重点初中数学代数综合题
初中数学精品试题:《数与代数》综合测试卷

《数与代数》综合测试卷一、选择题(每小题3分,共30分)1.1008亿用科学记数法表示为(D ) A .1008×108 B .1.008×109 C .1.008×1010 D .1.008×10112.已知m ,n 互为相反数,则下列结论错误的是(C ) A .2m +2n =0 B .mn =-m 2 C.m n=-1 D.3m =-3n 【解析】 ∵当m ,n 均为0时,mn 无意义,∴C 选项错误.3.下列运算正确的是(D ) A .(-2a 3)2=2a 6 B.9=±3C .m 2·m 3=m 6D .x 3+2x 3=3x 3【解析】 A .(-2a 3)2=4a 6,故本选项错误. B.9=3,故本选项错误. C .m 2·m 3=m 5,故本选项错误. D .x 3+2x 3=3x 3,故本选项正确.4.定义一种新运算ʃb a n ·x n -1dx =a n -b n ,例如,ʃh k 2xdx =k 2-h 2.若ʃ5m m -x -2dx =-2,则m =(B )A .-2B .-25C .2 D.25【解析】 由题意,得m -1-(5m )-1=-2, ∴1m -15m =-2,解得m =-25. 经检验,m =-25是原分式方程的解.5.如果▲、●、■分别表示三种不同的物体,现用天平称两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为(C ),(第5题))A .■、●、▲B .▲、■、●C .■、▲、●D .●、▲、■【解析】 设▲、●、■的质量分别为a ,b ,c .易得⎩⎪⎨⎪⎧c +a >2a ,a +b =3b ,∴⎩⎨⎧c >a ,a =2b ,∴c >a >b .6.将y =1x 的图象向右平移1个单位,再向上平移1个单位所得的图象如图所示,则所得的图象的函数表达式为(C )(第6题)A .y =1x +1+1B .y =1x +1-1C .y =1x -1+1D .y =1x -1-1【解析】 由“左加右减”的原则可知,y =1x的图象向右平移1个单位所得图象的函数表达式为y =1x -1;由“上加下减”的原则可知,函数y =1x -1的图象向上平移1个单位所得图象的函数表达式为y =1x -1+1.(第7题)7.如图,直线y =2x +4与x 轴、y 轴分别相交于点A ,B ,C ,D 分别为线段AB ,OB 的中点,P 为OA 上一动点,则当PC +PD 的值最小时,点P 的坐标为(C )A .(-1,0) B.⎝⎛⎭⎫-32,0 C.⎝⎛⎭⎫-12,0 D .(-2,0) 【解析】 易知点A (-2,0),B (0,4),∴点C (-1,2),D (0,2).作点D 关于x 轴的对称点D ′(0,-2),连结D ′C ,则PC +PD 的最小值即为D ′C 的长.易得直线D ′C 的函数表达式为y =-4x -2.令y =0,得-4x -2=0,∴x =-12,∴点P ⎝⎛⎭⎫-12,0. 8.对于实数x ,我们规定[x ]表示不大于x 的最大整数,例如,[1.2]=1,[3]=3,[-2.5]=-3.若⎣⎡⎦⎤x +410=5,则x 的取值可以是(C )A .40B .45C .51D .56【解析】由题意,得⎩⎪⎨⎪⎧x +410<6,x +410≥5,解得46≤x <56.9.将二次函数y =x 2-5x -6在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象,若直线y =2x +b 与这个新图象有3个公共点,则b 的值为(A )A .-734或-12B .-734或2C .-12或2D .-694或-12(第9题解)【解析】 如解图,过点B 的直线y =2x +b 与新图象有三个公共点,将直线向下平移到恰在点C 处相切,此时与新抛物线也有三个公共点.令y =x 2-5x -6=0, 解得x 1=-1,x 2=6, ∴点B 的坐标为(6,0).当直线过点B 时,将点B 的坐标代入y =2x +b ,得 0=12+b ,解得b =-12.将一次函数与二次函数的表达式联立,得x2-5x-6=2x+b,整理,得x2-7x-6-b=0,Δ=49-4(-6-b)=0,解得b =-734.综上所述,b的值为-12或-734.10.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距5的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图①),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图②),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是(B),(第10题)) A.13B.14 C.15D.16【解析】如解图①,连结AC,CF,则AF=32,∴两次变换相当于向右移动3格,向上移动3格.(第10题解)又∵MN=202,∴202÷32=203(不是整数),∴按A-C-F的方向连续变换10次后,相当于向右移动了10÷2×3=15(格),向上移动了10÷2×3=15(格),此时点M位于如解图②所示的5×5的正方形网格的点G处,再按如解图②所示的方式变换4次即可到达点N处,∴从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是14,故选B.二、填空题(每小题4分,共24分)11.若点A 在数轴上的位置如图所示,则点A 表示的数的倒数是__12__.(第11题)12.把多项式a 3-6a 2b +9ab 2分解因式的结果是__a(a -3b)2__. 【解析】 a 3-6a 2b +9ab 2=a(a 2-6ab +9b 2)=a(a -3b)2. 13.若7-2×7-1×70=7p ,则p 的值为__-3__. 【解析】 ∵7-2×7-1×70=7p , ∴-2-1+0=p ,解得p =-3.14.已知关于x 的一元一次方程x2019+5=2019x +m 的解为x =2020,那么关于y 的一元一次方程5-y2019-5=2019(5-y)-m 的解为__y =2025__.【解析】 整理方程x 2019+5=2019x +m ,得x 2019-2019x =m -5,该方程的解为x =2020,整理方程5-y 2019-5=2019(5-y)-m ,得5-y2019-2019(5-y)=5-m.令n =5-y ,则整理原方程,得n2019-2019n =5-m ,则n =-2020,即5-y =-2020,解得y =2025.(第15题)15.定义[x]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x]的图象如图所示(-2≤x <2),则方程[x]=12x 2的解为x =0或2.【解析】 当1≤x<2时,12x 2=1,解得x 1=2,x 2=-2(不合题意,舍去).当0≤x<1时,12x 2=0,解得x 1=x 2=0.当-1≤x <0时,12x 2=-1,方程没有实数解.当-2≤x <-1时,12x 2=-2,方程没有实数解.∴方程[x]=12x 2的解为x =0或 2.16.如图,点A ,B 在坐标轴的正半轴上移动,且AB =10,反比例函数y =kx (x >0)的图象与AB 有唯一公共点P ,点M 在x 轴上,△OPM 为直角三角形,当点M 从点(52,0)移动到点(10,0)时,动点P 所经过的路程为__512π__.(第16题)(第16题解)【解析】 如解图,设点A(a ,0),B(0,b),则直线AB 的函数表达式为y =-bax +b.联立⎩⎨⎧y =-ba x +b ,y =k x ,消去y ,得bx 2-abx +ak =0.∵反比例函数y =kx 的图象与AB 有唯一公共点P ,∴点P 的横坐标x P =--ab 2b =a2,∴P 是AB 的中点,∴OP =12AB =5.∵点P 在第一象限,点M 在x 轴上,△OPM 为直角三角形,52≤OM ≤10,∴∠OPM =90°.①当OM =52时,cos ∠POM =OP OM =22, ∴∠POM =45°.②当OM′=10时,cos ∠P ′OM ′=OP′OM′=12,∴∠P ′OM ′=60°,∴∠POP ′=15°,∴l PP′︵=15×π×5180=512π,即动点P 所经过的路程为512π.三、解答题(共66分)17.(6分)(1)计算:-42+38-(π-3.14)0+2cos 245°.【解析】 原式=-16+2-1+2×⎝⎛⎭⎫222=-16+1+1=-14.(2)先化简,再求值:2(a +3)(a -3)-(a -6)+6,其中a =5-1. 【解析】 原式=2(a 2-3)-a +6+6 =2a 2-6-a +12 =2a 2-a +6.当a =5-1时,原式=2a 2-a +6=2×(5-1)2-(5-1)+6=2×(6-25)-5+1+6=19-5 5.18.(6分)(1)解方程:4x 2-8x +1=0. 【解析】 x 2-2x +14=0,x 2-2x +1=34,(x -1)2=34,x -1=±32,x =2±32,∴x 1=2+32,x 2=2-32.(2)解不等式组:⎩⎪⎨⎪⎧2x +5≤3(x +2),2x -1+3x2<1.【解析】⎩⎨⎧2x +5≤3(x +2),①2x -1+3x2<1.②解①,得x ≥-1; 解②,得x <3,∴不等式组的解为-1≤x <3.19.(6分)先化简:⎝⎛⎭⎫3x -1-x -1·x -1x 2-4x +4,再从1,2,3中选取一个适当的数代入求值.【解析】 原式=⎣⎢⎡⎦⎥⎤3x -1-x (x -1)x -1-x -1x -1·x -1(x -2)2 =(2-x )(2+x )x -1·x -1(x -2)2=2+x 2-x.当x =1,2时分式无意义,∴将x =3代入原式,得原式=5-1=-5.20.(8分)已知关于x 的方程x 2-2x +2m -1=0有实数根,且m 为正整数,求m 的值及此时方程的根.【解析】 ∵关于x 的方程x 2-2x +2m -1=0有实数根, ∴b 2-4ac =4-4(2m -1)≥0,解得m ≤1. ∵m 为正整数,∴m =1,∴x 2-2x +1=0, 则(x -1)2=0,解得x 1=x 2=1. 21.(8分)阅读理解:如图,点A ,B 在反比例函数y =1x 的图象上,连结AB ,取线段AB 的中点C .分别过点A ,C ,B 作x 轴的垂线,垂足分别为E ,F ,G ,CF 交反比例函数y =1x 的图象于点D .点E ,F ,G 的横坐标分别为n -1,n ,n +1(n >1).(1)小红通过观察反比例函数y =1x 的图象,并运用几何知识得出结论:AE +BG =2CF ,CF >DF ,由此得出一个关于1n -1,1n +1,2n 之间的数量关系的命题:若n >1,则__1n -1+1n +1>2n__.(第21题)(2)证明命题:小东认为:可以通过“若a -b ≥0,则a ≥b ”的思路证明上述命题. 小晴认为:可以通过“若a >0,b >0,且a÷b ≥1,则a ≥b ”的思路证明上述命题. 请你选择一种方法证明(1)中的命题.【解析】 (1)∵AE +BG =2CF ,CF >DF ,AE =1n -1,BG =1n +1,DF =1n ,∴1n -1+1n +1>2n. (2)方法一: ∵n >1,∴n(n -1)(n +1)>0.∵1n -1+1n +1-2n =n 2+n +n 2-n -2n 2+2n (n -1)(n +1)=2n (n -1)(n +1), ∴1n -1+1n +1-2n >0,∴1n -1+1n +1>2n . 方法二:∵1n -1+1n +12n=n 2n 2-1>1,∴1n -1+1n +1>2n. 22.(10分)某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表: 产品种类,每天工人 数(人),每天产 量(件),每件产品可获利润(元)甲,65-x,2(65-x ),15乙,x,x,130-2x (2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一种产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x 值.【解析】 (2)由题意,得15×2(65-x)=x(130-2x)+550, ∴x 2-80x +700=0,解得x 1=10,x 2=70(不合题意,舍去), ∴130-2x =110(元).答:每件乙产品可获得的利润是110元. (3)设安排m 人生产甲产品,则W =x(130-2x)+15×2m +30(65-x -m) =-2(x -25)2+3200.∵2m =65-x -m ,∴m =65-x3.∵x ,m 都是非负整数,∴取x =26,此时m =13,65-x -m =26, 即当x =26时,W 最大=3198.答:每天生产三种产品可获得的最大总利润为3198元,此时x =26.23.(10分)对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617).(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y(1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =F (s )F (t ),当F(s)+F(t)=18时,求k 的最大值.【解析】 (1)F(243)=(423+342+234)÷111=9; F(617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F(s)=(302+10x +230+x +100x +23)÷111=x +5,F(t)=(510+y +100y +51+105+10y)÷111=y +6.∵F(s)+F(t)=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴⎩⎪⎨⎪⎧x =1,y =6或⎩⎪⎨⎪⎧x =2,y =5或⎩⎪⎨⎪⎧x =3,y =4或⎩⎪⎨⎪⎧x =4,y =3或⎩⎪⎨⎪⎧x =5,y =2或⎩⎪⎨⎪⎧x =6,y =1.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴⎩⎪⎨⎪⎧x =1,y =6或⎩⎪⎨⎪⎧x =4,y =3或⎩⎪⎨⎪⎧x =5,y =2.∴⎩⎪⎨⎪⎧F (s )=6,F (t )=12或⎩⎪⎨⎪⎧F (s )=9,F (t )=9或⎩⎪⎨⎪⎧F (s )=10,F (t )=8. ∴k =F (s )F (t )=612=12或k =F (s )F (t )=99=1或k =F (s )F (t )=108=54, ∴k 的最大值为54. 24.(12分)已知抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数表达式.(2)该抛物线与直线y =35x +3相交于C ,D 两点,P 是抛物线上的动点且位于x 轴下方,直线PM ∥y 轴,分别与x 轴和直线CD 相交于点M ,N.①连结PC ,PD ,如图①,在点P 运动的过程中,△PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.②连结PB ,过点C 作CQ ⊥PM ,垂足为Q ,如图②,是否存在点P ,使得△CNQ 与△PBM 相似?若存在,求出满足条件的点P 的坐标;若不存在,请说明理由.(第24题)【解析】 (1)∵抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0),∴⎩⎪⎨⎪⎧a +b +3=0,25a +5b +3=0,解得⎩⎨⎧a =35,b =-185,∴该抛物线对应的函数表达式为y =35x 2-185x +3. (2)①存在.∵P 是抛物线上的动点且位于x 轴下方,∴可设点P ⎝⎛⎭⎫t ,35t 2-185t +3(1<t <5). ∵直线PM ∥y 轴,分别与x 轴和直线CD 相交于点M ,N ,∴点M(t ,0),N ⎝⎛⎭⎫t ,35t +3, ∴PN =35t +3-⎝⎛⎭⎫35t 2-185t +3=-35⎝⎛⎭⎫t -722+14720. 联立⎩⎨⎧y =35x +3,y =35x 2-185x +3,解得⎩⎪⎨⎪⎧x 1=0,y 1=3,⎩⎪⎨⎪⎧x 2=7,y 2=365. ∴点C(0,3),D ⎝⎛⎭⎫7,365. 如解图,分别过点C ,D 作直线PN 的垂线,垂足分别为E ,F ,,(第24题解))则CE =t ,DF =7-t ,∴S △PCD =S △PCN +S △PDN =12PN·CE +12PN·DF =72PN =72⎣⎡⎦⎤-35⎝⎛⎭⎫t -722+14720=-2110⎝⎛⎭⎫t -722+102940, ∴当t =72时,△PCD 的面积有最大值,最大值为102940. ②存在.∵∠CQN =∠PMB =90°,∴当△CNQ 与△PBM 相似时,有NQ CQ =PM BM 或NQ CQ =BM PM这两种情况. ∵CQ ⊥PM ,∴点Q(t ,3),N ⎝⎛⎭⎫t ,35t +3, ∴CQ =t ,NQ =35t +3-3=35t ,∴NQ CQ =35. ∵点P ⎝⎛⎭⎫t ,35t 2-185t +3,M(t ,0),B(5,0), ∴BM =5-t ,PM =0-⎝⎛⎭⎫35t 2-185t +3=-35t 2+185t -3. 当NQ CQ =PM BM 时,有PM =35BM ,即-35t 2+185t -3=35(5-t), 解得t 1=2,t 2=5(不合题意,舍去),此时点P ⎝⎛⎭⎫2,-95. 当NQ CQ =BM PM 时,有BM =35PM ,即5-t =35⎝⎛⎭⎫-35t 2+185t -3, 解得t 1=349,t 2=5(不合题意,舍去),此时点P(349,-5527). 综上所述,存在点P(2,-95)或(349,-5527),使得△CNQ 与△PBM 相似.。
初中数学代数式整式加减综合练习题(附答案)

初中数学代数式整式加减综合练习题一、单选题1.多项式221x x -+的各项分别是( ) A. 2,2,1x x +B.2,2,1x x -+C. 2,2,1x x --D.2,2,1x x ---2.关于x 的多项式232x x -+的二次项系数、一次项系数和常数项分别为( ) A.3,2,1B.3-,2,0C.3-,2,1D.3,2,03.在多项式323238143x y x y xy --++中,最高次项为( ) A.323x yB.323x y -C.328x yD.328x y -4.下列各式是四次单项式的是( ) A.2213b -B.28πp q -C.mnktD.22π6ab c5.下列单项式中,书写格式规范的是( ) A.1πkt -B.9214x C.368a c ⨯⨯D.2x y ÷6.在3231,1,2,,0.72,,3π4b x x xy a -+--,中,单项式有( )A.2个B.3个C.4个D.5个7.下列说法正确的是( ) A.b 的指数是0 B.m 没有系数 C.3-是一次单项式D.8是单项式8.下列式子中,整式为( ) A.1x +9.下列计算正确的是( ) A. 325a b ab += B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=10.已知322x y 和32m x y -是同类项,则式子424m -的值是( ) A.20B. 20-C.28D. 28-11.已知单项式312xy 与43a xy +-是同类项,那么a 的值是( )A. 1-B.0C.1D.212.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n )和芍药的数量规律,那么当11n =时,芍药的数量为( )A.84株B.88株C.92株D.121株二、解答题13.先合并同类项,再求值(1)23334326372x x x x x x ---++-+,其中1x =-. (2)2222221152346a b ab a b ab a b +---,其中11a b =-=,.14.有这样一道题:“当0.350.28a b ==-,时,求多项式3323323763363103a a b a b a a b a b a -+++--+的值”.有一名同学指出题中给出的条件是多余的,请你判断这名同学的说法是否正确. 15.在数学活动中,小明同学为了求231222...22n n -+++++的值,写出下列解题过程. 设:231222...22n n S -=+++++,①两边同乘2,得2311222...222n n n S -+=+++++,② 由②-①,得122n S +=-.(1)应用结论:23100222...2++++= ; (2)拓展探究:求:231444...44n n -+++++的值; (3)小明设计一个几何图形来表示(如图所示):23411111 (22222)n +++++的值,正方形的边长为1.请你利用图1,在图2再设计一个能求:23411111 (22222)n +++++的值的几何图形.三、计算题16.计算.(1)()()50.750.34-÷÷-.(2)()349731221⎛⎫⎛⎫⨯⨯- ⎪ ⎪⎝⎭⎝-÷⎭- .(3)()11150.6 1.75232⎛⎫-⨯-⨯÷- ⎪⎝⎭. (4)3777148128⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+--+-÷- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 四、填空题17.若213n a b +与144m a b -+是同类项,则m n =+_________. 18.多项式________与22m m +-的和是22m m -. 19.若关于,x y 的多项式23237654x y mxy y xy -++化简后不含二次项,则m = . 20.定义新运算a b ad bc c d =-,则222223112xy x x y xy -+=--+- .参考答案1.答案:B 解析:2.答案:B 解析:3.答案:D 解析:4.答案:C 解析:5.答案:B 解析:6.答案:C 解析:7.答案:D 解析:8.答案:A解析:根据整式的定义,知B ,C ,D 都不是整式,因为1x +是多项式,所以A 是整式 9.答案:C 解析: 10.答案:B 解析: 11.答案:A 解析: 12.答案:B解析:由图可得,芍药的数最为()421 48n n +-⨯=,所以当11n =时,芍药的数量为81188⨯=. 13.答案:(1)2413x x +-;10-.(2)112ab ;112-解析: 14.答案:3323323763363103a a b a b a a b a b a -+++--+()33333227310663333a a a a b a b a b a b =+--++-+=所以无论a b ,取何值,都不影响原整式的值,即整式的值为常数3,所以这名同学的说法是正确的. 解析:15.答案:解:(1)设231002222S =+++⋯+,①则23100101222...22S =++++,②②-①得,10122S =-.(2)设231444...44n n S -=+++++,① 则2311444...444n n n S -+=+++++,② ②-①,得1344n S -=-,所以1443n S +-=(3)如图所示.解析:16.答案:(1)2.(2)3-.(3)1135,(4)123-. 解析: 17.答案:2 解析:18.答案:32m -+ 解析: 19.答案:67解析:首先合并同类项,不含二次项,说明xy 项的系数是0,由此进一步计算得出结果即可.23237654x y mxy y xy -++()23237654x y m xy y =+-++,因为化简后不含二次项,所以 760m -+=,解得67m =.20.答案:22721x y --解析:根据题意,得原式222(231)2(2)xy x x y xy =--+--+-222231422xy x x y xy =-+-+-+ 22721x y =--.。
【复习专题】中考数学复习:代几综合题—以代数为主的综合

代几综合题(以代数为主的综合)知识梳理教学重、难点作业完成情况典题探究例1 已知抛物线c bx ax y ++=2与y 轴交于点A (0,3),与x 轴分别交于B (1,0)、C (5,0)两点.(1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点, 求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长.例2 在平面直角坐标系xOy 中,抛物线2y mx n =++经过(02)P A ,两点. (1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线,直线与抛物线的对称轴交于C 点,求直线的解析式;(3)在(2)的条件下,求到直线OB OC BC ,,距离相等的点的坐标.例3在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B的左侧..),与y 轴交于点C ,点B 的坐标为(3,0),将直线y kx =沿y 轴向上平移 3个单位长度后恰好经过B 、C 两点.(1) 求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P的坐标;(3)连结CD ,求∠OCA 与∠OCD 两角和的度数.例4在平面直角坐标系xOy 中,抛物线23454122+-++--=m m x m x m y 与x 轴的交点分别为原点O 和点A ,点B(2,n)在这条抛物线上.(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的垂线,与直线OB 交于点E 。
延长PE 到点D 。
使得ED=PE. 以PD 为斜边在PD 右侧作等腰直角三角形PCD(当P 点运动时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动)。
初中数学代数式求值综合测试卷(含答案)

初中数学代数式求值综合测试卷
一、单选题(共7道,每道10分)
1.化简的结果为( )
A. B.
C.9m-2
D.-9m-2
答案:D
试题难度:三颗星知识点:整式的加减
2.若关于x的多项式的值与x无关,则m2-2m2-2(2m-4)+4m的值为( )
A.-28
B.28
C.-32
D.44
答案:A
试题难度:三颗星知识点:整式的加减;化简求值
3.已知a-b=1,则代数式2a-2b-3的值是()
A.-1
B.1
C.-5
D.5
答案:A
试题难度:三颗星知识点:整体代入
4.已知代数式的值是8,那么代数式的值为()
A.1
B.2
C.3
D.4
答案:B
试题难度:三颗星知识点:整体代入
5.当x=2时,代数式ax3+bx+1的值为6,那么当x=-2时这个式子的值为()
A.-4
B.1
C.5
D.6
答案:A
试题难度:三颗星知识点:整体代入
6.一个三位数,中间的数字为a,个位上的数字比十位上的数字大2,百位上的数字比个位上的数字小3,用代数式表示这个三位数为()
A.3a+1
B.111a-98
C.111a+199
D.111a-298
答案:B
试题难度:三颗星知识点:数位表示
7.若a表示一个两位数,b也表示一个两位数,要把b放在a的右边,那么所组成的四位数应表示为()
A.100a+b
B.100a+10b
C.100b+a
D.1000b+10a
答案:A
试题难度:三颗星知识点:数位表示。
初中数学代数经典练习题(含答案)

初中数学代数经典练习题(含答案)初中数学代数经典练题(含答案)一、线性方程组1. 某数的三分之一减去5的结果等于8,求这个数的值是多少?答案:272. 解方程组:$$\begin{align*}2x + 3y &= 7 \\3x - 4y &= 1\end{align*}$$答案:$x=5, y=-3$3. 解方程组:$$\begin{align*}2x - y &= 1 \\3x + 2y &= 14\end{align*}$$答案:$x=5, y=8$二、一元一次方程1. 解方程:$2x+1=9$答案:$x=4$2. 解方程:$5x-3=22$答案:$x=5$3. 解方程:$3(2x-1) = 15$ 答案:$x=3$三、一元二次方程1. 解方程:$x^2-3x+2=0$答案:$x=1, x=2$2. 解方程:$x^2-5x+6=0$答案:$x=2, x=3$3. 解方程:$-x^2+7x-10=0$答案:$x=2, x=5$四、等比数列1. 求等比数列的通项公式,已知首项$a=2$,公比$r=3$。
答案:$a_n = 2 \times 3^{n-1}$2. 已知等比数列的首项$a=4$,第二项$b=12$,求公比$r$。
答案:$r=3$3. 求等比数列的前$n$项和,已知首项$a=1$,公比$r=2$。
答案:$S_n = a\frac{1-r^n}{1-r}$五、函数定义1. 定义函数$f(x)=2x-3$,求$f(5)$的值。
答案:$f(5)=7$2. 定义函数$g(x)=3x^2+4$,求$g(-2)$的值。
答案:$g(-2)=16$3. 定义函数$h(x)=\frac{1}{x}$,求$h(2)$的值。
答案:$h(2)=\frac{1}{2}$以上是初中数学代数的经典练习题及其答案。
希望对你的学习有所帮助!。
初中数学竞赛---代数式竞赛50道综合题练习(含答案解析)

16.(2021·全国·九年级竞赛)分解因式: (c a)2 4(b c)(a b) . 【答案】 (a c 2b)2 【详解】解法一 原式 (c2 2ca a2 ) 4(ab b2 ac bc) (c2 2ca a2 ) (4ab 4bc) 4b2 (a c)2 4b(a c) (2b)2 (a c 2b)2 . 解法二 原式 [(c b) (a b)]2 4(c b)(a b) (c b)2 2(c b)(a b) (a b)2 4(c b)(a b) (c b)2 2(c b)(a b) (a b)2 [(c b) (a b)]2 (a c 2b)2 .
17.(2021·全国·九年级竞赛)分解因式: x2 (x a)2 a2x2 a2 (x a)2 . 【答案】 (x2 ax a2 )2 【详解】解法一 原式 [x2 (x a)2 a2 (x a)2 ] a2x2 (x2 a2 )(x a)2 a2 x2 (x2 a2 )(x2 2ax a2 ) a2 x2 (x2 a2 )2 2ax(x2 a2 ) (ax)2 (x2 a2 ax)2 (x2 ax a2 )2 . 解法二 原式 x2[(x a)2 a2 ] a2 (x a)2 x2 (x2 2ax 2a2 ) a2 (x a)2 (x2 )2 2x2 a(x a) [a(x a)]2 [x2 a(x a)]2 (x2 ax a2 )2 .
4.(2021·全国·九年级竞赛)
1
1
的值为( ).
4 59 30 2 3 66 40 2
A.无理数 【答案】D
B.真分数
C.奇数
D.偶数
【详解】原式
1
1
4 (5 2)2 25 2 3 32 3 (5 2)2 25 2 4 42
初中数学专项练习题:代数式(一)(Word版,含答案)

初中数学专项练习题:代数式(一)姓名:__________ 班级:__________学号:__________ 一、单选题1.定义新运算:a⊙b={a−1(a≤b)−ab(a>b且b≠0),则函数y=3⊙x的图象可能是()A. B. C. D.2.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是()A. 183B. 157C. 133D. 913.已知a、b、c满足3a+2b−4c=6,2a+b−3c=1,若a、b、c都为非负数,设y=3a+b−2c,求y的取值范围()A. y≥−3B. y≥3C. 3≤y≤24D. y≥04.如图,用棋子摆出一组三角形,按此规律推断:当三角形每边有n枚棋子时,每个三角形棋子总数为S,该三角形的棋子总数S与n的关系是()A. S=3n−2B. S=3n−3C. S=2n−2D. S=2n−35.如图,将五个边长都为1cm的正方形按如图所示摆放,其中点A、B、C、D分别是正方形对角线的交点、如果有n个这样大小的正方形这样摆放,则阴影面积的总和是()A.n−14B. n 4C. n 2D. 12n6.用一排6盏灯的亮与不亮来表示数,已知如图分别表示了数1~5,则●O O●●O 表示的数是( )A. 23B. 24C. 25D. 267.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点P k (x k , y k)处,其中x 1=1,y 1=2,当k≥2时,x k =x k ﹣1+1﹣5([k−15]﹣[k−25]),y k =y k ﹣1+[k−15]﹣[k−25],[a]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2017棵树种植点的坐标为( ) A. (5,2017) B. (6,2016) C. (1,404) D. (2,404)8.定义一种变换f :对于一个由有限个数组成的序列品,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S ,例如序列S :(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若某一序列S 0 , 经变换得到新序列S 1 , 由序列S 1继续进行变换得到S 2 , 最终得到序列S n-1;(n≥2)与序列S n 相同,则下面的序列可作为S n 的是( )A. (1,2,1,2,2)B. (2,2,2,3,3)C. (1,1,2,2,3)D. (3,2,3,3,2) 9.若x =2时,代数式ax 4+bx 2+5的值是3,则当x =﹣2时,代数式ax 4+bx 2+7的值为( ) A. ﹣3 B. 3 C. 5 D. 710.对非负实数n“四舍五入”到个位的值记为 〈x 〉 ,即:当n 为非负整数时,如果 n −12≤x <n +12 ,则 〈x 〉=n .反之,当n 为非负整数时,如果 〈x 〉=n 时,则 n −12≤x <n +12 ,如 〈0〉=〈0.48〉=0 , 〈0.64〉=〈1.493〉=1 , 〈2〉=2 , 〈3.5〉=〈4.12〉=4 ,…若关于x 的不等式组 {2x +1≥−3x −〈a〉<0 的整数解恰有3个,则a 的范围()A. 1.5≤a <2.5B. 0.5<a≤1.5C. 1.5<a≤2.5D. 0.5≤a <1.5二、填空题11.如图,分别过点P i (i ,0)(i=1、2、…、n )作x 轴的垂线,交 y =12x 2 的图象于点A i , 交直线 y =−12x 于点B i . 则 1A1B 1+1A2B 2+...+1An B n=________.12.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2 ,作正方形A2B2C2C1··按这样的规律进行下去,第2018个正方形的面积为________.13.利用二维码可以进行身份识别.某校建立了一个身份识别系统,图1是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20.如图1中的第一行数字从左到右依次为0,1,0,1,序号即为0×23+1×22+0×21+1×20=5,表示该生为5班学生.若想在图2中表示4班学生的识别图案,请问应该把标号为①、②、③、④的正方形中的________(只填序号)涂成黑色.14.一列方程如下排列:x 4+x−12=1的解是x=2,x 6+x−22=1的解是x=3,x 8+x−32=1的解是x=4.……根据观察所得到的规律,请你写出其中解是x=2019的方程是________.15.有一列按规律排列的代数式:b,2b﹣a,3b﹣2a,4b﹣3a,5b﹣4a,…,相邻两个代数式的差都是同一个整式,若第4个代数式的值为8,则前7个代数式的和的值为________.三、计算题16.已知|m|=4,|n|=6,且|m+n|=m+n,求m−n的值.17.观察下列有规律的数:12,16,112,120,130,142…根据规律可知(1)第7个数是________,第n个数是________(n为正整数);(2)1132是第________个数;(3)计算12+16+112+120+130+142+...+12016×2017.四、解答题18.【阅读理解】我们知道1+2+3+…+n= n(n+1)2,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2 ,这样,该三角形数阵中共有n(n+1)2个圆圈,所有圆圈中数的和为1+2+3+…+n2.(1)【规律探究】将三角形数阵经两次旋转可得如图2 所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为________,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)=________,因此12+22+32+…+n2=________。
初中数学代数习题(含解答)

初中代数练习题(含解答)题目1.证明a ≤|a|2.证明a 2=|a|23.证明|−a|=|a|4.证明a 2=|a|5.若|a −b −c −d −4|+|b −c −d −3|+|c −d −2|+|d 2−1|=0,求a +b +c +d.6.证明||a|−|b||≤|a −b|7.证明(6,7学名:三角不等式)|a −b|≤|a|+|b|8.证明 |(x −1)2−|2x −x 2||≤19.求|x|+|x −1|+|x −2|+...+|x −2020| 的最小值即此时x 的值或范围10.求||x −1|−|x −2|+|x −3|−|x −4|+...−|x −2020||的最小值即此时x 取值范围.11.证明任何0.x 1x 2x 3...x k 即一个任意长度k 的以单循环结束的小数都可以写为一个分数p q12.证明任何即一个任意长度结束的小0.x 1x 2..(x m x m+1x m+2...x n )n 的以循环节x m x m+1x m+2...x n 数都可以写为一个分数. 综合11,12, 证明任何有理数都可以写为pq pq ,的形式(p,q 为整数且q ≠0)13.根据12的结论,可以证明为无理数:2.若分数如果2为有理数,那么2可以写作p q, p,q 为正整数且q ≠0,即2=p q2能写为那么一定能写成最简分数, 即互质。
两边同时平方得p,q 所以2=p 2q2→p 2=2q 2→p 2为偶数. 若p 为奇数,则p 2也是奇数。
所以p 只能是偶数.即同偶所以不是最简,矛p =2k →p 2=4k 2=2q 2→q 2=2k 2. 同理得q 为偶数.p,q pq 盾。
所以.2为无理数用类似的方法,试证明.3为无理数14.已知平方差公式可以通过如下方式推导:a 2−b 2=a 2−ab +ab −b 2=a(a −b)+b(a −b)=(a +b)(a −b)试用类似方法推导立方差公式:a 3−b 3=(a −b)(a 2+ab +b 2)15.证明立方差公式的右边的唯一解为.(a −b)(a 2+ab +b 2)=0a =b 16.11·2+12·3+...+12019·2020=?17.11+2+11+2+3+...+11+2+...+2020=?18.11·2·3+12·3·4+...+12018·2019·2020=?19.11·2·3+13·4·5+...+12017·2018·2019+12−13+14−...−12017+12018=?20.证明, 并说明等号成立条件. (学名:调和平均几何平均算21a+1b≤ab ≤a+b 2≤a 2+b 22≤≤术平均平方平均)≤21.若(3a −2b)x 2+(a +b−c)x +3=c +2, 求a +b +c.22.若,求证x >−1−3x−2x+1>−323.若, 求证(不要求二次函数)x <−12x 2−3x−2x+1<−724.是否存在一个函数:定义域为所有偶数,值域为所有奇数?并解释25.是否存在一个函数,定义域为所有整数,值域为所有正整数?并解释26.是否存在一个函数,定义域为所有正整数,值域为所有整数?并解释27.证明所有一次函数只有一个零点(和有且只有一个交点). (第一步:找出一个零点. 第x 轴二步: 如果为2个不同零点,证明)x 1, x 2x 1=x 228.求一次函数和两坐标轴构成的三角形面积(注意:为任意实数且)y =ax +b a,b a ≠029.求28中三角形的斜边长和斜边上的高长30.求和两坐标轴构成的图形面积y =2x −1, y =3x +1, y =−x +531.证明任何一次函数都可以写为的形式. (第一步: 把转化为ax +by +c =0y =kx +m 的形式. 第二步:把转化为的形式. 所以两ax +by +c =0ax +by +c =0y =kx +m 种表示法等价)32.由31,若和表示两个一次函数. 若两一次函数图a 1x +b 1y +c 1=0a 2x +b 2y +c 2=0像平行或重合,求关系. 若两一次函数图像垂直,求关系.a 1,b 1,a 2,b 2a 1,b 1,a 2,b 233.若方程组,无解,求需满足的条a 1x +b 1y +c 1=0a 2x +b 2y +c 2=0a 1,b 1,c 1,a 2,b 2,c 2件. 若,有无穷多个解,求需满足a 1x +b 1y +c 1=0a 2x +b 2y +c 2=0a 1,b 1,c 1,a 2,b 2,c 2的条件.34.解三元一次方程组3x +2y +z =1, 2x −y −z =2, 5x +7y −3z =−335.定义一个函数为增函数如果在定义域上函数值一直增加, 即对于任意定义域里的,y x 1,x 2如果,那么(或).例:为增函数,因为任取,x 1<x 2y 1<y 2y 2−y 1>0y =2x x 1<x 2. 同理,定义一个函数为减函数如果在定义域上函y 2−y 1=2x 2−2x 1=2(x 2−x 1)>0y 数值一直减小, 即对于任意定义域里的,如果,那么(或).x 1,x 2x 1<x 2y 1>y 2y 1−y 2>0例:为减函数,因为任取,y =−2x x 1<x 2y 1−y 2=(−2x 1)−.(−2x 2)=2(x 2−x 1)>0试证明:当,一次函数为增函数. 当,一次函数为减函k >0时y =kx k <0时y =kx 数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理初中数学代数综合题(一)
一.选择题(共26小题)
1.如果x2﹣(m+1)x+1是完全平方式,则m的值为()
A.﹣1 B.1 C.1或﹣1 D.1或﹣3
2.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()
A.a+b<0 B.a﹣b<0 C.a?b>0 D.>0
3.在实数,,0,,,﹣1.414,有理数有()
A.1个 B.2个 C.3个 D.4个
4.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米?20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()
A.2×105米B.0.2×10﹣4米 C.2×10﹣5米D.2×10﹣4米
5.计算3.8×107﹣3.7×107,结果用科学记数法表示为()
A.0.1×107B.0.1×106C.1×107D.1×106
6.的平方根是()
A.±3 B.3 C.±9 D.9
7.下列计算结果正确的是()
A.2a3+a3=3a6B.(﹣a)2?a3=﹣a6C.(﹣)﹣2=4 D.(﹣2)0=﹣1
8.已知a+b=3,ab=2,则a2+b2的值为()
A.3 B.4 C.5 D.6
9.下列计算正确的是()
A.|﹣2|=﹣2 B.a2?a3=a6 C.(﹣3)﹣2=D.=3
10.若分式,则分式的值等于()
A.﹣ B.C.﹣ D.
11.已知分式的值为0,那么x的值是()
A.﹣1 B.﹣2 C.1 D.1或﹣2
12.已知x2﹣3x﹣4=0,则代数式的值是()
A.3 B.2 C.D.
13.化简﹣等于()
A.B.C.﹣ D.﹣
14.如果ab>0,a+b<0,那么下面各式:①=,②?=1,③÷=﹣b,其中正确的是()
A.①②B.②③C.①③D.①②③
15.如果,那么x取值范围是()
A.x≤2 B.x<2 C.x≥2 D.x>2
16.要使二次根式有意义,x必须满足()
A.x≤2 B.x≥2 C.x>2 D.x<2
17.若代数式+有意义,则实数x的取值范围是()
A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1
18.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()
A.不赚不赔B.赚9元C.赔18元 D.赚18元
19.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()
A.54﹣x=20%×108 B.54﹣x=20%(108+x)
C.54+x=20%×162 D.108﹣x=20%(54+x)
20.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
21.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(﹣1,5)、B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为()
A.﹣1≤x≤9 B.﹣1≤x<9 C.﹣1<x≤9 D.x≤﹣1或x≥9
22.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()
A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c
23.如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,顶点B的坐标为(4,6),直线y=kx+3k将平行四边形OABC分割成面积相等的两部分,则k的值是()
A.B.C.﹣ D.﹣
24.下列各式计算正确的是()
A.a0=1 B.C.(﹣3)﹣2=﹣D.
25.在实数π,2,0,3.14,﹣,tan45°,3.1415926,
A.2个 B.3个 C.4个 D.5个
26.已知x=1是关于x的方程(1﹣k)x2+k2x﹣1=0的根,则常数k的值为()
A.0 B.1 C.0或1 D.0或﹣1
二.填空题(共3小题)
27.分解因式:4+12(x﹣y)+9(x﹣y)2=.
28.若关于x、y的方程组的解满足x+y=,则m=.
29.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:
①abc<0;②a﹣b+c<0;③3a+c<0;④当﹣1<x<3时,y>0.
其中正确的是(把正确的序号都填上).
三.解答题(共1小题)
30.如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,﹣).
(1)求抛物线的函数解析式及点A的坐标;
(2)在抛物线上求点P,使S
△POA =2S
△AOB
;
(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.。