(完整word版)传热学基本概念知识点,推荐文档.docx

合集下载

传热学Word

传热学Word

传热学复习要点一、名词解释热传导:物体各部分之间不发生相对位移时或不同物体直接接触时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称导热。

温度场:指在各个时刻物体内各点温度分布的总称。

温度梯度:当相邻等温面间的距离趋于零时,其法线方向上的温度变化率。

热流密度:单位时间内通过单位面积的热流量。

对流换热:流体流过一个固体物体表面时的热量传递过程。

辐射传热:辐射与吸收过程的综合作用造成了以辐射方式进行的物体间的热量传递。

辐射力:单位时间内,物体的单位表面积向半球空间的一切方向发射的所有波长的能量总和。

黑体:吸收率为1的物体(1=α)。

白体:反射率为1的物体(1=ρ)。

黑度:实际物体的辐射力与同一温度下黑体辐射力之比。

灰体:光谱吸收比与波长无关的物体。

二、知识点1.热量传递过程的推动力:温差1)物体内只要存在温差,就有热量从物体的高温部分传向低温部分;2)物体之间存在温差时,热量就会自发的从高温物体传向低温物体。

2.热量传递的三种基本方式之间的联系和区别① 导热、对流两种热量传递方式,只在有物质存在的条件下,才能实现,而热辐射不需中 间介质,可以在真空中传递,而且在真空中辐射能的传递最有效。

② 在辐射换热过程中,不仅有能量的转换,而且伴随有能量形式的转化。

在辐射时,辐射体内热能 → 辐射能;在吸收时,辐射能 → 受射体内热能。

③ 物体的辐射能力与其温度性质有关。

3.斯蒂芬—波尔兹曼定律404100⎪⎭⎫ ⎝⎛==T c T E b σ 式中,()428/1067.5K m W ⋅⨯=-σ,Stefan-Boltzmann 常数()420/67.5K m W c ⋅=,黑体辐射系数描述了黑体辐射力随表面温度的变化规律。

4.基尔霍夫定律在热平衡条件下,任何物体的辐射和它对来自黑体辐射的吸收比的比值,恒等于同温度下该物体的黑度。

εα==bE E 热平衡时,任意物体对黑体投入辐射的吸收比等于该物体的发射率。

传热学基本知识

传热学基本知识

导热分为两类
稳定导热:温度不随时间而变化的导热 不稳定导热:温度随时间而变化的导热
知识回顾
1
传热学基本知识
热传导
2、傅里叶导热定律
热传导的速率与垂直于热流方向的表面积成正比,与壁面两侧的温差成正比,与壁厚成反比。
QAt1t2
q
Q A
t
Q
t
t R
A
Q 导热量,传热速率 , W;
q 热流密度,W m2
2)流速的影响 流体流速增高时,对流传热系数就大。
3)流体的物理性质对给热系数的影响 导热系数、比热容c、密度越大,动力粘度越小,对流传 热系数越大
1
传热学基本知识
热对流
2)流体有相变发生时
蒸汽的冷凝 液体的沸腾
膜状冷凝 滴状冷凝(传热系数大)
自然对流
泡状沸腾或泡核沸腾(传热系数大)
膜状沸腾
1
蒸汽冷凝时的对流传热
传热学基本知识
热传导
4、导热计算
1)单层平壁的稳定热传导
计算公式:
Q A t
Q t R
热阻:
R A
当壁面两侧的温度不等时,且热量只沿垂直 于壁面的方向发生变化

q t
1
传热学基本知识
热传导
4、导热计算
2)多层平壁的稳定热传导
多层平壁是指由几层不同厚度、不同导热系数的材料组成 且其间接触良好的平壁
Q=qm热r热 Q=qm冷r冷 此法仅适于有相变过程
三、平均温度差
用传热速率方程式计算换热器的传 热速率时,因传热面各部位的传热温 度差不同,必须算出平均传热温度差 ⊿t均代替⊿t,
QKAt均
1
1、恒温传热时的平均温度差

(完整版)传热学知识点总结

(完整版)传热学知识点总结

Φ-=BA c t t R 1211k R h h δλ=++传热学与工程热力学的关系:a 工程热力学研究平衡态下热能的性质、热能与机械能及其他形式能量之间相互转换的规律,传热学研究过程和非平衡态热量传递规律。

b 热力不考虑热量传递过程的时间,而传热学时间是重要参数。

c 传热学以热力学第一定律和第二定律为基础。

传热学研究内容传热学是研究温差引起的热量传递规律的学科,研究热量传递的机理、规律、计算和测试方法。

热传导a 必须有温差b 直接接触c 依靠分子、原子及自由电子等微观粒子热运动而传递热量,不发生宏观的相对位移d 没有能量形式的转化热对流a 必须有流体的宏观运动,必须有温差;b 对流换热既有对流,也有导热;c 流体与壁面必须直接接触;d 没有热量形式之间的转化。

热辐射:a 不需要物体直接接触,且在真空中辐射能的传递最有效。

b 在辐射换热过程中,不仅有能量的转换,而且伴随有能量形式的转化。

c .只要温度大于零就有.........能量..辐射。

...d .物体的...辐射能力与其温度性质..........有关。

...传热热阻与欧姆定律在一个串联的热量传递的过程中,如果通过各个环节的热流量相同,则各串联环节的的总热阻等于各串联环节热阻之和(I 总=I1+I2,则R 总=R1+R2)第二章温度场:描述了各个时刻....物体内所有各点....的温度分布。

稳态温度场::稳态工作条件下的温度场,此时物体中个点的温度不随时间而变非稳态温度场:工作条件变动的温度场,温度分布随时间而变。

等温面:温度场中同一瞬间相同各点连成的面等温线:在任何一个二维的截面上等温面表现为肋效率:肋片的实际散热量ф与假设整个肋表面...处于肋基温度....时的理想散热量ф0之比接触热阻Rc :壁与壁之间真正完全接触,增加了附加的传递阻力三类边界条件第一类:规定了边界上的温度值第二类:规定了边界上的热流密度值第三类:规定了边界上物体与周围流体间的表面..传热系数....h 及周围..流体的温度.....。

传热学知识点总结

传热学知识点总结

传热学知识点总结本文将围绕传热学的基本概念、传热方式、传热方程、传热实验和应用等方面进行详细的介绍和总结,以便读者更好地了解传热学的相关知识。

一、传热学的基本概念1. 热量传递热量传递是指物体内部或物体之间由于温度差异而产生的热量的传递过程。

热量的传递方式主要有传导、对流和辐射三种。

2. 传热方程传热方程描述了物体内部或物体之间热量传递的数学关系,是传热学的基础理论。

传热方程一般包括传热率、温度差和传热面积等参数,可以用来计算热量传递的速率和大小。

3. 传热系数传热系数是描述物体材料对热量传递率影响的重要参数,通常用符号h表示。

在物质传热过程中,传热系数的大小直接影响热量的传递速率。

4. 传热表面积传热表面积是指在热量传递过程中热量流经的表面积,是计算热传递速率的重要参数。

传热表面积的大小与物体的形状和大小有关,也与传热方式和传热系数有关。

5. 热传导热传导是一种物质内部热量传递的方式,指的是热量通过物质内部原子、分子之间相互作用的传递过程。

热传导是传热学的基本概念之一。

6. 热对流热对流是一种物体表面热量传递的方式,指的是热量通过流体传递到物体表面,然后再由物体表面传递到其它介质的传热过程。

7. 热辐射热辐射是一种通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。

热辐射是传热学的另一个基本概念之一。

二、传热方式1. 传导传热传导传热是指热量通过物质内部的原子、分子的直接作用而传递的方式。

在传导传热过程中,热量的传递是从高温区向低温区进行的,其传热速率与温度差和物质的传热系数有关。

2. 对流传热对流传热是指流体传热传递的方式,包括自然对流和强制对流两种。

在对流传热过程中,流体的流动是热量传递的主要形式,其传热速率与流体的流速、温度差和传热面积有关。

3. 辐射传热辐射传热是通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。

在辐射传热过程中,热量的传递不依赖于介质,而是通过电磁波的辐射进行的。

传热学基本概念知识点

传热学基本概念知识点

传热学基本概念知识点1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率2集总参数法:忽略物体内部导热热阻的简化分析方法3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值5效能:表示换热器的实际换热效果与最大可能的换热效果之比6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。

对流仅能发生在流体中,而且必然伴随有导热现象。

对流两大类:自然对流与强制对流。

影响换热系数因素:流体的物性,换热表面的形状与布置,流速7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的?蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。

不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。

蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。

因此,不凝结气体层的存在增加了传递过程的阻力。

8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。

首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。

主要分为两个阶段:非正规状况阶段和正规状况阶段9灰体有什么主要特征?灰体的吸收率与哪些因素有关?灰体的主要特征是光谱吸收比与波长无关。

灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。

10气体与一般固体比较其辐射特性有什么主要差别?气体辐射的主要特点是:(1)气体辐射对波长有选择性(2)气体辐射和吸收是在整个容积中进行的11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么差别?平均传热温压就是在利用传热传热方程式来计算整个传热面上的热流量时,需要用到的整个传热面积上的平均温差。

传热学名词解释7页word

传热学名词解释7页word

传热学名词解释传热学名词解释一、绪论1.热流量:单位时间内所传递的热量2.热流密度:单位传热面上的热流量3.导热:物体各部分之间不发生相对位移时,依靠物质微粒(分子、原子或自由电子)的热运动而产生的热能传递,称为导热。

4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。

5.辐射传热:物体间通过热辐射而进行的热量传递,称辐射传热。

6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。

7.对流传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。

对流传热系数表示对流传热能力的大小。

8.辐射传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。

辐射传热系数表示辐射传热能力的大小。

9.复合传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。

复合传热系数表示复合传热能力的大小。

10.总传热系数:总传热过程中热量传递能力的大小。

数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。

二、热传导1.温度场:某一瞬间物体内各点温度分布的总称。

一般来说,它是空间坐标和时间坐标的函数。

2.等温面(线):由物体内温度相同的点所连成的面(或线)。

3.温度梯度:在等温面法线方向上最大温度变化率。

4.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。

热导率是材料固有的热物理性质,表示物质导热能力的大小。

5.导温系数:材料传播温度变化能力大小的指标。

6.稳态导热:物体中各点温度不随时间而改变的导热过程。

7.非稳态导热:物体中各点温度随时间而改变的导热过程。

8.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。

(完整word版)传热学基本概念知识点,推荐文档

(完整word版)传热学基本概念知识点,推荐文档

传热学基本概念知识点1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率2集总参数法:忽略物体内部导热热阻的简化分析方法3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值5效能:表示换热器的实际换热效果与最大可能的换热效果之比6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。

对流仅能发生在流体中,而且必然伴随有导热现象。

对流两大类:自然对流与强制对流。

影响换热系数因素:流体的物性,换热表面的形状与布置,流速7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的?蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。

不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。

蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。

因此,不凝结气体层的存在增加了传递过程的阻力。

8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。

首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。

主要分为两个阶段:非正规状况阶段和正规状况阶段9灰体有什么主要特征?灰体的吸收率与哪些因素有关?灰体的主要特征是光谱吸收比与波长无关。

灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。

10气体与一般固体比较其辐射特性有什么主要差别?气体辐射的主要特点是:(1)气体辐射对波长有选择性(2)气体辐射和吸收是在整个容积中进行的11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么差别?平均传热温压就是在利用传热传热方程式来计算整个传热面上的热流量时,需要用到的整个传热面积上的平均温差。

1.2传热学基本知识

1.2传热学基本知识

二、计算公式
单层墙壁
t1>t2,温度恒定不变,热能 以导热方式由墙体内表面经墙 体传向墙的外表面。
单位时间的导热量
Q

d
(t1 t2 ) F
Q-通过单层平壁的导热量。
F -墙壁的传热面积。 d -墙壁的厚度。 t1 -墙壁内表面的温度。
t 2 -墙壁外表面的温度。 -墙体材料的导热系数。
§2-3 对流换热
一、对流换热的特征及影响因素
1、定义
依靠流体的运动,热量由一处传递到另一处的现象称之 为热对流。
2、特征
传热过程中流体质点发生了相对位移,而热传导中质点 并不发生相对位移。
3、热对流与对流换热的区别
热对流是基本传热方式的一种。 对流换热不是基本传热方式,而是一种复杂的传热过程, 既有热对流作用,同时又有导热作用。
一、温度与热量
1、温度
定义:用来表示物体冷热程度的物理量。 测量温度的仪表:温度计,玻璃管温度计、热电偶温度 计、热电阻温度计等。 衡量温度的数值标尺:温标。 ①绝对温标:国际单位制规定的热力学温标,符号T,单位 K(开尔文),中文代号“开”。 ②摄氏温标:工程实际常用一种温标,符号t,单位摄氏度 ,代号“℃”。 换算关系 : T=t+273.16 一般工程计算中:T=t+273
三、热辐射的基本定律
在所有的物体中,黑体辐射能力E最强,其他物体辐射能 力小于黑体,称灰体。
T 4 c( ) 100
T -绝对温度。
c -灰体的辐射系数,表示物体的向外辐射的能力。
c c0
c0 -黑体的辐射系数。
-物体的黑度,表示物体与黑体的接近程度。
T>OK的物体都能辐射热量,两物体通过辐射进 行热交换,高温物体辐射给低温物体的热量大于 低温物体辐射给高温物体的热量,最终两者差值 决定换热量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传热学基本概念知识点
1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于
当地垂直于截面方向上的温度变化率
2集总参数法:忽略物体内部导热热阻的简化分析方法
3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密
度的峰值
5效能:表示换热器的实际换热效果与最大可能的换热效果之比
6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。

对流仅能发生在流体中,而且必然伴随有导热现象。

对流两大类:自然对流与强制对流。

影响换热系数因素:流体的物性,换热表面的形状与布置,流速
7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的?蒸
汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,
它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。

不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。

蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。

因此,不凝结气体层的存在增加了传递过程的阻力。

8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内
部温度变化的情况,着重指出几个典型阶段。

首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,
经历了一段时间后,平壁的其他部分的温度也缓慢上升。

主要分为两个阶段:非正规状况阶段和正规状况阶段
9 灰体有什么主要特征?灰体的吸收率与哪些因素有关?
灰体的主要特征是光谱吸收比与波长无关。

灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。

10气体与一般固体比较其辐射特性有什么主要差别?
气体辐射的主要特点是:( 1)气体辐射对波长有选择性( 2)气体辐射和吸收是在整个容积中进行的
11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么
差别?
平均传热温压就是在利用传热传热方程式来计算整个传热面上的热
流量时,需要用到的整个传热面积上的平均温差。

纯顺流和纯逆流时都可按对数平均温差计算式计算,只是取值有所不同。

12边界层,边界层理论
边界层理论:(1)流场可划分为主流区和边界层区。

只有在边界层区考虑粘性对流动的影响,在主流区可视作理想流体流动。

(2)边界层厚度远小于壁面尺寸(3)边界层内流动状态分为层流与湍流,湍流边界层内紧靠壁面处仍有层流底层。

13液体发生大容器饱和沸腾时,随着壁面过热度的增高,会出现哪
几个换热规律不同的区域?这几个区域的换热分别有什么特点?为
什么把热流密度的峰值称为烧毁点?
分为四个区域: 1、自然对流区,这个区域传热属于自然对流工况。

2、核态沸腾区,换热特点:温压小、传热强。

3、过度沸腾区:传热特点:热流密度随着温压的升高而降低,传热很不稳定。

4、膜态沸腾区:传热特点:传热系数很小。

由于超过热流密度的峰值可能会导致设备烧毁,所以热流密度的峰值
也称为烧毁点。

14阐述兰贝特定律的内容。

说明什么是漫射表面?角系数具有哪三个
性质?在什么情况下是一个纯几何因子,和两个表面的温度和黑度没
有关系?
兰贝特定律给出了黑体辐射能按空间方向的分布规律,它表明黑体单位面积辐射出去的能量在空间的不同方向分布是不均匀的,按空间纬度角的余弦规律变化:在垂直于该表面的方向最大,而与表面平行的方向为零。

光谱吸收比与波长无关的表面称为漫射表面。


系数的三个性质:相对性、完整性、可加性。

当满足两个条件:(1)所研究的表面是漫射的(2)在所研究表面的不同地点上向外发射的辐射热流密度是均匀的。

此时角系数是一个纯几何因子,和两个表面的温度和黑度没有关系。

15试述气体辐射的基本特点。

气体能当灰体来处理吗?请说明原因
气体辐射的基本特点:(1)气体辐射对波长具有选择性( 2)气体辐射和吸收是在整个容积中进行的。

气体不能当做灰体来处理,因为气体辐射对波长具有选择性,而只有辐射与波长无关的物体才可以称为灰体。

16试说明管槽内强制对流换热的入口效应。

流体在管内流动过程中,
随着流体在管内流动局部表面传热系数如何变化的?外掠单管的流动
与管内的流动有什么不同
管槽内强制对流换热的入口效应:入口段由于热边界层较薄而具有比较充分的发展段高的表面传热系数。

入口段的热边界层较薄,局部表面传热系数较高,且沿着主流方向
逐渐降低。

充分发展段的局部表面传热系数较低。

外掠单管流动的特点:边界层分离、发生绕流脱体而产生回流、漩涡
和涡束。

18为什么在给圆管加保温材料的时候需要考虑临界热绝缘直径的问
题而平壁不需要考虑?
圆管外敷设保温层同时具有减小表面对流传热热阻及增加导热热阻
两种相反的作用,在这两种作用下会存在一个散热量的最大值,,在此时的圆管外径就是临界绝缘直径。

而平壁不存在这样的问题。

19为什么二氧化碳被称作“温室效应”气体?
气体的辐射与吸收对波长具有选择性,二氧化碳等气体聚集在地球的外侧就好像给地球罩上了一层玻璃窗:以可见光为主的太阳能可以达到地球的表面,而地球上一般温度下的物体所辐射的红外范围内的热
辐射则大量被这些气体吸收,无法散发到宇宙空间,使得地球表面的温度逐渐升高。

20试分析大空间饱和沸腾和凝结两种情况下,如果存在少量不凝性
气体会对传热效果分别产生什么影响?原因?
对于凝结,蒸气中的不可凝结气体会降低表面传热系数,因为在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。

蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。

因此,不凝结气体层的存在增加了传递过程的阻力。

大空间饱和沸腾过程中,溶解于液体中的不凝结气体会使沸腾传热得
到某种强化,这是因为,随着工作液体温度的升高,不凝结气体会从
液体中逸出,使壁面附近的微小凹坑得以活化,成为汽泡的胚芽,从
而使 q~ t 沸腾曲线向着 t 减小的方向移动,即在相同的 t 下产生更高的热流密度,强化了传热。

21太阳能集热器的吸收板表面有时覆以一层选择性涂层,使表面吸收阳光的能力比本身辐射能力高出很多倍。

请问这一现象与吉尔霍夫定律是否矛盾?原因?
基尔霍夫定律表明物体的吸收比等于发射率,但是这一结论是在“物体与黑体投入辐射处于热平衡” 这样严格的条件下才成立的,而太阳能集热器的吸收板表面涂上选择性涂层,投入辐射既非黑体辐射,更不是处于热平衡,所以,表面吸收阳光的能力比本身辐射能力高出很多倍,这一现象与基尔霍夫定律不相矛盾。

22 请说明 Nu、Bi 的物理意义, Bi 趋于 0 和趋于无穷时各代表什么样的换热条件?
Nu 数表明壁面上流体的无量纲温度梯度
Bi 表明固体内部导热热阻与界面上换热热阻之比
Bi 趋于 0 时平板内部导热热阻几乎可以忽略,因而任一时刻平板中
各点的温度接近均匀,并随着时间的推移整体的下降,逐渐趋近于外界温度。

Bi 趋于无穷时,表面的对流换热热阻几乎可以忽略,因而过程一开
始平板的表面温度就被冷却到外界温度,随着时间的推移,平板内部各点的温度逐渐下降而趋近于外界温度。

23举例说明什么是温室效应,以及产生温室效应的原因
位于太阳照耀下被玻璃封闭起来的空间,例如小轿车、培养植物的暖房等,其内的温度明显地高于外界温度,这种现象称为温室效应。

这是因为玻璃对太阳辐射具有强烈的选择性吸收性,从而大部分太阳辐射能穿过玻璃进入有吸热面的腔内,而吸热面发出的常温下的长波辐射却被玻璃阻隔在腔内,从而产生了所谓的温室效应。

24数值分析法的基本思想
对物理问题进行数值求解的基本思想可以概括为:把原来的时间、空间坐标系中连续的物理量的场,用有限个离散点上的值的集合来代
替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。

25强化沸腾的方法
强化沸腾的方法: 1、强化大容器沸腾的表面结构,2、强化管内沸腾的表面结构。

相关文档
最新文档