年产300吨纤维素酶工厂的初步设计
我国纤维素燃料乙醇工艺概况和经济性分析

>>专家观点<<2018年6月·第3卷·第3期石油石化绿色低碳Green Petroleum & Petrochemicals摘 要:纤维素燃料乙醇是充分利用纤维素原料中的纤维素和半纤维素,使之水解糖化后,通过糖发酵生产的燃料乙醇。
目前我国纤维素燃料乙醇产业发展较慢,纤维素燃料乙醇在秸秆收储运、秸秆原料预处理、纤维素酶发酵制乙醇等环节还存在亟待突破的技术瓶颈。
由于缺乏完善的秸秆原料收储运体系,原料供应难以保障,已建成的纤维素燃料乙醇示范装置大多因技术和成本问题未能正常开工运行。
当前技术条件下,纤维素燃料乙醇投资较大,秸秆收储成本高,原料预处理过程产生的污水量大,污水处理成本高,乙醇生产过程中的酶制剂成本较高,致使纤维素燃料乙醇成本远高于粮食燃料乙醇成本。
我国发展纤维素燃料乙醇需加强对秸秆收储运体系的研究、开发高效的纤维素酶菌,有效降低纤维素燃料乙醇成本以提高竞争力。
关键词:纤维素 燃料乙醇 工艺技术 成本 经济性分析我国纤维素燃料乙醇工艺概况和经济性分析朱青,王庆申,赵书阳,杨晓帆(中国石油化工集团公司经济技术研究院,北京 100029)收稿日期:2018-4-27作者简介:朱青,学士,高级经济师。
1989年毕业于北京建筑工程学院工业与民用建筑专业,长期从事项目经济评价工作,曾多次参与生物燃料定价及生物燃料的专题研究工作。
2017年9月十五部委联合发布的《关于扩大生物燃料乙醇生产和推广使用车用乙醇汽油的实施方案》提出,到2025年,力争纤维素燃料乙醇实现规模化生产,先进生物液体燃料技术、装备和产业整体达到国际领先水平,形成更加完善的市场化运行机制。
纤维素广泛分布于农作物秸秆、皮壳当中,秸秆的能源化利用对加强我国环境保护以及促进能源结构调整等具有比较现实的意义。
从目前的工艺技术看,纤维素燃料乙醇达到规模化生产仍将有一段距离。
由于纤维素燃料乙醇成本较高,与粮食燃料乙醇相比没有竞争力,为推动纤维素燃料乙醇产业的发展,需要国家出台相关的财税扶持政策。
年产5000吨工业用纤维素酶制剂厂设计

年产5000吨工业用纤维素酶制剂厂设计专业名称:生物工程作者:刘浩指导教师:高健摘要本设计主要是对年产5000吨工业用纤维素酶制剂厂进行了设计。
本设计主要在产品需求,地理环境,政策环境,生产工艺条件基本上,基于5000吨工业纤维素酶制备项目的要求,做的车间的平面设计。
同时通过对生产工艺、产品方案、设备选型、物料衡算、全厂卫生安全、企业组织等方面的研究与设计。
对本方案进行经济的估算,初步估算:固定资产3000万元的项目投资,项目建成后,年产固体和液体纤维素酶5000吨,年利润16920万元,投资回收期为3年。
关键词:工业用纤维素酶;工厂设计;物料衡算;技术经济分析The Plant Design of a 1000t/a Production Capacity of Industrial UsedCellulaseMajor: Biological Engineering Author: Liu hao Instructor: Gao JianAbstractThis study was aimed to design an industrial used cellulase production plant with a 1000-ton production annual capacity.Workshop horizontal design, the product plan and the craft proof, selection of processing technology and equipment, materials balancing, hygiene and safety, and organization were studied and designed for the industrial used cellulase production, basedon the demand of product, geographical environment, governmental policies and the production technology. At last the analysis of technical economy of this project was done.It showed that the fixed assets was 27.3 million RMB, after the completion of the project,the plant may yearly produce solid cellulase 500t, liquid cellulase 500t, the annual profitwas 35.25 million RMB, and the return time of investment was 3 years.Key Words: Industrial used cellulase; Plant design; Materials balancing; Technical economy analysis1 绪论1.1.项目建设的背景1.1.1.项目提出的依据纤维素酶是降解纤维素生成葡萄糖的一组酶的总称。
江苏知原药业有限公司固体制剂车间生产线技术改造项目环境影响报告表

消耗量
—— 4 ——
废水(工业废水√、生活污水)排水量及排水去向 生活污水:本项目不新增生活污水产生及排放。 工业废水:本项目产生设备清洗废水 100t/a,经厂内现有废水处理设施处理后回用于 现有敞开式循环冷却塔系统补水,不外排;自来水制作纯化水工艺产生浓 水约 45.6t/a,接管锡北污水处理厂集中处理,最终排入锡北运河。 放射性同位素和伴有电磁辐射的设施的使用情况 无
钱栋 邮政 编码 214000
联系电话 15261572693 立项审批 部门 建设 性质 占地面 积(平方 米) 总投资 (万元) 评价经 费 (万元)
建设地点 无锡市锡山区锡北镇工业园区泾新路 35 号 无锡市锡山区经济和信息化 局 扩建 1824 3000 ―― 其中:环保 投资(万元) 建设期 批准文号 行业类别 及代码 绿化面积 (平方米) 25 环保投资占 总投资比例 1 个月。 企业投资项目备案通知书 备案号:3202051603321-1 化学药品制剂制造 C2720 —— 0.8%
固体 固体 固体 固体 固体 固体 固体 固体 固体 固体 液体 固体 固体 液体 固体 固体
桶装 桶装 桶装 桶装 桶装 桶装 桶装 袋装/ 盒装 桶装 桶装 桶装 桶装 桶装 桶装 桶装 袋装/ 盒装
汽车 汽车 汽车 汽车 汽车 汽车 汽车 汽车 汽车 汽车 汽车 汽车 汽车 汽车 汽车 汽车 本项目软胶 囊原料
0.2
0.5
0.1 0.13
0.03
0.1 2 1
2
0.09 2 0.5 0.07
4
表 3 建设项目主要生产设备一览表
序 号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 设备名称 型号 KRHA1300 KRHA650 KRHA150 KRCFJ-60 —— L-600 TG-Z-0 —— —— —— KRHA750 KRHA650 KRCFJ-60 —— —— L-600 —— TG-Z-0 —— 3000L、2000L 2000L、1500L 100L TLP GCB4D FGH50/500 2900*1000*150 0 —— —— —— L-600 TG-Z-0 —— WF-30 ZS-350 100L GHL-250 RXH-27-C PGL-30 SGH-600 ZP-37 ZS-100 100L —— —— YPJ PA20001 扩建前 全厂 3 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 1 2 2 2 2 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 数量(台) 扩建后 本项目 全厂 3 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 1 2 2 2 2 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 现有普通凝胶/ 软膏/乳膏生产 设备 现有复方丙酸 氯倍他索软膏 生产设备 增减量 备注
(完整word版)酸奶工厂设计工厂设计

1 绪论1.1酸奶简介牛乳的组成最为接近人体的母乳,含有人体所需要的全部营养成分,营养最为均衡,在人们的膳食结构中具有其他食品无法替代的地位和作用。
由鲜牛乳发酵成的酸乳由于其丰富的营养、特殊的风味、爽滑的质构和良好的生理功能,备受人们青睐[1]。
联合国粮农组织和世界卫生组织(FAO/WHO)将酸奶定义为乳与乳制品(杀菌乳或浓缩乳)在保加利亚杆菌(L.bulgaricus)和嗜热链球菌(S.thermophilus)的作用下乳酸发酵而得到的凝固型乳制品其中可任意添加全脂乳粉、脱脂乳粉、乳清粉等。
但在最终发酵产品中必须大量存在这些微生物。
也可简单将其定义为以新鲜牛乳或乳粉为原料,经乳酸菌保温发酵而制成的产品[2]。
通常根据酸奶在零售过程中的产品存在状态来进行分类,具体可分为凝固型酸奶和搅拌型酸奶。
乳酸菌在乳中生长繁殖,发酵分解产生乳酸等有机酸,导致乳的pH 值下降,使乳酪蛋白在其等电点附近发生凝集,把这种乳凝状的酸奶称为凝固型酸奶。
所谓搅拌型酸奶,是指先在发酵罐中通过乳酸菌的作用,将经过标准化处理的牛乳发酵至乳凝,然后再用搅拌器破乳,是凝乳粒子保持在0.01~0.04mm大小的一种酸奶。
产品呈半流动状态的粥糊状,易使用吸管吸食[3]。
一半搅拌型酸乳可分为原味型和水果型,而凝固型大都为原味型[4]。
酸乳又名酸牛乳或酸奶,作为众多的发酵乳产品中当今最为流行的乳制品,最初出现时其名是与发酵乳混用的,表示变酸的乳。
尽管目前没有关于人类何时第一次制作酸奶的明确记载,但酸奶的食用可以追溯到许多世纪以前。
发酵乳起源于巴尔干半岛和中东地区,在那里,牧民们早在几千年前就发现了可以通过发酵可以延长鲜乳保存期的方法。
虽然起源没有明确的记载,但酸奶有益于人类身体健康并有丰富的营养价值这一观念在许多文明国度里已存在了很长时间。
依据波斯人的传统,亚伯拉罕把自己的富饶和长寿归功于酸奶而法国皇帝法兰西一世据说也因饮用由山羊奶制成的酸奶而治愈其体虚气弱之疾[5]。
发酵工业:七大亮点开拓技术新领域

(1)烷基糖苷——葡萄糖的化学深加工当前世界广泛注重环境保护,人们对日用化学品包括洗涤剂、护肤用品,要求既不污染环境,又不刺激人体皮肤。
在有机合成材料方面,人们注重可降解材料的开发。
国际上上个世纪90年代开发成功一种环保型表面活性剂——烷基糖苷。
它是用葡萄糖和脂肪酸为初始原料合成,无毒无害,对人体皮肤无刺激作用,能在自然条件下完全降解,目前国际价格约每吨2万元。
将烷基糖苷作主剂,配料生产高档洗衣粉,能明显改善抗硬水性和洗涤效果牷用以生产高档香波和护肤膏,有养护和防晒效果,堪称世界级环保型添加剂。
此外烷基糖苷还能作为农用薄膜的防雾防滴剂,对土壤和环境无任何有害残留物。
近几年法、美、日、德等国相继建厂投产烷基糖苷,年产量为10万吨左右。
我国也在发展该产品,已经列入了“九五”攻关计划,目前有中国山西日化所等单位小批量生产,年产约数千吨。
预计今后该产品会有广阔的发展前景。
由于每吨50%的烷基糖苷需葡萄糖310kg,目前葡萄糖单价比以前低了,这为我国烷基糖苷的发展提供了有利的发展条件。
Snowcat 10:15:02发酵工业:七大亮点开拓技术新领域(1)烷基糖苷——葡萄糖的化学深加工当前世界广泛注重环境保护,人们对日用化学品包括洗涤剂、护肤用品,要求既不污染环境,又不刺激人体皮肤。
在有机合成材料方面,人们注重可降解材料的开发。
国际上上个世纪90年代开发成功一种环保型表面活性剂——烷基糖苷。
它是用葡萄糖和脂肪酸为初始原料合成,无毒无害,对人体皮肤无刺激作用,能在自然条件下完全降解,目前国际价格约每吨2万元。
将烷基糖苷作主剂,配料生产高档洗衣粉,能明显改善抗硬水性和洗涤效果牷用以生产高档香波和护肤膏,有养护和防晒效果,堪称世界级环保型添加剂。
此外烷基糖苷还能作为农用薄膜的防雾防滴剂,对土壤和环境无任何有害残留物。
近几年法、美、日、德等国相继建厂投产烷基糖苷,年产量为10万吨左右。
我国也在发展该产品,已经列入了“九五”攻关计划,目前有中国山西日化所等单位小批量生产,年产约数千吨。
(2021年整理)年产800吨土霉素车间工艺设计

年产800吨土霉素车间工艺设计编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(年产800吨土霉素车间工艺设计)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为年产800吨土霉素车间工艺设计的全部内容。
课程设计题目:年产800吨土霉素工厂设计设计内容 30 页图纸 4 张指导老师:周延学生姓名:李周阳学号: 200882077所在班级:生实0801年产800吨土霉素车间工艺设计摘要:土霉素是一种四环类广谱抗生素,有一定副作用.目前,中国已成为世界上最大的土霉素生产国,占70%。
目前我国畜用土霉素需求量很大。
本次设计为生产规模800吨/年的土霉素车间。
土霉素是微生物发酵产物,目前国内土霉素提取工艺为用草酸(或磷酸)做酸化剂调节pH值,利用黄血盐—硫酸锌作净化剂协同去除蛋白质等高分子杂质,然后用122#树脂脱色进一步净化土霉素滤液,最后调pH至4。
8左右结晶得到土霉素碱产品。
本次设计也按照这个工艺流程,分为三级发酵、酸化、过滤、脱色、结晶、干燥等。
设计中借鉴了实际发酵车间的布置,设计为3层车间,共安装5个发酵罐,1个酸化罐,2个二级种子罐,1个一级种子罐,1个通氨罐,2个补料罐,1个板框过滤器,1个结晶罐,脱色罐,喷雾式干燥器等等相关设备。
目录第1章绪论第1.1节引言第1.2节设计目标任务第1。
3节本次设计的基本内容第2章工艺流程设计第2。
1节土霉素生产工艺流程简介第2。
2节土霉素生产总工艺流程图第3章物料衡算第3.1节土霉素总物料衡算第3.2节土霉素发酵工序物料衡算第3。
3节土霉素酸化稀释过滤工序物料衡算第3.4节土霉素脱色结晶工序物料衡算第3。
年产300吨纤维素酶工厂的初步设计_毕业设计

年产300吨纤维素酶工厂的初步设计摘要纤维素是年产量巨大的可再生性资源,地球上每年光合作用生成的上亿吨生物质中,纤维素占了近一半。
目前,自然界中纤维素只有一小部分得到了利用,绝大多数纤维素不仅被白白浪费,而且还会造成环境污染。
利用这一年产量巨大的可再生性资源将其转化为人类急需的能源、食物和化工原料,对于人类社会的可持续性发展具有非常重要的意义。
本设计采用目前认为是最好的产纤维素酶的菌种里氏木霉作为发酵菌种,液体深层发酵过程中采用变温发酵的方法分别控制菌种的生长和产酶,提取过程中采用超滤、层析等,提高产品的收率。
最后采用喷雾干燥做成固态的酶制剂。
本设计的主要内容有:工厂总平面布置、全厂工艺流程设计、工艺计算、设备的计算与选型、成本核算;另外,完成设计图纸8张,有工厂总平面布置图、工艺流程图(3张)、发酵罐设计图、种子罐设计图、发酵车间设备布置图(平面图和立面图)。
根据全厂工艺设计和计算结果可以看出,该设计能够达到工业生产的要求。
关键词:纤维素酶;液体深层发酵;里氏木霉ABSTRACTCellulose is a kind of reproducible resource of great output, it takes about a half of the hundred million biomaterial making by photosynthesis. Presently, only a few cellulose are utilized, most of cellulose are wasted and pollute environment. It is of great importance to transfer these resource to energy ,food, and so on.This design adopt Trichoderma reesei which produce cellulase best. During the liquid submerged fermentation course we chang the temperature in order to control the growth that germ grows and produce cellulase respectively. Ultrafiltration and chromatography are used In the extrace process for improve the yield. In the end we make solid zymin by spray dring .The design mainly include the contents hereinafter: the layout of the whole factory ,the craft argumentation of the whole factory,the calculation of the craft,the calculation and type choosing of main equipments, the calculation of the costs. And design 8 charts , that are the layout of the whole factory, the design of the craft process(3), the design of the fermentation pot, the design of seeding tank, the lay out for equipments of the fermentation workplace(ichnography and space).According to the craft argumentation of the whole factory and the result of the calculation, the design can come up to the request of industrialization.Keywords: Cellulase; liquid submerged fermentation;; Trichoderma reesei目录1 绪论11.1纤维素酶简介11.2纤维素酶的研究状况 11.2.1国外研究概况 (2)1.2.2国内研究概况 (3)1.3 纤维素酶的应用 41.3.1 纤维素酶在果实和蔬菜加工上的应用 (4)1.3.2 纤维素酶在酱油酿造上的应用 (4)1.3.3 纤维素酶在酒精发酵中的应用 (5)1.3.4纤维素酶在饲料上的应用 (5)1.3.5在麻棉混纺织物后整理中的应用 (6)1.3.6其它 (6)1.4纤维素酶的发展前景 61.5纤维素酶的生产61.5.1固体发酵生产纤维素酶 (6)1.5.2液体深层发酵生产纤维素酶 (7)1.5.3固定化酶和细胞 (9)1.6目前国内的有关情况 91.6.1国内的需求情况 (9)1.6.2主要技术指标 (9)1.6.3国内几大生产厂家 (10)1.7本设计的目的和内容 101.7.1本设计的目的 (10)1.7.2本设计的主要内容 (10)2 全厂工艺流程及论证122.1无菌空气工艺论证122.1.1无菌空气制备系统工段工艺论证 (12)2.2发酵工段工艺论证132.2.1发酵工艺流程 (13)2.2.2菌种选取 (13)2.2.3培养基 (14)2.2.4生产方法 (14)2.2.5发酵过程的控制 (14)2.3后提取工段工艺论证 152.3.1后提取工艺流程 (15)2.3.2提取方法论证 (15)3 纤维素酶的工艺计算183.1物料衡算183.1.1工艺指标 (18)3.1.3提取工段的物料衡算 (19)3.2热量衡算203.2.1蒸气消耗计算 (20)3.3水平衡计算223.3.1种子罐冷却水 (22)3.3.2发酵罐冷却水 (22)3.4无菌空气衡算223.4.1发酵罐通风量的计算 (22)3.4.2种子培养基等其他无菌空气耗量 (22)3.4.3发酵车间高峰无菌空气消耗量: (22)3.4.4发酵车间年用气量: (22)4 纤维素酶发酵工段的设备选型与计算244.1发酵罐设备选型与计算244.1.1发酵罐的选型 (24)4.1.2生产能力、数量和容积的确定 (24)4.1.3发酵罐基本尺寸确定 (24)4.1.4冷却面积的计算 (25)4.1.5蛇管设计 (27)4.1.6壁厚计算 (29)4.1.7搅拌器计算 (29)4.1.8搅拌轴功率计算 (30)4.1.9接管设计 (32)4.1.10传动装置设计 (33)4.1.11发酵罐支座选择 (33)4.2种子罐的设备选型与计算334.2.1种子罐的选型 (33)4.2.2种子罐容积和数量确定 (33)4.2.3主要尺寸确定 (34)4.2.4冷却面积的计算 (34)4.2.5设备材料选择 (35)4.2.6壁厚计算 (35)4.2.7种子罐内部结构的工艺计算 (36)4.2.8支座选型 (38)4.3空气过滤器设备选型与计算384.3.1种子罐分过滤器 (38)4.3.2发酵罐分过滤器 (39)4.4无菌空气制备工艺设备选型与计算404.4.1工艺流程 (40)4.4.2空气状态的确定 (41)4.4.4储罐 (41)4.4.5一级冷却装置 (42)4.4.6旋风分离器 (47)4.4.8丝网除雾器 (50)4.4.9加热器 (50)4.4.10总过滤器 (52)4.5提取工段设备计算及选型534.5.1提取工段工艺流程 (53)4.5.2提取工段设备选型 (53)5 全厂布置的说明 555.1工厂总平面布置555.1.1总平面布置依据 (55)5.1.2.布置原则: (55)5.1.3布置说明 (55)5.1.4车间布置设计 (56)5.1.5设计遵循的原则: (56)5.1.6本设计的车间布置说明 (58)6 经济核算606.1投资估算606.1.1设备投资 (60)6.1.2土建投资 (60)6.1.3全厂总投资 (61)6.2成本计算616.2.1主要成本计算 (61)6.2.2煤耗 (61)6.2.3水、电耗 (61)6.2.4折旧费及其他费用 (62)6.2.5全厂人员安排 (62)6.2.6全厂每年销售成本 (62)6.2.6全年净收入 (63)7 结论64参考文献65附录68英语翻译76英文原文76中文译文841 绪论1.1纤维素酶简介纤维素作为植物光合作用的主要多糖类产物,是地球上最为丰富的可再生性天然资源。
年产3000吨膳食纤维面包工厂设计资料

年产3000吨膳食纤维面包工厂设计绪论1.1 焙烤工业概貌面包是一种经过发酵的烘焙食品,它是以小麦粉、酵母、盐和水为基本原料,添加适量糖、油脂、乳品、鸡蛋、果料、添加剂等,经过搅拌、发酵、成形、醒发、烘焙而制成的组织松软的方便食品。
它是以其营养丰富,组织蓬松,易于消化,食用方便等特点成为最大众化的酵母发酵食品,越来越受到广大消费者的欢迎,选购食用的人们从儿童到老人,需要量越来越多,面包作为一种大众食品,已经走进了千家万户,成为了人们的主食之一。
加之它是经过高温烘焙,使其质地松脆、色、香、味、形俱佳,对消费者有挡不住的诱惑,由于面包具有以上特点,因此发展非常迅速,加之它的生产投资少,收效快,对扩大就业,解决下岗人员的再就业都有好处,故焙烤工业在国民经济中的地位越来越高。
1.1.1 国内面包发展状况面包制作技术是由国外传入我国的。
一是在明朝万历年间,由意大利传教士得马窦和明末清初德国传教士汤若望将面包制作传入我国东南沿海城市广州、上海等地,继而传入内地。
二是1867年帝俄修建东清铁路时,将面包制作技术传入我国东北。
至今在我国东北的哈尔滨、长春、沈阳等地还有许多传统的俄式风味面包。
改革开放以前,我国面包的生产很不普及,主要集中在大中城市生产,农村、乡镇几乎没有面包生产。
制作工艺和生产设备比较简单、落后,面包品种花色较少,面包质量也不稳定。
改革开放后,我国面包行业发生了突飞猛进的变化,现已普及城乡各地。
面包的品种繁多,花色各异,产品质量不断提高,生产设备日益更新,新的原材料层出不穷。
北京、上海、广州、长春、大连等大中城市还先后从日本、意大利、法国等国家引进了先进的自动化面包生产线,大大改善了生产条件,提高了产品的质量[2]。
而现有面包主要可分为主食面包,花色面包,油炸面包圈,丹麦面包。
这些面包在初始阶段时,热销的产品主要是各种主食面包,如长棍、短棍及切片枕式面包。
而进入 90年代以后,随着经济的发展,生活质量的提高,面包销售热点逐渐转向两大门类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年产300吨纤维素酶工厂的初步设计摘要纤维素是年产量巨大的可再生性资源,地球上每年光合作用生成的上亿吨生物质中,纤维素占了近一半。
目前,自然界中纤维素只有一小部分得到了利用,绝大多数纤维素不仅被白白浪费,而且还会造成环境污染。
利用这一年产量巨大的可再生性资源将其转化为人类急需的能源、食物和化工原料,对于人类社会的可持续性发展具有非常重要的意义。
本设计采用目前认为是最好的产纤维素酶的菌种里氏木霉作为发酵菌种,液体深层发酵过程中采用变温发酵的方法分别控制菌种的生长和产酶,提取过程中采用超滤、层析等,提高产品的收率。
最后采用喷雾干燥做成固态的酶制剂。
本设计的主要内容有:工厂总平面布置、全厂工艺流程设计、工艺计算、设备的计算与选型、成本核算;另外,完成设计图纸8张,有工厂总平面布置图、工艺流程图(3张)、发酵罐设计图、种子罐设计图、发酵车间设备布置图(平面图和立面图)。
根据全厂工艺设计和计算结果可以看出,该设计能够达到工业生产的要求。
关键词:纤维素酶;液体深层发酵;里氏木霉目录1 绪论11.1纤维素酶简介11.2纤维素酶的研究状况 11.2.1国外研究概况 (2)1.2.2国内研究概况 (3)1.3 纤维素酶的应用 41.3.1 纤维素酶在果实和蔬菜加工上的应用 (4)1.3.2 纤维素酶在酱油酿造上的应用 (4)1.3.3 纤维素酶在酒精发酵中的应用 (5)1.3.4纤维素酶在饲料上的应用 (5)1.3.5在麻棉混纺织物后整理中的应用 (6)1.3.6其它 (6)1.4纤维素酶的发展前景 61.5纤维素酶的生产61.5.1固体发酵生产纤维素酶 (6)1.5.2液体深层发酵生产纤维素酶 (7)1.5.3固定化酶和细胞 (9)1.6目前国内的有关情况 91.6.1国内的需求情况 (9)1.6.2主要技术指标 (9)1.6.3国内几大生产厂家 (10)1.7本设计的目的和内容 101.7.1本设计的目的 (10)1.7.2本设计的主要内容 (10)2 全厂工艺流程及论证122.1无菌空气工艺论证122.1.1无菌空气制备系统工段工艺论证 (12)2.2发酵工段工艺论证132.2.1发酵工艺流程 (13)2.2.2菌种选取 (13)2.2.3培养基 (14)2.2.4生产方法 (14)2.2.5发酵过程的控制 (14)2.3后提取工段工艺论证 152.3.1后提取工艺流程 (15)2.3.2提取方法论证 (15)3 纤维素酶的工艺计算183.1物料衡算183.1.1工艺指标 (18)3.1.2发酵工段的物料衡算 (18)3.1.3提取工段的物料衡算 (19)3.2热量衡算203.2.1蒸气消耗计算 (20)3.3水平衡计算223.3.1种子罐冷却水 (22)3.3.2发酵罐冷却水 (22)3.4无菌空气衡算223.4.1发酵罐通风量的计算 (22)3.4.2种子培养基等其他无菌空气耗量 (22)3.4.3发酵车间高峰无菌空气消耗量: (22)3.4.4发酵车间年用气量: (22)4 纤维素酶发酵工段的设备选型与计算244.1发酵罐设备选型与计算244.1.1发酵罐的选型 (24)4.1.2生产能力、数量和容积的确定 (24)4.1.3发酵罐基本尺寸确定 (24)4.1.4冷却面积的计算 (25)4.1.5蛇管设计 (27)4.1.6壁厚计算 (29)4.1.7搅拌器计算 (29)4.1.8搅拌轴功率计算 (30)4.1.9接管设计 (32)4.1.10传动装置设计 (33)4.1.11发酵罐支座选择 (33)4.2种子罐的设备选型与计算334.2.1种子罐的选型 (33)4.2.2种子罐容积和数量确定 (33)4.2.3主要尺寸确定 (34)4.2.4冷却面积的计算 (34)4.2.5设备材料选择 (35)4.2.6壁厚计算 (35)4.2.7种子罐内部结构的工艺计算 (36)4.2.8支座选型 (38)4.3空气过滤器设备选型与计算384.3.1种子罐分过滤器 (38)4.3.2发酵罐分过滤器 (39)4.4无菌空气制备工艺设备选型与计算404.4.1工艺流程 (40)4.4.2空气状态的确定 (41)4.4.4储罐 (41)4.4.5一级冷却装置 (42)4.4.6旋风分离器 (47)4.4.7二级冷却器 (48)4.4.8丝网除雾器 (50)4.4.9加热器 (50)4.4.10总过滤器 (52)4.5提取工段设备计算及选型534.5.1提取工段工艺流程 (53)4.5.2提取工段设备选型 (53)5 全厂布置的说明 555.1工厂总平面布置555.1.1总平面布置依据 (55)5.1.2.布置原则: (55)5.1.3布置说明 (55)5.1.4车间布置设计 (56)5.1.5设计遵循的原则: (56)5.1.6本设计的车间布置说明 (58)6 经济核算606.1投资估算606.1.1设备投资 (60)6.1.2土建投资 (60)6.1.3全厂总投资 (61)6.2成本计算616.2.1主要成本计算 (61)6.2.2煤耗 (61)6.2.3水、电耗 (61)6.2.4折旧费及其他费用 (62)6.2.5全厂人员安排 (62)6.2.6全厂每年销售成本 (62)6.2.6全年净收入 (63)7 结论64参考文献65附录68英语翻译76英文原文76中文译文841 绪论1.1纤维素酶简介纤维素作为植物光合作用的主要多糖类产物,是地球上最为丰富的可再生性天然资源。
据估计,地球纤维素每年通过光合作用的更新量约为4. 0×1010吨,Liitzen 等在1983 年推算出纤维素的合成速率相当于全人类每人每天70 千克,这一惊人的结果足以显示其对整个人类的价值所在。
然而,目前约80 %未被开发利用,具有极为诱人的前景。
对纤维素的深入研究和利用必将是解决当前世界许多国家普遍面临的粮食,饲料和能源短缺及环境污染等问题的一条有效途径,并已成为21 世纪各国共同关注的一项重大课题。
植物纤维素的高聚合度、毛细管结构、木质素和半纤维素所形成的保护层及其超分子结构中具有高结晶度(crystallinity index) 的结晶区存有大量氢键(包括分子链内、链间及分子链与表面分子之间形成的氢键) 是造成纤维素难以被利用的根本原因。
从高效和环保的角度出发,纤维素被彻底分解而无污染的一条有效途径便是利用纤维素酶(cellulase) 的水解作用。
可是,当前纤维素酶的高昂费用是其难以在工业上被推广应用的主要因素。
过去的一些研表明,对含纤维素物质进行一定的前处理(方法主要有球磨法,汽爆法,γ射线照射法,酸碱法和氧化法等) ,但仅是在较低的程度上提高了纤维素酶的水解效率。
一些高产菌株的获得,在目前条件下也难以大幅度降低纤维素酶的成本。
还需要在这方面开展更广泛而深入地研究。
纤维素酶(cellulase)是利用产纤维素酶的菌株经过固体发酵或液体深层发酵提取精制而成的液体状酶制剂。
纤维素酶由三种功能不同但又互补的酶组成,能水解天然纤维素成为葡萄糖分子。
这三种酶是内切葡聚糖(Endoglucanase.EG.EC3.2.1.4)、外切纤维素酶(cellobiohydrolase. CBH, EC 3. 2. 1. 91)和β-葡萄糖苷酶(β-Glucanases. GE, EC3.2.1.21)。
木酶属被认为是纤维素酶系最全面,分解天然纤维素活力最高的一类丝状真菌。
纤维素酶对能源危机、食品和饲料紧张及环境污染等问题的解决有积极的作用,纤维素酶的开发利用将会产生很大的经济价值。
纤维素(cellulose )是植物细胞壁的主要成分,约占植物干重的三分之一至二分之一。
世界生产和目前储存的纤维素生物量比任何一种碳水化合物都要多得多,是一种十分巨大的生物质资源,可为人类提供用之不尽的能源。
但是目前这一资源的利用大约不到地球上总贮存量的0.5,仅有一小部分被用于纺织、造纸、建筑、饲料、制药、农肥、燃料等方面,大部分未得到利用而被抛弃或焚烧,不仅造成资源的巨大浪费,而且污染环境,危害很大。
如果能利用纤维素酶将大量的纤维素资源酶解成单糖,再经发酵可生产出化工原料、饲料、燃料、食物和药物等,开辟饲料、发酵工业原料和人类食品的新来源,同时还可以处理废物、减少公害、保护环境。
因此研究纤维素资源的综合利用具有深远的意义,日益引起世界各国的关注和重视。
1.2纤维素酶的研究状况早期就有研究表明,纤维素酶是一类胞外酶,从培养物滤液中就可以很容易得到。
它又属于诱导酶(但在细菌方面以固有酶居多) ,在诱导物存在下,才能大量产生。
纤维素酶的分泌又受分解代谢产物阻遏(catabolite repression) 和反馈抑制(feedback inhibition) 两种作用。
许多不溶性的纤维素、可溶性的纤维衍生物、一些低聚糖类对某些单糖和二糖均可作为纤维素酶的诱导物。
但需要一提的是,纤维二糖、葡萄糖和甘油等低分子可溶性糖在低浓度时有促进作用而较高浓度时便开始抑制。
当然,对于不同微生物来说,同一浓度的同一物质也可能有着不同甚至完全相反的作用。
这方面的研究还甚少。
纤维素酶的分泌与细胞膜的通透性有着密切的关系,这是Reese 和Maguire 得出的结论,他们在绿色木霉QMa6 的培养基中添加一定浓度的油酸钠、亚油酸钠、吐温80 和蔗糖单棕榈酯等表面活性剂,结果都大量增加了纤维素酶产量,且缩短了产酶时间。
在纤维素酶的生产过程中,pH 值和发酵时间是关键。
Mandles等发现,在分批培养物发酵过程中,起初pH 最好是自然下降到3. 0~3. 5 ,再加控制以防止pH 降低,消耗纤维素以后自然上升,这样有利于酶的大量分泌。
连续培养的情况不同,保持较低pH 时,菌生长受到抑制,酶产量减少,而保持pH5. 0 时则可提高酶产量。
纤维素酶的发酵过程中,有分泌高峰期,且高峰期的稳定性因培养基不同而有很大差异。
故准确控制发酵时间是纤维素酶生产的另一个重要参数。
综合上述,这里引发了一个新思路,就是对发酵不同阶段分别进行不同控制(如pH 值、温度、通气量、培养基成分) 可能在很大程度上提高酶产量。
要获得较高酶产量,发酵方法是非常重要的方面,目前生产纤维素酶的国家主要有日本、美国、德国和荷兰。
日本过去多用固体曲生产,后来由于这种方法难于监控,某些组分常常吸附于固体残余物上,增加了提取难度,不利于现代化流水作业,于是不少改为液体深层发酵。
美国一直都是使用这种方法,并在此基础上出现了流加培养法、分批发酵法、连续发酵法、二次发酵法以及细胞循环法等等。
混合微生物发酵法是纤维素酶生产中的又一新途径。
因不同真菌的纤维素酶系在各组分均衡性方面有互补的现象。