研究生数理考试试卷4

合集下载

2004考研数四真题及解析

2004考研数四真题及解析

2004年全国硕士研究生入学统一考试数学四试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 若0sin lim(cos )5x x xx b e a→-=-,则a =,b =.(2) 设1ln arctan 22+-=x xxe e e y ,则1x dy dx ==.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 设⎪⎪⎪⎭⎫⎝⎛--=100001010A ,AP P B 1-=,其中P 为三阶可逆矩阵, 则200422B A -=.(5) 设()33⨯=ij a A 是实正交矩阵,且111=a ,Tb )0,0,1(=,则线性方程组b Ax =的解是.(6) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P .二、选择题:本题共8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界( ) (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3).(8) 设f (x )在(,)-∞+∞内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则( )(A)0x =必是()g x 的第一类间断点. (B) 0x =必是()g x 的第二类间断点. (C) 0x =必是()g x 的连续点.(D) ()g x 在点0x =处的连续性与a 的取值有关.(9) 设()(1)f x x x =-, 则 ( )(A) 0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B) 0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C) 0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D) 0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.(10) 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则 ( )(A) ()F x 在0x =点不连续.(B) ()F x 在(,)-∞+∞内连续,但在0x =点不可导. (C) ()F x 在(,)-∞+∞内可导,且满足)()(x f x F ='.(D) ()F x 在(,)-∞+∞内可导,但不一定满足)()(x f x F ='.(11) 设)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是( )(A) 至少存在一点0(,)x a b ∈,使得)(0x f >()f a . (B) 至少存在一点),(0b a x ∈,使得)(0x f > ()f b . (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.(12) 设n 阶矩阵A 与B 等价, 则必有( )(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B .(13) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于( ) (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1.(14) 设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则( )(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x和1)1(22=++y x 所围成的平面区域(如图).(17) (本题满分8分)设(,)f u v f (u , v )具有连续偏导数,且满足(,)(,)u v f u v f u v uv ''+=. 求),()(2x x f e x y x -=所满足的一阶微分方程,并求其通解. (18) (本题满分9分) 设某商品的需求函数为1005Q P =-,其中价格(0,20)P ∈,Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加.(19) (本题满分9分)设⎪⎩⎪⎨⎧>≤=-0,0,)(22x ex e x F x x ,S 表示夹在x 轴与曲线()y F x =之间的面积. 对任何0t >,)(1t S 表示矩形t x t -≤≤,0()y F x ≤≤的面积. 求(I) ()S t = S -)(1t S 的表达式; (II) ()S t 的最小值.(20) (本题满分13分)设线性方程组⎪⎩⎪⎨⎧=+++++=+++=+++,14)4()2(3,022,0432143214321x x μx λx x x x x x x μx λx 已知T)1,1,1,1(--是该方程组的一个解,试求(I) 方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (II) 该方程组满足32x x =的全部解. (21) (本题满分13分)设三阶实对称矩阵A 的秩为2,621==λλ是A 的二重特征值.若Tα)0,1,1(1=,T α)1,1,2(2=, T α)3,2,1(3--=, 都是A 的属于特征值6的特征向量.(I) 求A 的另一特征值和对应的特征向量; (II) 求矩阵A .(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求:(I) 二维随机变量),(Y X 的概率分布;(II) X 与Y 的相关系数 XY ρ; (III) 22Y X Z +=的概率分布.(23) (本题满分13分)设随机变量X 在区间)1,0(内服从均匀分布,在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布,求(I) 随机变量X 和Y 的联合概率密度;(II) Y 的概率密度; (III) 概率}1{>+Y X P .2004年全国硕士研究生入学统一考试数学四试题解析一、填空题(1)【答案】1,4a b ==-【详解】本题属于已知极限求参数的反问题. 方法1:根据结论:)()(limx g x f =A ,(1) 若()0g x →,则()0f x →;(2) 若()0f x →,且0A ≠,则()0g x →因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x (否则根据上述结论(2)给极限是0,而不是5),由 0lim()lim lim 10xxx x x e a e a a →→→-=-=-=得a = 1.极限化00sin lim(cos )lim (cos )151x x x x xx b x b b e x→→- -=-=-等价无穷小,得b = -4.因此,a = 1,b = -4.方法2:由极限与无穷小的关系,有sin (cos )5x xx b e aα-=+-,其中0lim 0x α→=,解出 (5)(cos )sin ,5x e x b xa αα+--=+上式两端求极限,000(5)(cos )sin (cos )sin limlim lim 10155x x x x x e x b x x b xa e ααα→→→+---==-=-=++ 把a = 1代入,再求b ,(5)(1)cos sin x e b x xα+-=-,两端同时对0x →取极限,得0(5)(1)lim(cos )sin x x e b x xα→+-=-000(5)(1)(5)limcos lim 1lim 15sin x x x x e x x x xαα→→→+-+=-=-=-4=- 因此,a = 1,b = -4.(2)【答案】211e e -+. 【详解】因为()()()222222111ln ln 12ln 1ln 11222x x xx x x e e e x e x e e ⎡⎤⎡⎤=-+=-+=-+⎣⎦⎣⎦+ 由 1ln arctan 22+-=x x xe e e y ,得 )1ln(21arctan 2++-=xx e x e y ,所以 222222222()1()1211112112111x x x x x xx x x x x xe e e e e e y e e e e e e '''=-+=-+=-+++++++,所以22222221111111111x x x x x x dye e e e e dxe e e e e ==⎛⎫-=-+=-+= ⎪+++++⎝⎭.(3)【答案】12- 【详解】方法1:作积分变换,令1x t -=,则11:2:122x t →⇒-→ 所以211122(1)()f x dx f t dt --=⎰⎰=1121122()(1)f t dt dt -+-⎰⎰22211112222111122221111(1)(1)2222xx xxe dx dx e dx e ---=+-=--=-⎰⎰⎰11022=-=.(也可直接推出212120x xe dx -=⎰,因为21212x xe dx -⎰积分区间对称,被积函数是关于x 是奇函数,则积分值为零) 方法2:先写出的(1)f x -表达式()()21111,122(1)11,12x x e x f x x -⎧--≤-<⎪⎪-=⎨⎪- -≥⎪⎩即:2(1)13(1),22(1)31,2x x e x f x x -⎧-≤<⎪⎪-=⎨⎪-≥⎪⎩所以2322(1)2131222(1)(1)(1)x f x dx x edx dx --=-+-⎰⎰⎰2233(1)2(1)2211221311(1)22222x x e d x e --⎛⎫=---=- ⎪⎝⎭⎰11441111()02222e e =--=-=-.(4)【答案】⎪⎪⎪⎭⎫ ⎝⎛-100030003【详解】因为2A 010010100100001001--⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪--⎝⎭⎝⎭100010001-⎛⎫ ⎪=- ⎪ ⎪⎝⎭,为对角阵,故有422100100()010*********A A E --⎛⎫⎛⎫⎪⎪==--= ⎪⎪ ⎪⎪⎝⎭⎝⎭所以 211B P APP AP --=11()P A PP AP --=12,,P A P -=L200412004B P A P -=()50114P A P -=11P EP P P --==E =所以 200422B A -1002010001E -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭300030001⎛⎫ ⎪= ⎪ ⎪-⎝⎭.(5)【答案】T)0,0,1( 【详解】方法1:设12132122233132331a a A a a a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,是正交矩阵,故的每个行(列)向量都是单位向量 所以有 22121311a a ++=,22213111a a ++=,得121321310,0.a a a a ====故 2223323310000A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,又由正交矩阵的定义T AA E =知A 是可逆矩阵,且1TA A -=. 则b Ax =,有唯一解.1x A b -=T A b =2232233310011000000a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦方法2:同方法1,求得111=a 的正交阵为2223323310000A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 是正交阵,由正交矩阵的性质可知,11A =-或不等于零,故A 22231122233233323310(1)0a a a a a a a a +==-222332330a a a a =≠,即有222332330a a a a ≠,则原方程b Ax =为1222233322333100x a x a x a x a x =⎧⎪+=⎨⎪+=⎩ 解得1231,0x x x ===,即方程组有唯一解. (其中,由222332330a a a a ≠及齐次线性方程组0Ax =只有零解的充要条件是0A ≠,可知,方程组22223332233300a x a x a x a x +=⎧⎨+=⎩ 只有零解,故230x x ==. 进而1222233322333100x a x a x a x a x =⎧⎪+=⎨⎪+=⎩的解为1231,0x x x ===.)(6) 【答案】e1 【详解】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算. 指数分布的概率密度为,0()00x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若,其方差21λ=DX .于是,由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有}{DX X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=11xe eλλ+∞--=二、选择题 (7)【答案】(A) 【详解】方法1:如果()f x 在(,)a b 内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数()f x 在(,)a b 内有界.当x ≠ 0 , 1 , 2时()f x 连续,而2211sin(2)sin(12)sin 3lim ()lim (1)(2)(11)(12)18x x x x f x x x x ++→-→------===-------,220sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x --→→----===-----,22sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x ++→→--===----, 22111sin(2)sin(12)lim ()limlim (1)(2)(1)(12)x x x x x f x x x x x →→→--===∞----,222222sin(2)sin(2)1lim ()limlim lim (1)(2)(2)2x x x x x x x f x x x x x x →→→→--====∞----, 所以,函数f (x )在(-1 , 0)内有界,故选(A).方法2:因为0lim ()x f x -→存在,根据函数极限的局部有界性,所以存在0δ>,在区间[,0)δ-上()f x 有界,又如果函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界,根据题设()f x 在[1,]δ--上连续,故()f x 在区间上有界,所以()f x 在区间(1,0)-上有界,选(A).(8)【答案】 (D) 【详解】考查极限)(lim 0x g x →是否存在,如果存在,是否等于g (0),通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.因为 011lim ()lim ()lim ()x x u g x f u f u x x→→→∞= = = a ,又(0)0g =,所以, 当0a =时,)0()(lim 0g x g x =→,即()g x 在点0x =处连续,当0a ≠时,)0()(lim 0g x g x ≠→,即0x =是()g x 的第一类间断点,因此,()g x 在点0x =处的连续性与a 的取值有关,故选(D).(9) 【答案】C【详解】由于是选择题,可以用图形法解决,也可用分析法讨论.方法1:由于是选择题,可以用图形法解决, 令()(1)x x x ϕ=-,则211()24x x ϕ⎛⎫=-- ⎪⎝⎭,是以直线12x =为对称轴,顶点坐标为11,24⎛⎫- ⎪⎝⎭,开口向上的一条抛物线,与x 轴相交的两点坐标为()()0,0,1,0,()()y f x x ϕ==的图形如图.点0x =是极小值点;又在点(0,0)左侧邻近曲线是凹的,右侧邻近曲线是凸的,所以点(0,0)是拐点,选C.方法2:写出()y f x =的分段表达式: ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,从而()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩, ()f x ''=2,102,01x x -<<⎧⎨-<<⎩,()0lim ()lim 1210x x f x x ++→→'=-=>,所以01x <<时,()f x 单调增, ()00lim ()lim 1210x x f x x --→→'=-+=-<,所以10x -<≤时,()f x 单调减, 所以0x =为极小值点.当10x -<<时, ()20f x ''=>,()f x 为凹函数; 当10x >>时,()20f x ''=-<,()f x 为凸函数, 于是(0,0)为拐点.(10)【答案】 (B)【详解】先求分段函数()f x 的变限积分⎰=xdt t f x F 0)()(,再讨论函数()F x 的连续性与可导性即可.方法1:关于具有跳跃间断点的函数的变限积分,有下述定理:设()f x 在[,]a b 上除点(),c a b ∈ 外连续,且x c =为()f x 的跳跃间断点,又设()()xcF x f t dt =⎰,则(1)()F x 在[],a b 上必连续;(2))()(x f x F =',当[],x a b ∈ ,但x c ≠;(3)()F c '必不存在,并且()(),()()F c f c F c f c +-+-''= =直接利用上述结论,这里的0c =,即可得出选项(B)正确. 方法2:当0x <时,x dt x F x-=-=⎰0)1()(;当0x >时,x dt x F x==⎰01)(,当0x =时,(0)0F =. 即()F x x =,显然,()F x 在(,)-∞+∞内连续,排除选项(A),又0(0)lim 10x x F x ++→-'==-,0(0)lim 10x x F x --→--'==--,所以在0x =点不可导. 故选 (B).(11)【答案】(D) 【详解】利用介值定理与极限的保号性可得到三个正确的选项,或应用举例法找出错误选项. 方法1:举例说明(D)是错误的. 例:2()4,11f x x x =--≤≤,11(1)220,(1)220x x f x f x =-=''-=-=>=-=-<.但在[1,1]-上()30f x ≥>.方法2:证明(A)、(B)、(C)正确.由已知)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ,所以选项(C)正确;另外,由导数的定义0)()(lim)(>--='+→ax a f x f a f a x ,根据极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >,所以选项(A)正确.同理,()()()lim 0x bf b f x f b b x-→-'=<-,根据极限的保号性,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以选项(B)正确,故选(D).(12)【答案】(D ) 【详解】方法1:矩阵等价的充分必要条件:矩阵A 与B 等价⇔A ,B 是同型矩阵且有相同的秩,故由A 与B 等价,知A 与B 有相同的秩.因此,当0||=A 时, n A r <)(, 则有n B r <)(, 即0||=B , 故选(D).方法2:矩阵等价的充分必要条件:A 与B 等价⇔存在可逆,P Q ,使得PAQ B =. 两边取行列式,由矩阵乘积的行列式等于行列式的积,得PAQ P A Q B ==. ,P Q 可逆,由矩阵A 可逆的充分必要条件:0A ≠,故00P Q ≠≠,但不知具体数值.由P A Q B =,知0A ≠时,B 不能确定.但0A =有0B =.故应选(D).方法3:由经过若干次初等变换变为矩阵的初等变换对矩阵的行列式的影响有:(1)A 中某两行(列)互换得B ,则B A =-. (2)A 中某行(列)乘(0)k k ≠得B ,则B k A =. (3)A 中某行倍加到另一行得B ,则B A =.又由A 与B 等价,由矩阵等价的定义:矩阵A 经有限次初等变换变成矩阵B ,则称A 与B 等价,知.B k A =±故当0A ≠时,0B k A =±≠,虽仍不等于0,但数值大、小、正负要改变,但0||=A ,则0B =,故有结论:初等变换后,矩阵的行列式的值要改变,但不改变行列式值的非零性,即若0||=A 0B ⇒=,若0A ≠0B ⇒≠.故应选(D).(13) 【答案】(C)【详解】利用正态分布概率密度函数图形的对称性,对任何0x >有{}{}{}12P X x P X x P X x >=<-=>. 或直接利用图形求解. 方法1:由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据分位点的定义有21α-=u x ,故应选(C). 方法2:图一 图二Oxy()f x{}P X u αα=Oxy{}P X x <=12α- ()f x如图一所示题设条件.图二显示中间阴影部分面积α,{}P X x α<=.两端各余面积12α-,所以12{}P X u αα-<=,答案应选(C).(14)【答案】A.【详解】由于随机变量)1(,,,21>n X X X n Λ独立同分布,所以必有:2, (,)0, i j i jCov X X i j σ⎧==⎨≠⎩又 222111()n n ni i i i i i i i D a X a D X a σ===⎛⎫== ⎪⎝⎭∑∑∑下面求1(,)Cov X Y 和1()D X Y +.而11,ni i Y X n ==∑故本题的关键是将Y 中的1X 分离出来,再用独立性来计算.对于选项(A):1111112111(,)(,)(,)(,)n n i i i i Cov X Y Cov X X Cov X X Cov X X n n n ====+∑∑11DX n =21nσ=所以(A)对,(B)不对.为了熟悉这类问题的快速、正确计算. 可以看本题(C),(D)选项. 因为X 与Y 独立时,有()()()D X Y D X D Y ±=+. 所以,这两个选项的方差也可直接计算得到:22211222111(1)1()()n n n n D X Y D X X X n n n n n σσ++-+=+++=+L =222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-Λ=.222222σσn n nn n -=- 所以本题选 (A)三、解答题(15)【详解】求“∞-∞”型极限的首要步骤是通分,或者同乘、除以某一式以化简.22201cos lim()sin x x x x →- 通分222220sin cos lim sin x x x x x x →-sin x x :等价22240sin cos lim x x x x x →- 22401sin 24lim x x x x →-=洛()22041sin 24lim x x x x→'⎛⎫- ⎪⎝⎭'3012sin 42lim 4x x x x →-= 洛()0312sin 42lim 4x x x x →'⎛⎫- ⎪⎝⎭'201cos 4lim 6x x x →-=2202sin 2lim 6x x x →=sin 22x x :等2202(2)lim 6x x x →43=.(16)【详解】利用对称性与极坐标计算.方法1:令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,根据二重积分的极坐标变换:()()12{(,)|,}D x y r r r αθβθθ=≤≤≤≤,则:()()()()21,cos ,sin r r Df x y d f r r rdr βθαθσθθ=⎰⎰⎰⎰122D x y d σ+化为极坐标:221{(,)|4}{(,)|02,0D x y x y x y θπ=+≤=≤≤所以122D x y d σ+222220cos sin d r r rdr πθθθ=+⎰⎰2220d r dr πθ=⎰⎰;222D x y d σ+化为极坐标:2223{(,)|(1)1}{(,)|,02cos }22D x y x y x y r ππθθ=++≤=≤≤≤≤-所以222D x y d σ+32cos 222222cos sin d r r rdr πθπθθθ-=+⎰⎰32cos 222d r dr πθπθ-=⎰⎰所以⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d 22cos 33322020033r rd d θπππθθ-=-⎰⎰332288cos 233d ππθπθ-=⋅-⎰()32228821sin sin 33d πππθθ=⋅+-⎰332288sin 2sin 333ππθπθ⎛⎫=⋅+- ⎪⎝⎭16822333π⎛⎫=+-+ ⎪⎝⎭)23(916932316-=-=ππ 区域D 关于x 轴对称,Dyd σ⎰⎰中被积函数y 为y 的奇函数,根据区域对称性与被积函数的奇偶性:设(),f x y 在有界闭区域D 上连续,若D 关于x 轴对称,(),f x y 对y 为奇函数,则(),0Df x y d σ=⎰⎰,所以0=⎰⎰Dyd σ所以22()Dx y y d σ+⎰⎰22DDx y d yd σσ=++⎰⎰16(32)9π=-. 方法2:22()Dx y y d σ++⎰⎰22DDx y d yd σσ=++⎰⎰22D 20x y d σ=++⎰⎰上半极坐标变换22222002cos 22[]d r dr d r dr πππθθθ-+⎰⎰⎰⎰2233202cos 2[]233r r d ππθπθ-=⋅+⎰32888cos 2333d πππθθ⎛⎫=++ ⎪⎝⎭⎰()2288161sin sin 333d ππππθθ=++-⎰ 321616sin sin 333πππθθ⎛⎫=+- ⎪⎝⎭16(32)9π=-.(17)【详解】求复合函数的偏导数,求一阶线性微分方程的解 方法1:由2()(,)xy x ef x x -=,两边对x 求导有,222122(,)(,)(,)x x x y e f x x e f x x e f x x ---'''=-++()22122(,)(,)(,)x x e f x x e f x x f x x --''=-++()2122(,)(,)x y e f x x f x x -''=-++已知uv v u f v u f v u='+'),(),(,即12(,)(,)f u v f u v uv ''+=,则212(,)(,)f x x f x x x ''+=. 因此,()y x 满足下述一阶微分方程为 x e x y y 222-=+'.由一阶线性微分方程()()dyP x y Q x dx+=通解公式:()()()()P x dx P x dx f x e C Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 这里()()222,x P x Q x x e -= =,代入上式得:2222()dx dxx y e x e e dx C --⎰⎰=+⎰2222()x x x e x e e dx C --=+⎰22()xex dx C -=+⎰323xx eC -⎛⎫=+ ⎪⎝⎭(C 为任意常数). 方法2:由2()(,)xy x ef x x -=有 2(,)()x f x x e y x = (1)已知(,)f u v 满足 (,)(,)u v f u v f u v uv ''+= (2)这是一个偏微分方程,当,u x v x ==时(2)式变为212(,)(,)f x x f x x x ''+=2(,)df x x x dx= 以(1)代入,有 22(())xe y x x '=,即2222()()xxe y x e y x x '+=, 化简得 22()2()xy x y x x e -'+=,由通解公式得x dxx dx e C x C dx e e x e y 232222)31()(---+=+⎰⎰=⎰(C 为任意常数).(18)【详解】(I) 由于需求量对价格的弹性d E > 0,所以dPdQQ P E d =1005Q P =-()10051005P P P '--20P P -=-(0,20)P ∈ 20P P -; (II) 由R PQ =,得dR dP ()d PQ dP =dQ Q P dP =+(1)P dQ Q Q dP =+(1)20PQ P-=+-(1)d Q E =-要说明在什么范围内收益随价格降低反而增加,即收益为价格的减函数,0<dPdR,即证(1)01d d Q E E -<⇒>,换算成P 为120PP>-,解之得:10P >,又已知(0,20)P ∈,所以2010P >>,此时收益随价格降低反而增加.(19)【详解】当0x >时,0x -<,所以()()22()x x F x ee F x ---===,同理:当0x <时,x->,所以()()22()x xF x e e F x---===,所以()y F x=是关于y轴对称的偶函数.又2lim()lim0xx xF x e-→+∞→+∞==,2lim()lim0xx xF x e→-∞→-∞==,所以x轴与曲线()y F x=围成一无界区域,面积S可用广义积分表示.()y F x=图形如下:(I) ()S F x dx+∞-∞=⎰()F x偶函数22xe dx+∞-⎰2(2)xe d x+∞-=--⎰201xe+∞-=-= )(1tS表示矩形t x t-≤≤,0()y F x≤≤的面积,所以ttetS212)(-=,因此21()()12tS t S S t te-=-=-,(0,)t∈+∞.(II) 由于tettS2)21(2)(---=',令()0S t'=,得()S t的唯一驻点为21=t,又()S t''()22(12)tt e-'=--222448t t te e te---=+-28(1)tt e-=-,04)21(>=''eS,所以eS11)21(-=为极小值,它也是最小值.(20)【详解】已知T)1,1,1,1(--是该方程组的一个解,故可将T)1,1,1,1(--代入方程组,有110,21120,3(2)(4)41,λμλμ-+-=⎧⎪-++=⎨⎪-+++-=⎩解得μλ=.代入原方程,并对方程组的增广矩阵A施以初等行变换, 得1102112032441Aλλλλ⎛⎫⎪= ⎪⎪++⎝⎭1101(-2),(-3)0121200230224211λλλλλλ⎛⎫⎪--⎪⎪--⎝⎭u u u u u u u u u u u u u u u u r行乘分别加到,行110110(-1)012120001311 3013110121200λλλλλλλλ⎛⎫⎛⎫⨯ ⎪ ⎪--⎪ ⎪⎪ ⎪--⎝⎭⎝⎭u u u u u u u u u r u u u u u u u r2行2,3行加到行互换1102(21)013113002(21)2121λλλλλλ⎛⎫⨯- ⎪⎪ ⎪---⎝⎭u u u u u u u u u u u u u u r 行加到行 ()I 当21≠λ时,有 A 3(21)λ÷-u u u u u u u u u u u u u u r 行 1100131100211λλ⎛⎫ ⎪ ⎪ ⎪⎝⎭,故43)()(<==A r A r . 定理:设A 是m n ⨯矩阵,方程组Ax b =,则,(1)有唯一解()()r A r A n ⇔==;(2)有无穷多解()()r A r A n ⇔=<;(3)无解:()1()r A r A ⇔+=,故方程组有无穷多解.所以,该方程组有无穷多解,对应的齐次线性方程组同解方程组为1234234343020x x x x x x x x x λλ+++=⎧⎪++=⎨⎪+=⎩ 由于此方程组的系数矩阵的秩为3,则基础解系的个数为43n r -=-=1,故有1个自由未知量.选2x 为自由未知量,取21x =-,得方程组的基础解系为Tη)2,1,1,2(--=,取非齐次方程的一个特解为0(1,0,0,1)Tξ=-,故方程组的全部解为0k ηξ+(k 为任意常数).当21=λ时,有 11110220131100000A ⎛⎫ ⎪⎪→ ⎪ ⎪⎪⎝⎭, 可知,42)()(<==A r A r ,所以该方程组有无穷多解,对应的齐次线性方程组的同解方程组为12342341102230x x x x x x x ⎧+++=⎪⎨⎪++=⎩ 则基础解系的个数为42n r -=-=2,故有2个自由未知量.选34,x x 为自由未知量,将两组值:(1,0),(0,2)代入,得方程组的基础解系为Tη)0,1,3,1(1-=,Tη)2,0,2,1(2--=,取非齐次方程的一个特解为0(1,0,0,1)Tξ=-,故方程组的全部解为0112212(1,0,0,1)(1,3,1,0)(1,2,0,2)T T T k k k k ξξηη=++=-+-+--(21,k k 为任意常数).()II 当21≠λ时,方程组的通解为 0(1,0,0,1)(2,1,1,2)(21,,,21)T T T k k k k k k ξξη=+=-+--=---+若32x x =,即k k =-得0k =,故原方程组满足条件32x x =的全部解为(1,0,0,1)T-.当21=λ时,方程组的通解为 0112212(1,0,0,1)(1,3,1,0)(1,2,0,2)T T T k k k k ξξηη=++=-+-+--=121212(1,32,,21)Tk k k k k k ----+若32x x =,即 12132k k k --=,得212k k =-,代入通解,得满足条件32x x =的全部解为1(3,1,14)(1,0,0,1)T Tk -+-(21)【分析】由矩阵A 的秩为2, 立即可得A 的另一特征值为0. 再由实对称矩阵不同特征值所对应的特征向量正交可得相应的特征向量, 此时矩阵A 也立即可得.【详解】()I A 的秩为2,于是0||=A ,所以|0|0E A A ⋅-==,因此A 的另一特征值03=λ.特征值的性质:若i λ是矩阵A 的k 重特征值,则矩阵A 属于的线性无关的特征向量的个数不超过k 个又621==λλ是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量个数2≤. 因此123,,ααα必线性相关.由题设知T α)0,1,1(1=,T α)1,1,2(2=为A 的属于特征值6的线性无关的两个特征向量.定理:实对称矩阵对应与不同特征值的特征向量是正交的.设03=λ所对应的特征向量为Tx x x α),,(321=,所以,01=ααT,02=ααT,即⎩⎨⎧=++=+,02,032121x x x x x则基础解系的个数为32n r -=-=1,故有1个自由未知量. 选2x 为自由未知量,取21x =得方程组的基础解系为Tα)1,1,1(-=,故A 的属于特征值03=λ全部特征向量为T k αk )1,1,1(-= (k 为任意不为零的常数).()II 令矩阵),,(21αααP =,求1P -121100111010011001-⎛⎫ ⎪ ⎪ ⎪⎝⎭M M M 1211001(1)2012110011001-⎛⎫ ⎪⨯--- ⎪ ⎪⎝⎭MM u u u u u u u u u u u u u u u u u u u r M 行加到行 12110012012110003111-⎛⎫ ⎪-- ⎪ ⎪-⎝⎭M M u u u u u u u u u u u u r M 行加到行1211000121100011/31/31/3-⎛⎫ ⎪÷-- ⎪ ⎪-⎝⎭M M u u u u u u u r M 3行3 1211000101/31/32/30011/31/31/3-⎛⎫ ⎪⨯--- ⎪⎪-⎝⎭M M u u u u u u u u u u u u u u u u r M 3行(-2)+2行10001120101/31/32/30011/31/31/3-⎛⎫ ⎪⨯--- ⎪ ⎪-⎝⎭M Mu u u u u u u u u u u u u u u u u u u u u u u u u u u u u r M 3行,2行依次加到1行, 1000112(1)0101/31/32/30011/31/31/3-⎛⎫ ⎪⨯-- ⎪ ⎪-⎝⎭M M u u u u u u u u u u r M 行则 1P -=011112333111333⎛⎫ ⎪- ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭,⎪⎪⎪⎭⎫ ⎝⎛=-0661AP P ,所以 1066-⎪⎪⎪⎭⎫⎝⎛=P P A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=3131313231311100661********⎪⎪⎪⎭⎫ ⎝⎛--=422242224.(22)【分析】本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意。

数学4考研试题及答案

数学4考研试题及答案

数学4考研试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集ID. 复数集C答案:B2. 函数f(x)=x^2在区间[0,1]上是:A. 增函数B. 减函数C. 常数函数D. 非单调函数答案:A3. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. -1D. ∞答案:B4. 集合{1, 2, 3}与{3, 4, 5}的交集是:A. {1, 2, 3}B. {3, 4, 5}C. {3}D. 空集二、填空题(每题5分,共20分)1. 若函数f(x)=3x+1,则f(-2)=____。

答案:-52. 圆的方程(x-2)^2+(y-3)^2=9的圆心坐标为____。

答案:(2, 3)3. 已知等差数列的第3项为9,第6项为15,则该数列的公差d=____。

答案:24. 函数y=x^3-6x^2+11x-6的导数为y'=____。

答案:3x^2-12x+11三、解答题(每题10分,共60分)1. 求函数y=x^3-3x^2+4x-1在x=1处的切线方程。

答案:首先求导数y'=3x^2-6x+4,然后将x=1代入得到y'|_{x=1}=3-6+4=1。

切点为(1, 0),所以切线方程为y-0=1*(x-1),即y=x-1。

2. 计算定积分∫(0到1) (2x+1)dx。

答案:首先求原函数F(x)=x^2+x,然后计算F(1)-F(0)=1^2+1-(0^2+0)=2。

3. 证明:若a>b>0,则a^3>b^3。

答案:证明:由a>b>0,可得a-b>0,a^2>b^2>0。

则a^3- b^3=(a-b)(a^2+ab+b^2)>0,所以a^3>b^3。

4. 解方程组:\begin{cases}x+y=1 \\\end{cases}答案:由方程组可得y=2x,代入第一个方程得x+2x=1,解得x=1/3,y=2/3。

研究生数学试题及答案

研究生数学试题及答案

研究生数学试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是函数f(x)=x^2+3x+2的导数?A. 2x+3B. 2x+6C. x^2+3D. 3x+2答案:A2. 矩阵A和矩阵B的乘积AB中,如果A是3x2矩阵,B是2x4矩阵,那么AB的维度是多少?A. 3x4B. 3x3C. 2x4D. 4x4答案:A3. 以下哪个级数是收敛的?A. 1/nB. 1/n^2C. 1/n^3D. 1/n^(1/2)答案:B4. 函数f(x)=sin(x)在区间[0, π]上的定积分是多少?A. 0B. πC. 2D. -π答案:A二、填空题(每题5分,共20分)1. 如果函数f(x)在x=a处连续,那么lim(x→a)f(x) = _______。

答案:f(a)2. 矩阵A的特征值是特征多项式det(A-λI)=0的解,其中I是单位矩阵,λ代表_______。

答案:特征值3. 微分方程y''+y=0的通解是y=C1cos(x)+C2sin(x),其中C1和C2是常数,那么这个方程的特解y_p=_______。

答案:04. 函数f(x)=x^3-3x+1在x=1处的二阶导数是_______。

答案:6三、解答题(每题15分,共30分)1. 证明函数f(x)=x^3在实数域R上是单调递增的。

证明:由于f'(x)=3x^2≥0对所有x∈R成立,且仅在x=0时取等号,因此f(x)在R上单调递增。

2. 求解微分方程y'+2y=e^(-2x)的通解。

解:首先找到齐次方程y'+2y=0的解,得到y_h=Ce^(-2x)。

然后使用待定系数法找到特解y_p=A,代入原方程得到A=1/2e^(-2x)。

因此,通解为y=Ce^(-2x)+1/2e^(-2x)。

结束语:本试题及答案旨在考察研究生数学的基本概念、计算能力和证明技巧,希望同学们通过练习能够加深对数学知识的理解与应用。

考研数学2024试卷

考研数学2024试卷

考研数学2024试卷一、选择题(每题1分,共5分)1.若函数f(x)在区间(a,b)内连续,且f(a)与f(b)异号,则下列说法正确的是()A.f(x)在(a,b)内必有零点B.f(x)在(a,b)内至多有一个零点C.f(x)在(a,b)内必有无限多个零点D.f(x)在(a,b)内可能有零点,也可能没有零点2.设矩阵A为对称矩阵,则下列说法正确的是()A.A的逆矩阵也是对称矩阵B.A的特征值一定为实数C.A的行列式值一定大于0D.A的对角线元素一定相等3.设函数f(x)在区间(-∞,+∞)内可导,且f'(x)>0,则下列说法正确的是()A.f(x)在(-∞,+∞)内单调递减B.f(x)在(-∞,+∞)内单调递增C.f(x)在(-∞,+∞)内有极值点D.f(x)在(-∞,+∞)内为常数函数4.设级数Σan收敛,则下列说法正确的是()A.Σan^2也收敛B.Σanbn也收敛C.Σan为绝对收敛D.Σan为条件收敛5.设f(x)为偶函数,则下列说法正确的是()A.f(x)的导数f'(x)为奇函数B.f(x)的导数f'(x)为偶函数C.f(x)的导数f'(x)为非奇非偶函数D.f(x)的导数f'(x)不存在二、判断题(每题1分,共5分)1.若函数f(x)在区间(a,b)内单调递增,则f'(x)>0。

()2.矩阵A与矩阵B相乘的结果与矩阵B与矩阵A相乘的结果相同。

()3.若函数f(x)在点x0处可导,则f(x)在点x0处连续。

()4.若级数Σan收敛,则Σan的绝对值级数Σ|an|也收敛。

()5.函数f(x)=x^3在原点处不可导。

()三、填空题(每题1分,共5分)1.若函数f(x)=x^33x在区间(-∞,+∞)内单调递增,则x的取值范围为______。

2.设矩阵A为3阶矩阵,且|A|=0,则矩阵A的秩为______。

3.设函数f(x)=e^x,则f'(x)=______。

研究生数理统计期末考试

研究生数理统计期末考试

数理统计学复习题1.设总体(0,1)X N ,125,,,X X X 是来自总体X 的简单随机样本,试确定C 使统计量1212222345()()C X X Y X X X +=++服从t 分布。

2.设12,,,n X X X 是来自总体2(0,)X N σ 的简单随机样本,问统计量2221(1)nii X U n X ==-∑服从什么分布?试说明你的理由。

3.求总体(20,3)N 的容量分别为10、15的两独立样本的均值差的绝对值大于0.3的概率。

4.设12,,,n X X X 为取自总体2(,)X N μσ 的简单随机样本,求常数C ,使得12111()n i i i X X C-+=-∑为2σ的无偏估计量。

5.设总体X 服从参数为θ的指数分布,其分布密度函数为11,0()0,0x ex f x x θθ-⎧>⎪=⎨⎪≤⎩12,,,n X X X 为取自总体X 的样本,试求参数θ的矩估计、极大似然估计,并讨论估计的无偏性、有效性、相合性和充分性。

6.设总体X 的密度函数为22(),0xxf x ex θθ-=>,12,,,n X X X 为取自总体X 的样本,试求参数θ的极大似然估计,并讨论估计的无偏性、有效性、相合性和充分性。

7.设总体X 服从参数为λ的泊松分布,12,,,n X X X 为取自总体X 的样本,试求参数λ的矩估计、极大似然估计,并讨论估计的无偏性、有效性、相合性和充分性。

8.设总体X 的密度函数为111()(01)f x x x θθ-=<<,12,,,n X X X 为取自总体X 的简单随机样本,求参数θ的矩估计和极大似然估计量,并讨论极大似然估计量的无偏性、有效性、相合性和充分性。

9.设铅的比重近似服从正态分布,今测量比重16次,得 2.705x =,0.029s =,试求铅的比重的均值μ和标准差σ的置信水平为0.95的置信区间。

已知0.025(15) 2.1315t =,20.025(15)27.488χ=,20.975(15) 6.262χ=。

1990年全国硕士研究生入学统一考试数学一、二、三、四、五试题完整版附答案及评分标准

1990年全国硕士研究生入学统一考试数学一、二、三、四、五试题完整版附答案及评分标准

1990 年全国硕士研究生入学统一考试数学一、二、三、四、五试题 完整版附答案及评分标准数 学(试卷一)一、填空题:(本题满分15分,每小题3分)(1)过点)1,2,1(-M 且与直线⎪⎩⎪⎨⎧-=-=+-=1432t z t y t x 垂直的平面方程是 x -3y -z +4=0 .(2)设a 为非零常数,则a xx e a x a x 2)(lim =-+∞→.(3)设函数11,0,1)(>≤⎩⎨⎧=x x x f , 则)]([x f f = ___1___. (4)积分dy e dx xy ⎰⎰-2022的值等于4(1)/2e --.(5)已知向量组 1α=(1,2,3,4),2α=(2,3,4,5),3α=(3,4,5,6),4α=(4,5,6,7),则该向量组的秩是2二、选择题:(本题满分15分,每小题3分) (1)设()f x 是连续函数,且⎰-=x e xdt t f x F )()(则)(x F '等于(A)(A ))()(x f e f e x x ----(B) )()(x f e f e x x +---(C))()(x f e f e x x ---(D) )()(x f e f e x x +--(2)已知函数()f x 具有任意阶导数,且[]2)()(x f x f =', 则当n 为大于2的正整数时,()f x 的n 阶导数)()(x fn 是(A)(A) 1)]([!+n x f n (B) 1)]([+n x f n (C) nx f 2)]([ (D) nx f n 2)]([!(3)设α为常数,则级数]1)sin([12nn na n -∑∞=(C )(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与α的取值有关.(4)已知()f x 在0x =的某个邻域内连续 ,且(0)0f =,2cos 1)(lim0=-→xx f x 则在点0x =处()f x (D)(A)不可导(B)可导,且0)0(≠'f (C)取得极大值(D)取得极小值(5)已知1β和2β是非齐次线性方程组AX = b 的两个不同的解,21,αα是对应导出组AX = 0基础解系,21,k k 为任意常数,则方程组AX = b 的通解(一般解)必是(B)(A) 2)(2121211ββααα-+++k k (B) 2)(2121211ββααα++-+k k (C) 2)(2121211ββββα-+++k k (D) 2)(2121211ββββα++-+k k 三、(本题满分15分,每小题5分)(1)求dx x x ⎰-+102)2()1ln(.解:11200ln(1)1ln(1)(2)2x dx x d x x +=+--⎛⎛⎜⎜⎠⎠110011ln(1)2(1)(2)x dx x x x =+--+-⎛⎜⎠……2分 101111ln 2()ln 232(1)3dx x x =-+=-+⎰.……5分 (2)设(2,sin )z f x y y x =-,其中(,)f u v 具有连续的二阶偏导数,求yx z∂∂∂2.解:2cos z f fy x x u v ∂∂∂=+∂∂∂.……2分 2222222(2sin cos )sin cos cos z f f f fx y x y x x x x y u u v v v∂∂∂∂∂=-+-++∂∂∂∂∂∂∂. ……5分 (3) 求微分方程x e y y y 244-=+'+''的通解(一般解).解:特征方程为2440r r ++=的根为1,22r =-.对应齐次方程的通解为212()x Y C C x e -=+,其中12,C C 为任意常数. ……2分 设原方程的特解为*2()x y x Ax e 2-=,代入原方程得12A =.……4分 因此,原方程的通解为2*2212()()2xx x y x Y y C C x ee --=+=++. ……5分四、(本题满分6分) 求幂级数∑∞=+0)12(n nxn 的收敛域, 并求其和函数.解:因为123limlim 121n n n n a n a n ρ+→∞→∞+===+,所以11R ρ==.显然幂级数(21)nn n x∞=+∑在1x =±时发散,故此幂级数的收敛域为(1,1)-.……2分又0()(21)2nnnn n n S x n x nx x ∞∞∞====+=+∑∑∑012()1n n x x x∞='=+-∑……5分 2221111(1)1(1)x xx x x x +=+=-<<---.……6分五、(本题满分8分) 求曲面积分I=⎰⎰+sdxdy yzdzdx .2其中S 是球面4222=++z y x外侧在0≥z 的部分解:令2214x y S z ⎧+≤=⎨=⎩,其法向量与z 轴的负向相同. 设1S S 和所围成的区域为Ω,则由奥-高公式有12S I yzdzdx dxdy zdxdydz Ω++=⎰⎰⎰⎰⎰. ……2分而221140,228S S x y yzdzdx dxdy dxdy π+≤==-=-⎰⎰⎰⎰⎰⎰.……4分2222cos sin 4zdxdydz d d r r dr ππθϕϕϕπΩ=⋅=⎰⎰⎰⎰⎰⎰.……7分 所以12I π=.……8分六、(本题满分8分)设不恒为常数的函数)(x f 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()()f a f b =. 证明:在(,)a b 内至少存在一点ξ, 使0)(>'ξf .证:因()()()f a f b f x =且不恒为常数,故至少存在一点(,)c a b ∈,使得()()()f c f a f b ≠=.于是()()()()f c f a f c f a ><或.……2分现设()()f c f a >,则在[,]a c 上因()f x 满足拉格朗日定理的条件,故至少存在一点(,)(,)a c a b ξ∈⊂,使得1()[()()]0f f c f a c a ξ'=->-. ……6分对于()()f c f a <情形,类似地可证得此结果.……7分七、(本题满分8分) 设四阶矩阵=B ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1000110001100011,=C ⎪⎪⎪⎪⎪⎭⎫⎝⎛2000120031204312且矩阵A 满足关系式E C B C E A =''--)(1, 其中E 为四阶单位矩阵, 1-C 表示C 的逆矩阵,C '表示C 的转置矩阵, 将上述关系化简并求矩阵A .解:因11()[()]()A E C B C A C E C B A C B --''''-=-=-,故()A C B E '-=……2分因此 1[()]A C B -'=-11000210032104321-⎛⎫⎪⎪= ⎪⎪⎝⎭……4分1000210012100121⎛⎫⎪-⎪= ⎪-⎪-⎝⎭……6分八、(本题满分8分)求一个正交变换化二次型32312123222184444x x x x x x x x x f -+-++=成标准形.解:二次型的矩阵122244244-⎛⎫⎪=-- ⎪ ⎪-⎝⎭A ……1分由2122||244(9)244λλλλλλ---=---=----A E ,A 的特征值为1230,9λλλ===.……3分对于120λλ==,122122244000244000λ--⎛⎫⎛⎫⎪ ⎪-=--→ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭A E ,从而可取特征向量1011P ⎛⎫ ⎪= ⎪ ⎪⎝⎭及与1P 正交的另一特征向量2411P ⎛⎫ ⎪= ⎪ ⎪-⎝⎭. ……5分 对于39λ=,822245254099245000λ----⎛⎫⎛⎫ ⎪ ⎪-=---→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A E ,取特征向量3122P ⎛⎫⎪=- ⎪ ⎪⎝⎭. ……6分将上述相互正交的特征向量单位化,得1231032,,323ξξξ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪===- ⎪ ⎪⎪ ⎪⎝⎭, ……7分故在正交变换1122331032323x y x y x y ⎛⎫ ⎪⎪⎛⎫⎛⎫⎪ ⎪ ⎪=-=⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎭下,二次型239f y =. ……8分九、(本题满分8分)质点P 沿着以A,B 为直径的半圆周,从点A(1,2)运动到点B(3,4)的过程中受变力→F 作用 (见图),→F 的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且于y 轴正向的夹角小于2π.求变力→F 对质点P 所作的功.解:按题意,变力y x =-+F i j .……3分圆弧AB的参数方程是23443x y θππθθ⎧=⎪-≤≤⎨=⎪⎩.……5分 变力F 所作的功ABW ydx xdy =-+⎰434)sin )cos ]d ππθθθθθ-=⎰()21π=-……8分十、填空题:(本题满分6分,每小题2分)(1)已知随机变量X 的概率密度函数f (x )=x e -21, +∞<<∞-x ,则X 的概率分布函数()F x =1212010xx e x ex -⎧<⎨-≥⎩.(2)设随机事件A ,B 及其事件A B 的概率分别为6.0,3.0,4.0和,若_B 表示B 的对立事件,那么积事件B A 的概率3.0)B A (P =(3)已知离散型随机变量X 服从参数为2的泊松分布,则随机变量32Z X =-的数学期望()E Z = 4 .十一、(本题满分6分)设二维变量(X ,Y )在区域 x y x D <<<,10:内服从均匀分布,求关于X 的边缘概率密度函数及随机变量 Z =2X +1的方差D (Z ).解:(,)X Y 的联合概率密度函数是1,01,||,(,)0,x y x f x y <<<⎧=⎨⎩其它,因此关于X 的边缘概率密度函数是2,01()(,)0,X x x f x f x y dy +∞-∞<<⎧==⎨⎩⎰其它. ……2分22D(Z)(21)4[()(())]D X E X E X =+=-()22X X 4()()x f x dx xf x dx +∞+∞-∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰……4分()21132001424224299x dx x dx ⎡⎤⎛⎫=-=-= ⎪⎢⎥⎝⎭⎣⎦⎰⎰.……6分数 学(试卷二)一、填空题【 同数学一 第一题 】 二、选择题【 同数学一 第二题 】三、(本题满分15分,每小题5分)【 同数学一 第三题 】 四、(本题满分18分,每小题6分) (1)【 同数学一 第四、(1)题 】(2)求微分方程0)ln (ln =-+dx x y xdy x 满足条件1==ex y的特解.解:将原方程化为11,(1)ln y y x x x x'+=≠.……1分 由公式()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰……3分 得2ln ln 111ln ln 2dx dx x x x xy e e dx C x C x x -⎛⎫⎛⎫⎰⎰=+=+ ⎪ ⎪⎝⎭⎝⎭. ……4分 又由|1x e y ==,可解出12C =,所以方程的特解是11ln 2ln y x x ⎛⎫=+ ⎪⎝⎭.……6分(3)过点(1,0)P 作抛物线2-=x y 的切线与上述抛物线及x 轴围成一平面图形,求此图形绕x 轴旋转一周所成旋转体的体积.解:设所作切线与抛物线相切于点0(x .因00|x x y =='==,故此切线的方程为)y x x =-.……1分又因该切线过点(1,0)P ,所以有03x =. 从而切线的方程为1(1)2y x =-. ……3分 因此,所求旋转体的体积332121(1)(2)4V x dx x dxππ=---⎰⎰……5分 6π=.……6分五、(本题满分8分)【 同数学一第五题 】 六、(本题满分7分)【 同数学一 第六题 】 七、(本题满分6分)【 同数学一 第七题 】 八、(本题满分8分)【 同数学一 第八题 】 九、(本题满分8分)【 同数学一 第九题】数 学(试卷三)一、填空题:(本题满分15分,每小题3分)(1)曲线⎩⎨⎧==ty t x 33sin cos 上对应于6π=t 点处的法线方程是13-=x y .(2)设x e y x tg 1sin 1⋅=,则='y 1tan 221111(sec sin cos )x e x x x x-⋅+.(3)=-⎰11dx x x15/4(4)下列两个积分的大小关系是:dx e dxe x x ⎰⎰----->121233.(5)【 同数学一 第一、(3) 题 】二、选择题:(本题满分15分,每小题3分)(1)已知0)1(lim 2=--+∞→b ax x x x ,其中,a b 常数,则(C)(A)1,1a b ==(B)1,1a b =-=(C)1,1a b ==-(D)1,1a b =-=-(2)设函数)(x f 在),(+∞-∞上连续,则⎰])([dx x f d 等于(B)(A))(x f (B)dxx f )((C)cx f +)((D)dxx f )('(3)【 同数学一 第二、(3) 题 】(4)【 同数学一 第二、(4) 题 】(5)设⎪⎩⎪⎨⎧=≠=0),0(0,)()(x f x x x f x F ,其中()f x 在0x =处可导,(0)0,(0)0f f '≠=,则0x =是()F x 的 (B )(A)连续点 (B) 第一类间断点 (C) 第二类间断点(D)连续点或间断点不能由此确定三、(本题满分15分,每小题3分) (1)已知9)(lim =-+∞→xx ax a x ,求常数a . 解:因2(1)lim()lim (1)x x a x x xa x a x e ax a x→∞→∞++==--……3分 故29a e =,ln 3a =.……5分(2)求由2()ln()y x x y x y -=--所确定的函数()y y x =的微分dy .解:对方程两边求微分2()ln()()dx dydy dx dx dy x y x y x y--=--+--, ……3分故2ln(),3ln()2x y xdy dx dy dx x y x y +-==+--或.……5分 (3)求曲线)0(112>+=x xy 的拐点. 解:22223231,2(1)(1)x x y y x x -'''=-=++. ……2分 令0y ''=,解得x =.因在x =的左右邻近"y 变号,故x =是拐点的横坐标.所以曲线的拐点是3)4.……5分 (4)计算 ⎰-dx x x2)1(ln . 解:原式1ln 1xd x =-⎰ln 11(1)x dxxx x =---⎰……2分 10ln 11()11x dxx x x =-+--⎰……4分 ln |1|ln 1x x C x x-=++-.……5分 (5)见【 数学二 第四(2)题 】四、(本题满分9分)在椭圆12222=+by a x 的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积为最小(其中0,0a b >>).解:设00(,)P x y 为所求之点,则此点处的切线方程为00221xx yya b+=. ……2分令0x =,得该切线在y 轴上的截距20b y .令0y =,得该切线在x 轴上的截距2a x . ……4分于是所围图形的面积为2200011,(0,)24a b S ab x a x y π=⋅-∈.……6分 求S的最小值时,不妨设00A x y ==22b A a '=. ……7分令0A '=,解得在(0,)a 内唯一驻点0x =……8分由A '在0x =右侧为负,得知0x =A 的极大点,即S 的极小点.所以0x =S 为最小,此时0y =,即为所求之点.……9分 五、(本题满分9分)证明:当0x >时,有不等式 21π>+x arctgx . 解:考虑函数1()arctan ,02f x x x x π=+->.……2分 有2211()0,01f x x x x '=-<>+. ……4分 所以()f x 在(0,)+∞上是单调减少的.……5分 又lim ()0x f x →+∞=……7分知当10,()arctan 02x f x x x π>=+->时. ……8分 即1arctan 2x x π+>. ……9分六、(本题满分9分)设dt t t x f x⎰+=11ln )(, 其中0,x >求 1()().f x f x+解:111ln ()1xt f dt xt =+⎰. 令1t y =,得11ln ()(1)x y f dy x y y =+⎰. ……3分 于是111ln ln ()()(1)(1)x x t t f x f dt dt x t t t +=+++⎰⎰111()ln (1)(1)x tdtt t t =+++⎰……5分 1111()ln 11x tdt t t t =+-++⎰……7分 21ln 1ln 2x t dt x t ==⎰. ……9分七、(本题满分9分)【 同数学二 第四、(3)题 】 八、(本题满分9分)求微分方程ax e y y y =+'+''44之通解,其中a 为实数.解:特征方程为2440r r ++=,特征根为1,22r =-.对应齐次方程的通解为212()x y C C x e -=+ .……2分 当2a ≠-时,设非齐次方程的特解为*()ax y x Ae =, ……3分代入原方程,可得21(2)A a =+,*21()(2)axy x e a =+. 当2a =-时,设非齐次方程的特解为*21()xy x A x e 2-=.代入原方程,得12A =,*21()2x y x x e 2-=.……8分故通解为212222121()2(2)()()()22x axx C C x e e a a y x x y x C C x e a --⎧++≠-⎪+⎪=⎨⎪=++=⎪⎩,当,当.……9分数 学(试卷四)一、填空题:(本题满分15分,每小题3分) (1)极限n →∞=2(2)设函数()f x 有连续的导函数,0)0(=f 且b f =')0(,若函数00,sin )()(=≠⎪⎩⎪⎨⎧+=x x A xx a x f x F 在0x =处连续,则常数A = a + b .(3)曲线2y x =与直线2y x =+所围成的平面图形的面积为 4.5 .(4)若线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=+=+-=+414343232121a x x a x x a x x a x x 有解,则常数4321,,,a a a a 应满足条件04321=+++a a a a (5)一射手对同一目标独立的进行四次射击,若至少命中一次的概率为8180,则射手的命中率为2/3二、选择题:(本题满分15分,每小题3分) (1)设函数x e tgx x x f sin )(⋅⋅=,则)(x f 是 (B )(A )偶函数(B)无界函数(C)周期函数(D)单调函数(2)设函数()f x 对任意x 均满足等式(1)()f x a f x +=, 且有b f =')0(,其中,a b 为非零常数,则 (D)(A )()f x 在1x =处不可导(B )()f x 在1x =处可导,且a f =')1((C )()f x 在1x =处可导,且 f (1)b '= (D )()f x 在1x =处可导,且 f (1)ab '=. (3)向量组s ααα,,21⋅⋅⋅⋅线性无关的充分条件是(A)s ααα,,21⋅⋅⋅⋅均不为零向量(B) s ααα,,21⋅⋅⋅⋅中任意两个向量的分量不成比例(C) s ααα,,21⋅⋅⋅⋅中任意一个向量均不能由其余1s -个向量线形表示 (D) s ααα,,21⋅⋅⋅⋅中有一部分向量线形无关(4)设A ,B 为两随机事件,且A B ⊂,则下列式子正确的是(A)(A)P (A+B )= P (A )(B)P(AB )=P(A )(C)P (A B )= P (B )(D)P (B -A )=P (B )-P (A )(5)设随机变量X 和Y 相互独立,其概率分布为则下列式子正确的是 (C )(A )X =Y(B ){}0P X Y ==(C ){}P X Y ==21(D ){}1P X Y ==三、(本题满分20分,每小题5分) (1)求函数()I x =dt t t t xe ⎰+-12ln 2在区间[2,e e ]上的最大值.解:由222ln ln ()0,[,]21(1)x x I x x e e x x x '==>∈-+-, ……1分可知()I x 在2[,]e e 上单调增加,故222ln max ()(1)e e x e e t I x dt t ≤≤==-⎛⎜⎠21ln 1e e tdt --⎛⎜⎠22ln 1111e e e e t dt t t t =-+⋅--⎛⎜⎠……3分 22121ln11e e t e e t -=-+--11ln ln(1)11e e e e e e+=+=+-++. ……5分(2)计算2y Dxe dxdy -⎰⎰,其中D 是曲线24y x =和29y x =在第一象限所围成的区域.解:原式2302yy y edy xdx+∞-=⎰⎰……2分 20111()249y y y e dy +∞-=-⎰……3分 205572144y ye dy +∞-==⎰.……5分(3)求级数的∑∞=-12)3(n nn x 收敛域. 解:21n a n=,121(1)n a n +=+,212lim lim 1(1)n n n n a n a n +→∞→∞==+, ……2分 因此当131x -<-<,即24x <<级数收敛. ……3分当2x =时,得交错级数211(1)n n n ∞=-∑;当4x =时,得级数211n n∞=∑,二者都收敛,于是原级数的收敛域为[2,4].……5分(4)求微分方程x e x x y y sin )(ln cos -=+'的通解解:cos cos sin (ln )xdxxdx x y e x e e dx C --⎰⎰=⋅⋅+⎰……3分 sin (ln )x e xdx C -=+⎰……4分 sin (ln )x e x x x C -=-+.……5分四、(本题满分9分)某公司可通过电台和报纸两种方式做销售某种商品广告,根据统计资料,销售收入R (万 元)与电台广告费用1x (万元) 及报纸广告费用2x (万元) 之间的关系有如下经验公式:222121211028321415x x x x x x R ---++=. (1)在广告费用不限的情况下, 求最优广告策略;(2)若提供的广告费用为1.5 万元, 求相应的最优广告策略.解:(1) 利润函数为22121212121514328210()x x x x x x x x π=++----+221212121513318210x x x x x x =++---……1分 由12121248130,820310x x x x x x ππ∂∂=--+==--+=∂∂……2分 解得10.75x =(万元),2 1.25x =(万元). 因利润函数12(,)x x ππ=在(0.75,1.25)处的二阶偏导数为:2222211224,8,20A B C x x x x πππ∂∂∂==-==-==-∂∂∂∂. ……3分 故有26480160,40B AC A -=-=-<=-<,……4分 所以函数12(,)x x ππ=在(0.75,1.25)处达到极大值,亦即最大值.……5分(2)若广告费用为1.5万元,则只需求利润12(,)x x ππ=在12 1.5x x +=时的条件极值.拉格朗日函数为221212121212(,,)1513318210( 1.5)L x x x x x x x x x x λλ=++---++-……7分令120,0,0L L L x x λ∂∂∂===∂∂∂,有121212481308203101.50x x x x x x λλ--++=⎧⎪--++=⎨⎪+-=⎩……8分由此可得10x =,2 1.5x =,即将广告费1.5万元全部用于报纸广告,可使利润最大.……9分五、(本题满分6分)设)(x f 在闭区间[0,c]上连续,其导数)(x f '在开区间(0,)c 内存在且单调减少.(0)0f =,试应用拉格郎日中值定理证明不等式()()()f a b f a f b +≤+,其中常 数,a b 满足条件c b a b a ≤+≤≤≤0.证:当0a =时,(0)0f =有()()()()f a b f b f a f b +==+. ……1分当0a >时,在[0,]a 和[,]b a b +上分别应用拉格朗日定理,有()11()(0)()(),0,0f a f f a f a a aξξ-'==∈-;……3分 ()22()()()()(),,()f a b f b f a b f b f b a b a b b aξξ+-+-'==∈++-.……4分 显然120a b a b c ξξ<<≤<<+≤. 因()f x '在[0,]c 上单调减少,故21()()f f ξξ''≤.从而有()()()f a b f b f a a a+-≤.……5分 故由0a >,有()()()f a b f a f b +≤+. ……6分六、(本题满分8分)已知线性方程组 1234512345234512345323022654332x x x x x ax x x x x x x x x bx x x x x ++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩(1)问,a b 为何值时,方程组有解?(2)方程组有解时,求出方程组的导出组的一个基础解系;(3)方程组有解时, 求出方程组的全部解.解:(1) 考虑方程组的增广矩阵1111111111321130012263012260000035433120000022a aa A bb a a ⎛⎫⎛⎫ ⎪⎪- ⎪ ⎪=→ ⎪ ⎪- ⎪⎪--⎝⎭⎝⎭……2分当30b a -=且220a -=,即13a b ==且时,方程组的系数矩阵与增广矩阵之秩相等,故1,3a b ==时,方程组有解.……3分(2)当1,3a b ==时,有11111101152012263012263000000000000000000000000a a A ----⎛⎫⎛⎫⎪⎪⎪ ⎪→→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,因此,原方程组的同解方程组为13452345522263x x x x x x x x ---=-⎧⎨+++=⎩,故导出组的基础解系为123115226,,100010001v v v ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ……6分(3)令3450x x x ===,得原方程组的特解23000u -⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,于是原方程组的全部解为1231234521153226010000100001x x u x c c c x x -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪==+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,其中123,,c c c 为任意常数.……8分 七、(本题满分5分)已知对于n 阶方阵A ,存在自然数k ,使得0=kA ,试证明矩阵E A -可逆,并写出 其逆矩阵的表达式(E 为n 阶单位阵).解:由0kA =及1k k E A E A A E A --+++=-()() ,得1k E A E A A E--+++=()() ……3分 可知E A -可逆,且有11()k E A E A A ---=+++ .……5分八、(本题满分6)设A 为n 阶矩阵,1λ和2λ是A 的两个不同的特征值,21,x x 是分别属于1λ和2λ的特征向量,试证明:21x x +不是A 的特征向量.解:因11122212,,Ax x Ax x λλλλ==≠,故12121122()A x x Ax Ax x x λλ+=+=+……2分 设21x x +是A 的特征向量,则1212()()A x x x x λ+=+,即112212()x x x x λλλ+=+, 于是有1122()()0x x λλλλ-+-=.……4分由于12,x x 属于不同的特征值,所以12,x x 线性无关,故有120,0λλλλ-=-=,即12λλ=, 这与假设矛盾,因此21x x +不是A 的特征向量.……6分九、(本题满分4分)从0,1,2,…,9等十个数字中任意选出三个不同的数字,试求下列事件的概率:=1A { 三个数字中不含0和5 } ;=2A { 三个数字中含0但不含5 }解:3813107()15C P A C ==……2分 33982310214()15C C P A C -==. ……4分十、(本题满分5分)一电子仪器由两个部件构成,以X 和Y 分别表示两个部件的寿命(单位:千小时),已知X 和Y 的联合分布函数为:⎩⎨⎧≥≥+--=+---它其00,01),()(5.05.05.0y x e e e y x F y x y x .(1)问X 和Y 是否独立?(2)求两个部件的寿命都超过100小时的概率α.解 X 的分布函数1()F x 和Y 的分布函数2()F y 分别为:0.511,0;()(,)0,0x e x F x F x x -⎧-≥=+∞=⎨<⎩若若,0.521,0;()(,)0,0y e y F y F y y -⎧-≥=+∞=⎨<⎩若若……2分 显然12(,)()()F x y F x F y =,故X 和Y 独立,……3分 于是{0.1,0.1}{0.1}{0.1}P X Y P X P Y α=>>=>⋅>……4分 0.050.050.112[1(0.1)][1(0.1)]F F e e e ---=-⋅-=⋅=.……5分十一、(本题满分7分)某地抽样调查结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩为72 分,96分以上的占考生总数的2.3 %,试求考生的外语成绩在60分至84分之间的概率.[附表] (表中)(x Φ是标准正态分布函数)解:设X 为考生的外语成绩,由题设知2~(,)X N μσ,其中72μ=. ……1分由条件知{96}0.023P X ≥=,即9672{}0.023X P μσσ--≥=,亦即24()0.977σΦ=,由()x Φ的数值表,可见242σ=.因此12σ=.这样2~(72,12)X N .……4分所求概率为60728472{6084}{}{11}1212X X P X P P μμσσ----≤≤=≤≤=-≤≤(1)(1)2(1)120.84110.682=Φ-Φ-=Φ-=⨯-=.……7分数 学(试卷五)一、填空题 (本题满分15分,每小题3分) (1)【 同数学四 第一、(1) 题 】(2)【 同数学四 第一、(2) 题 】(3)【 同数学四 第一、(3) 题 】(4)【 同数学四 第一、(4) 题 】(5)已知随机变量(3,1),(2,1)X N Y N - ,且,X Y 相互独立,设随机变量27Z X Y =-+,则Z ~ N (0,5) .二、选择题 (本题满分15分,每小题3分) (1)【 同数学四 第二、(1) 题 】(2)【 同数学四 第二、(2) 题 】(3)【 同数学四 第二、(1) 题 】(4)设A 为n 阶可逆矩阵,*A 是A 的伴随矩阵,则*A =(A)(A) 1-n A(B) A (C) nA(D) 1-A(5)已知随机变量X 服从二项分布,且EX=2.4,DX=1.44,则二项分布的参数n ,p 的值为 (B )(A )n = 4,p = 0.6(B )n = 6,p = 0.4(C )n = 8,p = 0.3(D )n = 24,p = 0.1三、(本题满分20分,每小题5分) (1)求极限dte t x x t x x 22)1(1lim20-∞→⎰+解:原式22222202(1)(1)limlim(12)xt x x x x x t e dt x e xex e→∞→∞++==+⎰……3分22(1)1lim (12)2x x x →∞+==+. ……5分(2)求不定积分dx x x x ⎰34sin 2cos . 解 443333cos cos cos1222sin 88sin cos sin 222x x x x x x dx dx dx x x x x ==⎰⎰⎰……2分3211sin sin sin 42282x x x x d xd --==-⎛⎛⎜⎜⎠⎠……3分 22111sin 828sin 2x x dx x-=-+⎛⎜⎜⎠……4分 21cot 428sin 2x x C x -=-+211csc cot 8242x xx C =--+.……5分 (3)设)(22y z y z x ϕ=+,其中ϕ为可微函数,求 yz∂∂.解 将原式两边同时对y 求偏导,得2112()()()z z z z z y z y y y y y yϕϕ∂∂'=+-∂∂ ……3分 解出z y ∂∂,得 ()()()()2()2()z z z z z y z zy y yy y zzyz yz y yyϕϕϕϕϕϕ''--∂==∂''--. ……5分(4)【 同数学四 第三、(2) 题 】四、(本题满分9分)【 同数学四 第四题 】五、(本题满分6分)证明不等式1ln(()x x x +≥-∞<<+∞证:记()1ln(f x x x =++()ln(ln(f x x x x '=+=.……2分 令()0f x '=,知0x =为驻点.由()0f x ''=>……4分可知0x =为极小值点,亦即最小值点.()f x 的最小值为(0)0f =,于是,对于一切(,)x ∈-∞+∞,有()0f x ≥,即1ln(()x x x +≥-∞<<+∞. ……6分六、(本题满分4分)设A 为1010⨯矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡00001010000 (0010000010)10,计算行列式E A λ-,其中E 为10阶单位矩阵,λ为常数.解:1010000100().......................00011000A E λλλλλ---=--按第一列展开……1分101000100000100100010..............................................00010001101λλλλλλλ-------=-……2分9101010()()1010λλλ=---=-.……4分七、(本题满分5分)设方阵A 满足条件TA A E =,其中TA 是A 的转置矩阵,E 为单位阵.试证明所对应的 特征值的绝对值等于1.证:设x 是A 的实特征向量,其所对应的特征值为λ,则Ax x λ=,即T T Tx A x λ=,于是有2T T T x A Ax x x λ=,即2T Tx x x x λ=,2(1)0T x x λ-=.……3分 因为x 为实特征向量,故0Tx x >,所以得210λ-=,即||1λ=.……5分八、(本题满分8分)【 同数学四 第六题 】九、(本题满分5分)【 同数学四 第九题 分值不同 】 十、(本题满分6分)甲乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的为0.5,以X 和Y 分别表示甲和乙的命中次数,试求X 和Y 联合概率分布.解:X Y 和都服从二项分布,参数相应为(2,0.2)和(2,0.5).因此X Y 和的概率分布分别为:0120.640.320.04X ⎛⎫⎪⎝⎭,0120.250.50.25Y ⎛⎫ ⎪⎝⎭ ……3分故由独立性,知X Y 和的联合分布为6分十一、(本题满分7分)【 同数学四第十一题 】。

New_全国硕士研究生入学统一考试数学四试题及答案.pdf

New_全国硕士研究生入学统一考试数学四试题及答案.pdf

DX }
1
.
e
【分析】 根据指数分布的分布函数和方差立即得正确答案.
【详解】
由于 DX

1 λ2
,
X 的分布函数为
F
(x)

1

e

λx
,
0,
x 0, x 0.

P{X DX } 1 P{X DX } 1 P{X 1} 1 F (1 ) 1 .
(A) 至少存在一点 x0 (a,b) ,使得 f (x0 ) > f (a).
(B) 至少存在一点 x0 (a,b) ,使得 f (x0 ) > f (b).
(C) 至少存在一点 x0 (a,b) ,使得 f (x0 ) 0 .
(D) 至少存在一点 x0 (a,b) ,使得 f (x0 ) = 0.
考查 f (x)在 x = 0 的左、右两侧的二阶导数的符号,判断拐点情况.
【详解】设 0 < < 1,当 x ( , 0) (0 , )时,f (x) > 0,而 f (0) = 0,所以 x = 0 是 f (x)
的极小值点.
显然,x = 0 是 f (x)的不可导点. 当 x ( , 0)时,f (x) = x(1 x), f (x) 2 0 ,
【详解】因为 x A1b , 而且 A aij 33 是实正交矩阵, 于是 AT A1 , A 的每一个行
(列)向量均为单位向量, 所以
x

A1b

AT b

a11 a12


1 0
.
a13 0
(6) 设随机变量 X 服从参数为 λ 的指数分布, 则 P{X

2003年全国硕士研究生入学统一考试数学四试题及答案详解

2003年全国硕士研究生入学统一考试数学四试题及答案详解

2003年考研数学四真题及评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限xx x 20)]1ln(1[lim ++→= 2e .【分析】 本题属∞1型未定式,化为指数函数求极限即可.【详解】 xx x 20)]1ln(1[lim ++→=)]1ln(1ln[2lim x xx e++→=.2)1ln(2lim)]1ln(1ln[2lim00e eex x x x x x ==+++→→【评注】 对于∞1型未定式)()(lim x g x f 的极限,也可直接用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算,因此本题也可这样求解:xx x 2)]1ln(1[lim ++→=.2)1ln(2lim 0e ex xx =+⋅→(2)dx ex x x⎰--+11)(= )21(21--e .【分析】 对称区间上的积分应注意利用被积函数的对称性,这里有.011=⎰--dx xex【详解】dx ex x x⎰--+11)(=dx xedx ex xx⎰⎰----+1111=dx ex x--⎰11=⎰⎰---=11022xxxdedx xe=][2110dx e xex x⎰----=)21(21--e .【评注】 本题属基本题型,主要考查对称区间上的积分性质和分布积分法.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=D dxdy x y g x f I )()(=dxdy ax y x ⎰⎰≤-≤≤≤10,102=.])1[(212112a dx x x a dy dx ax x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.(4)设A,B 均为三阶矩阵,E 是三阶单位矩阵. 已知AB=2A+B,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡202040202,则 1)(--E A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 .【分析】 应先化简,从AB=2A+B 中确定1)(--E A . 【详解】 由AB=2A+B, 知AB-B=2A-2E+2E, 即有 E E A B E A 2)(2)(=---, E E B E A 2)2)((=--, E E B E A =-⋅-)2(21)(, 可见 1)(--E A =)2(21E B -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100.【评注】 本题实质上是已知矩阵等式求逆的问题,应先分解出因式A-E ,写成逆矩阵的定义形式,从而确定(A-E) 的逆矩阵.(5)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= -1 .【分析】 这里Tαα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T Ta E E AB αααα+-= =TT T T aa E αααααααα⋅-+-11=T T T Ta a E αααααααα)(11-+- =TT T a a E αααααα21-+-=E aa E T=+--+αα)121(,于是有 0121=+--a a ,即 0122=-+a a ,解得 .1,21-==a a 由于A<0 ,故a=-1.(6)设随机变量X 和Y 的相关系数为0.5, EX=EY=0,222==EY EX, 则2)(Y X E += 6 .【分析】 利用期望与相关系数的公式进行计算即可.【详解】 因为2)(Y X E +=22)(2EY XY E EX ++ =4+]),([2EY EX Y X Cov ⋅+=4+2.625.024=⨯⨯+=⋅⋅DY DX XY ρ【评注】 本题的核心是逆向思维,利用公式EY EX Y X Cov XY E ⋅+=),()(.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线21x xe y =(A) 仅有水平渐近线. (B) 仅有铅直渐近线.(C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线. [ D ] 【分析】 先考虑是否有水平渐近线,若无水平渐近线应进一步考虑是否存在斜渐近线,而是否存在铅直渐近线,应看函数是否存在无定义点.【详解】 当±∞→x 时,极限y x ±∞→lim 均不存在,故不存在水平渐近线;又因为 1lim lim 21==∞→∞→x x x e x y ,0)(lim 21=-∞→x xe x x ,所以有斜渐近线y=x.另外,在 x=0 处21x xe y =无定义,且∞=→1lim x x xe ,可见 x=0为铅直渐近线.故曲线21x xe y =既有铅直又有斜渐近线,应选(D).(2)设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在x=1处连续,则0)1(=ϕ是f(x)在x=1处可导的(A) 充分必要条件. (B )必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. [ A ] 【分析】 被积函数含有绝对值,应当作分段函数看待,利用f(x)在x=1处左右导数定义讨论即可.【详解】 因为)1(3)(11lim 1)1()(lim 311ϕϕ=⋅--=--++→→x x x x f x f x x , )1(3)(11lim 1)1()(lim311ϕϕ-=⋅---=----→→x x x x f x f x x , 可见,f(x)在x=1处可导的充分必要条件是 .0)1()1(3)1(3=⇔-=ϕϕϕ 故应选(A). 【评注】 函数表达式中含有绝对值、取极值符号(max,min)等,均应当作分段函数处理.一般地,函数)()(0x x x x g ϕ-=在点0x x =处可导的充要条件是.0)(0=x ϕ(3)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ A ]【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(00y x f y ';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注2】 本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D), 故正确选项为(A).(4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B . 已知矩阵A 相似于B ,则秩(A-2E)与秩(A-E)之和等于(A) 2. (B) 3. (C) 4. (D) 5. [ C ]【分析】 利用相似矩阵有相同的秩计算,秩(A-2E)与秩(A-E)之和等于秩(B-2E)与秩(B-E)之和.【详解】 因为矩阵A 相似于B ,于是有矩阵A-2E 与矩阵B-2E 相似,矩阵A-E 与矩阵B-E 相似,且相似矩阵有相同的秩,而秩(B-2E)=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---,秩(B-E)=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--,可见有 秩(A-2E)+秩(A-E)= 秩(B-2E)+秩(B-E)=4,故应选(C).【评注】 若B A ~,则)(~)(B f A f ,且相似矩阵有相同的行列式、相同的秩和相同的特征值等性质.(5)对于任意二事件A 和B(A) 若φ≠AB ,则A,B 一定独立. (B) 若φ≠AB ,则A,B 有可能独立. (C) 若φ=AB ,则A,B 一定独立. (D) 若φ=AB ,则A,B 一定不独立. [ B ]【分析】 本题考查独立与互斥事件之间的关系,事实上,独立与互斥事件之间没有必然的互推关系.【详解】 φ≠AB 推不出P(AB)=P(A)P(B), 因此推不出A,B 一定独立,排除(A); 若φ=AB ,则P(AB)=0,但P(A)P(B)是否为零不确定,因此(C),(D) 也不成立,故正确选项为(B).【评注】 当P(A)0≠,P(B)0≠时,若A,B 相互独立,则一定有0)()()(≠=B P A P AB P ,从而有φ≠AB . 可见,当A,B 相互独立时,往往A,B 并不是互斥的.(6)设随机变量X 和Y 都服从正态分布,且它们不相关,则(A) X 与Y 一定独立. (B) (X,Y)服从二维正态分布.(C) X 与Y 未必独立. (D) X+Y 服从一维正态分布. [ C ] 【分析】 本题考查正态分布的性质以及二维正态分布与一维正态分布之间的关系.只有(X,Y) 服从二维正态分布时,不相关与独立才是等价的.【详解】 只有当(X,Y) 服从二维正态分布时,X 与Y 不相关⇔X 与Y 独立,本题仅仅已知X 和Y 服从正态分布,因此,由它们不相关推不出X 与Y 一定独立,排除(A); 若X 和Y 都服从正态分布且相互独立,则(X,Y)服从二维正态分布,但题设并不知道X,Y 是否独立,可排除(B); 同样要求X 与Y 相互独立时,才能推出X+Y 服从一维正态分布,可排除(D).故正确选项为(C).【评注】 ① 若X 与Y 均服从正态分布且相互独立,则(X,Y)服从二维正态分布. ② 若X 与Y 均服从正态分布且相互独立,则bY aX +服从一维正态分布. ③ 若(X,Y)服从二维正态分布,则X 与Y 相互独立⇔X 与Y 不相关.三 、(本题满分8分) 设],21,0(,)1(11sin 1)(∈---=x x x x x f πππ 试补充定义f(0),使得f(x)在]21,0[上连续.【详解】)(lim 0x f x +→= -.1π+xx xx x ππππsin sin lim 0-+→= -220sin lim 1ππππx xx x -++→ = -xxx 202cos lim 1πππππ-++→= -2202sin lim 1ππππxx +→+= -.1π由于f(x)在]21,0(上连续,因此定义π1)0(-=f ,使f(x)在]21,0[上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.完全类似例题在一般教科书上都可找到.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vf u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂ 【详解】vf x u f y xg ∂∂+∂∂=∂∂,.vf y u f x yg ∂∂-∂∂=∂∂ 故 v f vf x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222, .2222222222vf v f y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +【评注】 本题考查半抽象复合函数求二阶偏导.五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x eI Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x eeI Dy x )sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则tdt e e I t sin 0⎰-=πππ.记 t d te A t s i n 0⎰-=π,则 t t de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e t e t t=⎰--πcos t tde=]sin cos [0tdt e t e t t⎰--+-ππ=.1A e-+-π因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分)设a>1,at a t f t -=)(在),(+∞-∞内的驻点为).(a t 问a 为何值时,t(a)最小?并求出最小值.【分析】 先由f(t)的导数为零确定驻点t(a),它是关于a 的函数,再把此函数对a 求导,然后令此导数为零,得到可能极值点,进一步判定此极值为最小值即可.【详解】 由0ln )(=-='a a a t f t ,得唯一驻点 .ln ln ln 1)(aaa t -= 考察函数aaa t ln ln ln 1)(-=在a>1时的最小值. 令 0)(l n ln ln 1)(ln ln ln 11)(22=--=--='a a a a aa a a t , 得唯一驻点 .ee a =当e e a >时,0)(>'a t ;当ee a <时,0)(<'a t ,因此ee t e11)(-=为极小值,从而是最小值.【评注】 本题属基本题型,只是函数表达式由驻点给出,求极值与最值的要求均是最基本的.七、(本题满分9分)设y=f(x) 是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点. 若梯形OCMA 的面积与曲边三角形CBM的面积之和为3163+x ,求f(x)的表达式. 【分析】 梯形OCMA 的面积可直接用梯形面积公式计算得到,曲边三角形CBM 的面积可用定积分计算,再由题设,可得一含有变限积分的等式,两边求导后可转化为一阶线性微分方程,然后用通解公式计算即可.【详解】 根据题意,有316)()](1[213+=++⎰x x dt t f x f x . 两边关于x 求导,得.21)()(21)](1[212x x f x f x x f =-'++ 当0≠x 时,得.1)(1)(2xx x f x x f -=-' 此为标准的一阶线性非齐次微分方程,其通解为 y]1[)(121C dx e xx ex f dx x dxx+⎰-⎰=---⎰ =]1[ln 2ln C dx e xx ex x+--⎰ =)1(22C dx xx x +-⎰ O C B x =.12Cx x ++当x=0时,f(0)=1.由于x=1时,f(1)=0 ,故有2+C=0,从而C=-2. 所以.)1(21)(22-=-+=x x x x f【评注】 本题一阶线性微分方程的求解比较简单,一般教材中都可找到标准的求解方法.八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求(1) t 时的商品剩余量,并确定k 的值; (2) 在时间段[0,T]上的平均剩余量.【分析】 在时刻t 的剩余量y(t)可用总量A 减去销量x(t)得到; 由于y(t)随时间连续变化,因此在时间段[0,T] 上的平均剩余量,即函数平均值可用积分⎰Tdt t y T0)(1表示. 【详解】 (1) 在时刻t 商品的剩余量为 )()(t x A t y -==kt A -, ].,0[T t ∈ 由kt A -=0,得TA k =, 因此,)(t TAA t y -= ].,0[T t ∈ (2) 依题意,)(t y 在[0,T]上的平均值为⎰=Tdt t y T y 0)(1=⎰-T dt t T AA T 0)(1=.2A因此在时间段[0,T] 上的平均剩余量为.2A 【评注】 函数f(x)在[a,b] 上的平均值记为⎰-ba dx x f ab .)(1 本题考查了函数平均值的概念,但大纲中只对数学一、二明确提出要求,而数学三、四的考试大纲中没有相应的要求,因此本题有超纲的嫌疑.九、(本题满分13分)设有向量组(I ):T)2,0,1(1=α,T)3,1,1(2=α,T a )2,1,1(3+-=α和向量组(II ):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I )与(II )等价?当a 为何值时,向量组(I )与(II )不等价?【分析】 两个向量组等价也即两个向量组可以相互线性表示,而两个向量组不等价,只需其中一组有一个向量不能由另一组线性表示即可. 而线性表示问题又可转化为对应非齐次线性方程组是否有解的问题,这可通过化增广矩阵为阶梯形来判断. 一个向量1β是否可由321,,ααα线性表示,只需用初等行变换化增广矩阵(1321,,βααα)为阶梯形讨论,而一组向量321,,βββ是否可由321,,ααα线性表示,则可结合起来对矩阵(321321,,,,βββααα)同时作初等行变换化阶梯形,然后类似地进行讨论即可.【详解】 作初等行变换,有),,,,(321321βββααα =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-463232112110221111a a a a⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--→111100112110111201a a a a .(1) 当1-≠a 时,有行列式[]01321≠+=a ααα,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解. 所以,321,,βββ可由向量组(I )线性表示.同样,行列式[]06321≠=βββ,秩(3),,321=βββ,故321,,ααα可由向量组(II )线性表示. 因此向量组(I )与(II )等价.(2) 当a=-1时,有),,,,(321321βββααα ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→202000112110111201 . 由于秩(321,,ααα)≠秩(),,1321βααα,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 因此,向量组(I )与(II )不等价.【评注1】 涉及到参数讨论时,一般联想到利用行列式判断,因此,本题也可这样分析:因为行列式1,,321+=a ααα,06,,321≠=βββ,可见(1) 当1-≠a 时,秩3),,(),,(321321==βββαααr r ,因此三维列向量组321,,ααα与321,,βββ等价,即向量组(I )与(II )等价.(2) 当a=-1时,,秩2),,(321=αααr ,而行列式04,,132≠=βαα,可见2),,(321=αααr ≠r (),,,1321βααα=3, 因此线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 即向量组(I )与(II )不等价.【评注2】 向量组(I )与(II )等价,相当于321,,ααα与321,,βββ均为整个向量组321321,,,,,βββααα的一个极大线性无关组,问题转化为求向量组321321,,,,,βββααα的极大线性无关组,这可通过初等行变换化阶梯形进行讨论. 十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵. 试求a,b 和λ的值.【分析】 题设已知特征向量,应想到利用定义:λαα=*A ,又与伴随矩阵*A 相关的问题,应利用E A AA =*进行化简.【详解】 矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且λαα=*A . 两边同时左乘矩阵A ,得 αλαA AA =*, αλαAA =,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ,由此,得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=+.1,22,3λλλA b a b A b A b )3()2()1(由式(1),(2)解得1=b或2-=b ;由式(1),(3)解得a=2. 由于42311121112=-==a aA ,根据(1)式知,特征向量α所对应的特征值.343bbA +=+=λ 所以,当1=b 时,1=λ; 当2-=b 时,.4=λ【评注】 本题若先求出*A ,再按特征值、特征向量的定义进行分析,则计算过程将非常复杂. 一般来说,见到*A ,首先应想到利用公式E A AA =*进行化简.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档