答案数字信号处理(Digital Signal Processing,简称DSP)是一门研究如何对数字信号进行处理和分析的学科。
它在现代通信、音频处理、图像处理等领域有着广泛的应用。
为了更好地理解和掌握数字信号处理的知识,许多人选择了《数字信号处理(第三版)》这本经典教材。
本文将为大家提供一些《数字信号处理(第三版)》习题的答案,以帮助读者更好地学习和巩固所学知识。
第一章:离散时间信号和系统1.1 习题答案:a) 离散时间信号是在离散时间点上取值的信号,而连续时间信号是在连续时间上取值的信号。
b) 离散时间系统是对离散时间信号进行处理的系统,而连续时间系统是对连续时间信号进行处理的系统。
c) 离散时间信号可以通过采样连续时间信号得到。
1.2 习题答案:a) 线性系统满足叠加性和齐次性。
b) 时不变系统的输出只与输入的时间延迟有关,与输入信号的具体形式无关。
c) 因果系统的输出只与当前和过去的输入有关,与未来的输入无关。
第二章:离散时间信号的时域分析2.1 习题答案:a) 离散时间信号的能量是信号幅值的平方和,而功率是信号幅值的平方的平均值。
b) 离散时间信号的能量和功率可以通过计算信号的幅值序列的平方和和平方的平均值得到。
2.2 习题答案:a) 离散时间信号的自相关函数是信号与其自身经过不同时间延迟的乘积的和。
b) 离散时间信号的自相关函数可以用于确定信号的周期性和频率成分。
第三章:离散时间信号的频域分析3.1 习题答案:a) 离散时间信号的频谱是信号在频率域上的表示,可以通过对信号进行傅里叶变换得到。
b) 离散时间信号的频谱可以用于分析信号的频率成分和频谱特性。
3.2 习题答案:a) 离散时间信号的频谱具有周期性,其周期等于采样频率。
b) 离散时间信号的频谱可以通过对信号进行离散傅里叶变换得到。
第四章:离散时间系统的频域分析4.1 习题答案:a) 离散时间系统的频率响应是系统在不同频率下的输出与输入之比。
信号分析与处理第3版赵光宙课后

信号分析与处理第3版赵光宙课后引言《信号分析与处理》是作者赵光宙创作的一本经典教材,已经有3个版本了。
本文档将对《信号分析与处理》第三版的课后习题进行分析和讨论,并对其中一些重要的概念和方法进行介绍和解释。
读者可以通过这些习题的分析,深入理解信号分析与处理的关键概念,为进一步研究和实践打下坚实的基础。
第一章信号与系统本章主要介绍了信号与系统的基本概念和性质。
其中,信号是指随着时间或空间变化而变化的物理量。
系统是信号的输入与输出之间的关系。
课后习题主要涉及信号的分类、线性系统和非线性系统的特性等方面的内容。
习题1:请分类描述以下信号的类型:1.电压信号2.温度信号3.音频信号4.光信号解答:1.电压信号属于连续时间信号,因为时间是连续的。
2.温度信号既可以是连续时间信号,也可以是离散时间信号,取决于温度的采样方式。
3.音频信号属于连续时间信号,因为声音是连续变化的。
4.光信号既可以是连续时间信号,也可以是离散时间信号,取决于光的采样方式。
习题2:判断以下系统是线性系统还是非线性系统:1.y(t) = x(t) + sin(x(t))2.y(t) = 3x(t) - 23.y(t) = x(t)^2解答:1.这个系统是非线性系统,因为它包含了非线性运算sin(x(t))。
2.这个系统是线性系统,因为它只是对输入信号进行了比例增益和平移操作。
3.这个系统是非线性系统,因为它包含了非线性运算x(t)^2。
第二章离散时间信号与系统本章主要介绍了离散时间信号与系统的基本概念和性质。
离散时间信号是在离散时间点上取值的信号,而离散时间系统是对离散时间信号进行处理的系统。
课后习题主要涉及离散时间信号的表示和性质、离散时间系统的差分方程表示等方面的内容。
习题1:请给出以下离散时间信号的表示方式:1.x[n] = {1, 2, 3, 4, 5}2.x[n] = (-1)^n3.x[n] = sin(πn/4)解答:1.x[n] = {1, 2, 3, 4, 5},表示在离散时间点上的取值分别为1, 2, 3, 4, 5。
数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

第 1 章
(2) 令输入为
x(n-n0) 输出为
时域离散信号和时域离散系统
y′(n)=2x(n-n0)+3
y(n-n0)=2x(n-n0)+3=y′(n)
故该系统是非时变的。 由于 T[ax1(n)+bx2(n)]=2ax1(n)+2bx2(n)+3 T[ax1(n)]=2ax1(n)+3 T[bx2(n)]=2bx2(n)+3 T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)] 故该系统是非线性系统。
m
第 1 章
时域离散信号和时域离散系统
题7图
第 1 章
时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
第 1 章
解法(二)
时域离散信号和时域离散系统
采用解析法。 按照题7图写出x(n)和h(n)的表达式分别为
第 1 章
(4) y(n)=x(-n)
令输入为 x(n-n0) 输出为 y′(n)=x(-n+n0)
时域离散信号和时域离散系统
y(n-n0)=x(-n+n0)=y′(n) 因此系统是线性系统。 由于
T[ax1(n)+bx2(n)]=ax1(-n)+bx2(-n)
=aT[x1(n)]+bT[x2(n)] 因此系统是非时变系统。
n n0 k n n0
|x(k)|≤|2n0+1|M, 因
此系统是稳定的; 假设n0>0, 系统是非因果的, 因为输出
还和x(n)的将来值有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测试技术与信号处理习题解答第一章 信号的分类与描述1-1 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|c n |–ω和φn –ω图,并与表1-1对比。
解答:在一个周期的表达式为00 (0)2() (0)2T A t x t T A t ⎧--≤<⎪⎪=⎨⎪≤<⎪⎩积分区间取(-T/2,T/2)00000002202002111()d =d +d =(cos -1) (=0, 1, 2, 3, )L T T jn tjn tjn t T T n c x t et Aet Ae tT T T Ajn n n ωωωππ-----=-±±±⎰⎰⎰所以复指数函数形式的傅里叶级数为001()(1cos )jn tjn tnn n Ax t c ejn en ∞∞=-∞=-∞==--∑∑ωωππ,=0, 1, 2, 3, n ±±±L 。
(1cos ) (=0, 1, 2, 3, )0nI nR A c n n n c ⎧=--⎪±±±⎨⎪=⎩L ππ21,3,,(1cos )00,2,4,6, n An A c n n n n ⎧=±±±⎪==-=⎨⎪=±±±⎩L Lπππ1,3,5,2arctan 1,3,5,200,2,4,6,nI n nR πn c πφn c n ⎧-=+++⎪⎪⎪===---⎨⎪=±±±⎪⎪⎩L L L图1-4 周期方波信号波形图没有偶次谐波。
其频谱图如下图所示。
1-2 求正弦信号0()sin x t x ωt =的绝对均值x μ和均方根值rms x 。
解答:00002200000224211()d sin d sin d cos TTT Tx x x x x μx t t x ωt t ωt t ωt T T T T ωT ωπ====-==⎰⎰⎰222200rms000111cos 2()d sin d d 22T T T x x ωtx x t t x ωt t t T T T-====⎰⎰⎰1-3 求指数函数()(0,0)atx t Ae a t -=>≥的频谱。
解答:(2)22022(2)()()(2)2(2)a j f tj f tat j f te A A a jf X f x t edt Ae edt Aa j f a j f a f -+∞∞---∞-∞-=====-+++⎰⎰πππππππ22()(2)k X f a f π=+Im ()2()arctanarctan Re ()X f ff X f a==-πϕ1-4 求符号函数(见图1-25a)和单位阶跃函数(见图1-25b)的频谱。
单边指数衰减信号频谱图f|X (f )|A /aφ(f )fπ/2-π/2|c n | φnπ/2 -π/2 ωωω0ω0 3ω05ω03ω05ω02A/π2A/3π 2A/5π 幅频图相频图周期方波复指数函数形式频谱图2A/5π 2A/3π 2A/π -ω0-3ω0-5ω0-ω0 -3ω0-5ω0a)符号函数的频谱10()sgn()10t x t t t +>⎧==⎨-<⎩t =0处可不予定义,或规定sgn(0)=0。
该信号不满足绝对可积条件,不能直接求解,但傅里叶变换存在。
可以借助于双边指数衰减信号与符号函数相乘,这样便满足傅里叶变换的条件。
先求此乘积信号x 1(t)的频谱,然后取极限得出符号函数x (t )的频谱。
10()sgn()0atatate t x t et et --⎧>==⎨-<⎩ 10()sgn()lim ()a x t t x t →==22211224()()(2)j f t at j f t at j f t fX f x t e dt e e dt e e dt ja f ∞∞-----∞-∞==-+=-+⎰⎰⎰πππππ[]101()sgn()lim ()a X f t X f jf→===-πF 1()X f fπ=2()02f f f πϕπ⎧<⎪⎪=⎨⎪->⎪⎩图1-25 题1-4图a)符号函数b)阶跃函数b)阶跃函数频谱10()00t u t t >⎧=⎨<⎩在跳变点t =0处函数值未定义,或规定u (0)=1/2。
阶跃信号不满足绝对可积条件,但却存在傅里叶变换。
由于不满足绝对可积条件,不能直接求其傅里叶变换,可采用如下方法求解。
解法1:利用符号函数11()sgn()22u t t =+ [][]1111111()()sgn()()()22222U f u t t f j f j f f ⎛⎫⎡⎤⎡⎤==+=+-=- ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦δδππF F F ()2211()()2U f f f δπ=+ 结果表明,单位阶跃信号u (t )的频谱在f =0处存在一个冲激分量,这是因为u (t )含有直流分量,在预料之中。
同时,由于u (t )不是纯直流信号,在t =0处有跳变,因此在频谱中还包含其它频率分量。
解法2:利用冲激函数10()()d 00tt u t t δττ-∞>⎧==⎨<⎩⎰时时根据傅里叶变换的积分特性单位阶跃信号频谱f|U (f )|(1/2) fφ(f )0 π/2 -π/21()sgn()at x t e t -=符号函数tx 1(t ) 01-1符号函数频谱fφ(f )π/2f|X (f )|-π/21111()()d ()(0)()()222t U f f f f j j f f δττδδππ-∞⎡⎤⎡⎤==∆+∆=-⎢⎥⎢⎥⎣⎦⎣⎦⎰F 1-5 求被截断的余弦函数0cos ωt (见图1-26)的傅里叶变换。
0cos ()0ωtt T x t t T⎧<⎪=⎨≥⎪⎩解:0()()cos(2)x t w t f t =πw (t )为矩形脉冲信号()2sinc(2)W f T Tf =π()002201cos(2)2j f t j f t f t e e πππ-=+所以002211()()()22j f tj f t x t w t e w t e -=+ππ根据频移特性和叠加性得:000011()()()22sinc[2()]sinc[2()]X f W f f W f f T T f f T T f f =-++=-++ππ 可见被截断余弦函数的频谱等于将矩形脉冲的频谱一分为二,各向左右移动f 0,同时谱线高度减小一半。
也说明,单一频率的简谐信号由于截断导致频谱变得无限宽。
1-6 求指数衰减信号0()sin atx t eωt -=的频谱f X (f )Tf 0 -f 0被截断的余弦函数频谱图1-26 被截断的余弦函数ttT-TT -Tx (t )w (t )10 01-1解答:()0001sin()2j t j tt e e j-=-ωωω 所以()001()2j t j tatx t ee e j--=-ωω单边指数衰减信号1()(0,0)atx t ea t -=>≥的频谱密度函数为11221()()j tat j t a j X f x t edt e e dt a j a ∞∞----∞-====++⎰⎰ωωωωω根据频移特性和叠加性得:[]001010222200222000222222220000()()11()()()22()()[()]2[()][()][()][()]a j a j X X X j j a a a a ja a a a ⎡⎤---+=--+=-⎢⎥+-++⎣⎦--=-+-+++-++ωωωωωωωωωωωωωωωωωωωωωωωωωω1-7 设有一时间函数f (t )及其频谱如图1-27所示。
现乘以余弦型振荡00cos ()m ωt ωω>。
在这个关系中,函数f (t )叫做调制信号,余弦振荡0cos ωt 叫做载波。
试求调幅信号0()cos f t ωt 的傅里叶变换,示意画出调幅信号及其频谱。
又问:若0m ωω<时将会出现什么情况?指数衰减信号的频谱图指数衰减信号解:0()()cos()x t f t t =ω()[()]F f t =ωF()0001cos()2j t j t te e -=+ωωω所以0011()()()22j t j tx t f t e f t e -=+ωω根据频移特性和叠加性得: 0011()()()22X f F F =-++ωωωω可见调幅信号的频谱等于将调制信号的频谱一分为二,各向左右移动载频ω0,同时谱线高度减小一半。
若0m ωω<将发生混叠。
1-8 求正弦信号0()sin()x t x ωt φ=+的均值x μ、均方值2x ψ和概率密度函数p (x )。
解答:(1)000011lim()d sin()d 0T T x T μx t t x ωt φt T T →∞==+=⎰⎰,式中02πT ω=—正弦信号周期(2)022222200000111cos 2()lim ()d sin ()d d 22T T T xT x x ωt φψx t t x ωt φt t T T T →∞-+==+==⎰⎰⎰fX (f )ω0-ω0矩形调幅信号频谱图1-27 题1-7图ωF (ω)f (t )0 t-ωmωm(3)在一个周期内012ΔΔ2Δx T t t t =+=0002Δ[()Δ]limx x T T T t P x x t x x T T T →∞<≤+===Δ0Δ000[()Δ]2Δ2d ()limlim ΔΔd x x P x x t x x t t p x x T x T x →→<≤+====正弦信号x第二章 测试装置的基本特性2-1 进行某动态压力测量时,所采用的压电式力传感器的灵敏度为90.9nC/MPa ,将它与增益为0.005V/nC 的电荷放大器相连,而电荷放大器的输出接到一台笔式记录仪上,记录仪的灵敏度为20mm/V 。
试计算这个测量系统的总灵敏度。
当压力变化为3.5MPa 时,记录笔在记录纸上的偏移量是多少? 解:若不考虑负载效应,则各装置串联后总的灵敏度等于各装置灵敏度相乘,即 S =90.9(nC/MPa)⨯0.005(V/nC)⨯20(mm/V)=9.09mm/MPa 。
偏移量:y =S ⨯3.5=9.09⨯3.5=31.815mm 。
2-2 用一个时间常数为0.35s 的一阶装置去测量周期分别为1s 、2s 和5s 的正弦信号,问稳态响应幅值误差将是多少?解:设一阶系统1()1H s s τ=+,1()1H j ωτω=+()()A H ωω===,T 是输入的正弦信号的周期稳态响应相对幅值误差()1100%A δω=-⨯,将已知周期代入得58.6%1s 32.7%2s 8.5%5s T T T δ=⎧⎪≈=⎨⎪=⎩2-3 求周期信号x (t )=0.5cos10t +0.2cos(100t −45︒)通过传递函数为H (s )=1/(0.005s +1)的装置后得到的稳态响应。