表面活性剂

合集下载

表面活性剂概述、结构特点、分类

表面活性剂概述、结构特点、分类
02 亲水基团能够与水分子结合,增加表面活性剂在 水溶液中的溶解度。
03 亲水基团的性质和数量对表面活性剂的离子类型、 溶解度和性能有重要影响。
连接基团
01
连接基团是连接疏水基团和亲水基团的桥梁,通常为
碳链或芳香环。
02
连接基团的性质和长度对表面活性剂的聚集状态和性
能有重要影响。
03
连接基团的设计和优化是表面活性剂分子设计中的关
短链表面活性剂
疏水基团较短的表面活性剂,具有较 低的表面张力和较好的润湿性。
长链表面活性剂
疏水基团较长的表面活性剂,具有较 高的表面张力和较好的渗透性。
按亲水基团分类
羧酸盐型
以羧酸及其衍生物作为亲水基团的表面活性剂, 具有较好的耐酸、耐硬水能力。
硫酸酯盐型
以硫酸酯作为亲水基团的表面活性剂,具有较好 的耐碱、耐硬水能力。
磺化法
用浓硫酸或氯磺酸等强酸处理有机物,引入磺 酸基团,形成表面活性剂。
酯化法
通过醇和酸的酯化反应,生成酯类表面活性剂。
绿色合成方法
生物发酵法
利用微生物发酵产生表面活性剂,具有环保、可持续 的优点。
酶催化法
利用酶催化反应合成表面活性剂,选择性高、条件温 和。
绿色氧化还原法
利用环保的氧化剂和还原剂合成表面活性剂,减少对 环境的污染。
亲水亲油平衡值(HLB)
总结词
亲水亲油平衡值是衡量表面活性剂亲水性和亲油性平衡程度的指标。
详细描述
HLB值越大,表面活性剂的亲水性越强;反之,HLB值越小,表面活性剂的亲油性越强。选择合适的 HLB值的表面活性剂对于发挥其应用性能至关重要。
泡沫性能与去污力
总结词
泡沫性能和去污力是衡量表面活性剂在 洗涤、清洁等领域应用效果的性能参数 。

表面活性剂介绍

表面活性剂介绍
表面活性剂的这一特性使其能够在界面上富集,降低界面张力,从而起到 润湿、乳化、增溶、起泡等多方面的作用。
表面活性剂的分类
01
按化学结构分类
阴离子型、阳离子型、非离子型和 两性离子型等。
按应用分类
洗涤剂、化妆品、食品工业、医药、 农药等专用表面活性剂。
03
02
按来源分类
天然表面活性剂和合成表面活性剂。
表面活性剂能够降低固体表面与液体的接 触角,提高固体表面的润湿性,有利于物 质的分离和制备。
在泡沫体系中,表面活性剂可以控制泡沫 的大小和稳定性,发泡和消泡在日化、食 品、医药等领域有广泛应用。
03
表面活性剂的应用领域
工业清洗
总结词
表面活性剂在工业清洗中发挥重要作用,能够降低水的表面张力,使污渍和油 脂更容易被去除。
THANKS
感谢观看
石油工业
总结词
表面活性剂在石油工业中用于提高采收率和油水分离效果。
详细描述
表面活性剂能够降低油水界面张力,改善原油的流动性,提高采收率。同时,它 们在油水分离过程中发挥重要作用,能够将水和原油有效分离,提高油品质量和 产量。
食品工业
总结词
表面活性剂在食品工业中用于食品加工、乳化、增稠和稳定食品体系。
04
表面活性剂的发展趋势与展望
新材料与新技术的应用
纳米材料的应用
表面活性剂在纳米材料制备中发 挥重要作用,如纳米颗粒、纳米 纤维和纳米膜等。
高分子材料的应用
高分子表面活性剂在胶束、乳液 、微乳液等领域具有广泛应用, 可提高材料的性能和稳定性。
绿色环保与可持续发展
生物可降解表面活性剂
随着环保意识的提高,生物可降解表 面活性剂成为研究热点,如脂肪酸酯 、烷基多糖苷等。

表面活性剂

表面活性剂

1.表面活性剂定义:在加入量很少时即能明显降低溶剂表面张力,改变物系的界面状态,能够产生润湿,乳化,起泡,增溶及分散等一系列作用,从而达到实际应用的要求的一类物质。

2.表面活性剂的分类:按离子类型:1.阴离子表面活性剂2.阳离子表面活性剂3.两性表面活性剂按亲水基结构:1.羧酸盐类2.磺酸盐类3.硫酸酯盐类4.磷酸酯眼泪5.胺盐类6.季铵盐7.鎓盐类8.多羟基型9.聚氧乙烯型3.表面活性,表面活性物质,表面活性剂:表面活性:使溶剂表面张力降低的性质表面活性物质:具有表面活性的物质表面活性剂:一类表面活性物质,其在浓度极低时能明显降低溶液表面张力的物质4.表面活性如何表征:溶质在表面发生吸附,使溶液表面张力降低5.表面活性剂的两大性质:1.降低表面张力2.形成胶束6.什么是临界胶束浓度及其测定方法:临界胶束浓度:开始形成胶束的最低浓度测定方法:1.表面张力法2.电导法3.增溶作用法4.染料法5.光散射法7.什么是表面活性剂的HLB值,有什么意义HLB值:亲水亲油平衡值意义:HLB值越大,亲水性越强;HLB只越小,亲油性越强8.影响表面活性剂性能的结构因素包括哪些方面?表面活性剂分子形态,分子量和其润湿去活能力的关系?因素包括:亲水基;疏水基;分子形态;分子大小。

分子形态的影响:1.亲水基位于分子中间时,润湿性能比位于分子末端强,亲水基在末端的去活力强;2.亲油基团中带分子结构的具有较好的润湿和渗透性能,但去活力较小分子大小的影响:分子量大的洗涤,分散,乳化性能好;分子量少的润湿,渗透作用好。

9.表面张力的定义:作用在表面单位长度边缘上的力。

10.表面张力的测定方法:滴重法;毛细管上升法;环法;吊片法;最大气泡法;滴外形法。

11.表面活性剂的结构特征:由一部分疏水基团和一部分亲水基团构成,这两部分处于表面活性剂分子两端形成不对称的结构,疏水基团由疏水亲油的非极性碳氢链构成,亲水基团由亲水疏油的极性基团构成。

表面活性剂

表面活性剂

一、名词解释1.表面与界面:界面是指物质的相与相之间的交界面(约几个分子厚的过渡区)。

若其中一项为气体,这种界面通常称为表面。

2.表面活性剂:表面活性剂是这样一种物质,它活跃于表面和界面上,具有极高的降低表、界面张力的能力和效率。

在一定浓度以上的溶液中形成分子有序组合体,从而具有一系列应用功能。

3.表面活性:这种因表面正吸附而使液体表面张力降低的性质称为表面活性。

表面活性剂所具有的润湿和反润湿,渗透和防水,乳化和破乳,分散和凝聚,起泡和消泡,洗涤,抗静电,润滑以及增溶等一系列作用称为表面活性。

4.临界胶束浓度(cmc):表面活性剂在水中随着浓度增大,表面上聚集的活性剂分子形成定向排列的紧密单分子层,多余的分子在体相内部也三三两两的以憎水基互相靠拢,聚集在一起形成胶束,这开始形成胶束的最低浓度称为临界胶束浓度(critical micelle concentration, cmc)。

5.Krafft点与浊点:对离子型表面活性剂,在温度较低时,表面活性剂的溶解度一般都较小,当达到某一温度时,表面活性剂的溶解度突然增大,这一温度被称为Krafft点。

对非离子型表面活性剂则不同,它存在浊点(cloud point),即一定浓度的表面活性剂溶液在加热过程中,表面活性剂突然析出使溶液浑浊的温度点。

6.特劳贝(Traube)规则:在稀水溶液中,当c很小时,γ-c略成直线,每增加一个一CH2一基团时,其负斜率约为原来的三倍。

7.效率和有效值:表面活性剂的效率(efficiency)由测定表面活性剂使水的表面张力明显下降至一定值时的所需浓度来度量的。

有效值(effectiveness) 是表面活性剂能使溶液的表面张力降低到可能达到的(一般在cmc附近)最小值(γcmc)。

8.酸值:是指中和1克脂肪中的游离脂肪酸所需的氢氧化钾的毫克数。

9.皂化值:是指水解1克油脂所需要氢氧化钾的克数。

10.冰山结构(iceberg sturcture):表面活性剂溶于水后,使水中原来的氢键结构重新排列,亲油基周围也形成一“整齐结构”,即所谓“冰山结构”。

表面活性剂的基本性质及作用

表面活性剂的基本性质及作用

新型绿色表面活性剂的研究与开发
1
新型绿色表面活性剂是指具有环保、低毒、生物 可降解等优点的表面活性剂,如糖基表面活性剂、 磷脂表面活性剂等。
2
新型绿色表面活性剂的合成方法主要包括化学合 成和生物合成两种,其中生物合成方法具有环境 友好、生产成本低等优点。
3
新型绿色表面活性剂在应用过程中需注意其性能 与其他传统表面活性剂的差异,以及大规模生产 和应用的可行性问题。
选择合适的润湿剂需要考虑其润湿性能和稳定性,同时还需要考虑其与其他化学品的兼 容性。
起泡和消泡作用
起泡作用
表面活性剂能够降低液体的表面张力,使气体更容易在液体中形成气泡。在泡 沫灭火器、泡沫混凝土、泡沫清洗等领域中,起泡作用是表面活性剂的重要应 用之一。
消泡作用
在一些工业过程中,如纸浆制造、石油开采等,会产生大量的泡沫,影响生产 效率和产品质量。表面活性剂可以作为消泡剂,有效抑制泡沫的产生和稳定, 提高生产效率和产品质量。
详细描述
农药和医药中间体中的表面活性剂能够增加药物的溶解度,使其更好地分散在水中或穿透细胞膜,从而提高药物 的生物利用度和治疗效果。此外,表面活性剂还可以作为药物的载体,帮助药物在体内更好地分布和吸收。
05

磺化法是一种常用的表面活性剂合成方法, 通过将芳香族化合物与硫酸反应,引入磺酸 基团,从而制备出阴离子型表面活性剂。
总结词
化妆品中添加表面活性剂是为了提高产品的稳定性、润湿性和乳化效果。
详细描述
在化妆品中,表面活性剂可以作为乳化剂、润湿剂和分散剂,有助于将油性成分和水性成分混合在一 起,形成稳定且易于涂抹的质地。同时,表面活性剂还能帮助增加皮肤的水合作用,使皮肤更加柔软 光滑。
农药和医药中间体

表面活性剂

表面活性剂
化能力强,为水包油型乳化剂。常用的有聚氧乙烯40硬脂酸酯 2、聚氧乙烯脂肪醇醚
商品名为苄泽(Brij),平平加O (Perogol O)是一类聚氧乙烯 蓖麻油化合物,HLB值在12-18间,具有较强的亲水性质, 常用作增溶剂及o/w型乳化剂
(四)聚氧乙烯-聚氧丙烯共聚物
又称泊洛沙姆(poloxamer),商品名为普流罗尼克(pluronic)。 Poloxamer 188(Pluronic F68)作为一种水包油型乳化剂,是目前 用于静脉乳剂极少数合成乳化剂之一,用本品制备的乳剂能够耐 受热压灭菌和低温冰冻而不改变其物理稳定性。
制剂中存在多种组份时,对主药的增溶效果取决于各组份 与表面活性剂的相互作用。当多种组份与主药竞争
同一增溶位置或某一组分吸附或结合表面活性剂分子 而使主药的增溶量减小,若某些组份可扩大 胶束体积从而增加主药的增溶。
例如:苯甲酸增加羟苯甲酯在聚氧乙烯脂肪醇醚
溶液中的溶解,而二氯酚则减少其溶解
4、抑菌剂的增溶
本章重点
• 掌握表面活性剂的定义及结构特点 • 掌握表面活性剂的分类:阴离子表面活性剂,阳离
子表面活性剂,两性离子型表面活性剂,非离子型 表面活性剂 • 掌握表面活性剂的性质:胶束,HLB值,起昙,配 伍,应用 • 熟悉表面活性剂的生物学性质:对药物吸收的影响, 与蛋白质的相互作用,毒性,刺激性
第三节 表面活性剂的基本性质和应用
一、表面活性剂胶束
当表面活性剂在溶液表面的正吸附达到饱和时,如继 续增加表面活性剂的浓度,不能在表面定向排列的表面活 性剂分子则转入体相。这些过剩的表面活性剂分子依赖 范德华力聚集在一起形成亲油基团向内亲水基团向外在 水中稳定分布的胶束(micelle)。
表面活性剂分子缔合形成胶束的最低浓度称为临界 胶束浓度(CMC)。

表面活性剂

表面活性剂
通式[RNH3]+ X- 主要有苯扎氯铵和苯扎 溴铵(新洁尔灭)等。
应用:杀菌;防腐 应用:杀菌;防腐;皮肤、粘膜手术 器械的消毒。 消毒
(三)两性离子表面活性剂
天然品卵磷脂 合成品氨基酸型与甜菜 碱型。
碱性水溶液中呈阴离子表 面活性剂的性质,具有很好 的起泡、去污作用; 酸性溶液中则呈阳离子表 面活性剂的性质,具有很强 的杀菌能力。
HLB值计算 值计算 混合后的表面活性剂的HLB值可按下式进行计算:
HLB ×WA+HLB ×WB A B HLBAB = WA+WB
例 HLB值的计算: 用司盘80(HLB值4.3)和聚山梨酯20(HLB值16.7) 制备HLB值为9.5的混合乳化剂100g,问两者应各用多 少克?该混合物可作何用?
4.消毒剂和杀菌剂 大部分阳离子表面活性剂和两性离子表面活 性剂都可用作消毒剂,少数阴离子表面活性剂也 有类似作用,如甲酚皂、甲酚磺酸钠等。
可根据浓度用于皮肤 消毒、伤口或粘膜消 毒、器械和环境消毒 等。
表面活性剂还常用做乳化剂、助悬剂和润湿剂等。
小结 通过学习,掌握表面活性剂、临界胶束浓度、 亲水亲油平衡值等名词的意义;理解表面现象、表 面活性剂的性质和增溶的机理;掌握表面活性剂的 结构、分类及应用。 作业 思考题来苏水配方: 来苏水配方: 来苏水配方 由甲酚500ml、植物油 及氢氧化钠43g加水配 由甲酚 、植物油300g及氢氧化钠 及氢氧化钠 加水配 成 思考处方中植物油及氢氧化钠的作用? 提示: 提示:植物油和氢氧化钠可发生皂化反应
注意: 表面活性物质和表面活性剂的关系 表面活性剂一定是表面活性物质, 表面活性剂一定是表面活性物质,而表面活 性物质不一定是表面活性剂。 性物质不一定是表面活性剂。
2. 结构特征 表面活性剂分子= 非极性烃链 + 极性基团

常见的表面活性剂

常见的表面活性剂
其中仲烷基磺酸盐(SAS)水溶性比LAS好,不会水解广陛能稳定,常用于配制液体浙溜α—烯烃磺酸盐(AOS)抗硬水性、泡沫性、去污性好,对皮肤刺激性低牛因此多用于皮肤清洁剂。其中尤以含碳原子数在14~18的α—烯烃磺酸盐性能最好。
脂肪醇硫酸盐(FAS)是重垢洗涤剂中常用的阴离子表面活性剂,有去污力强的优点厂它的缺点是对硬水比较敏感,因此使用的配方中必须加螯合剂。
(3)磺酸化物 主要有脂肪族磺医`学敎育网搜`集整理酸化物、磺基芳基磺酸化物、磺基萘磺酸化物等,分子结构通式为ROSO3-M+。其水溶性和耐钙、镁盐的能力虽比硫酸化物稍差,但不易水解,在酸性水溶液中较稳定。常用的有:
①脂肪族磺酸化物,如二辛基琥珀酸磺酸钠(商品名“阿洛索-OT”);
3.两性离子型表面活性剂
本类表面活性剂的分子结构中,与疏水基相连的亲水基是电性相反的两个基团,即同时具有正、负电荷基团。在碱性溶液中呈阴离子型表面活性剂的性质,具有很好的起泡性、去污力;在酸性介质中呈阳离子型表面活性剂的性质,具有杀菌力。
(1)天然的两性离子型表面活性剂 常用的是卵磷脂,主要来源于大豆和蛋黄,其分子结构由磷酸酯盐型的阴离子部分和季铵盐型的阳离子部分组成。本品不溶于水,但对油脂的乳化能力很强,可制得乳滴细小而不易被破坏的乳剂,可用于制备注射用乳剂,也是良好的脂质体原料。
1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠
2、阳离子表面活性剂:季铵化物
3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型
4、非离子表面活性剂: 脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯
碱金属皂:O/W
碱土金属皂:W/O
有机胺皂:三乙醇胺皂
蔗糖酯:HLB(5~13)O/W乳化剂、分散剂
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. 在没有挥发性有机化合物的条件下,在一个基板材质上制备原位合成的表面活性剂纳米材料摘要:本文介绍了在没有挥发性有机化合物的条件下(挥发性有机化合物)合成一种生产纳米材料的溶胶−凝胶路线,。

这些材料是在超声搅拌的条件下简单地通过把石英低聚物与非离子表面活性剂混合获得的。

表面活性剂被作为改变溶胶-凝胶的催化剂也作为一个可以引导材料的孔隙结构中介,在干燥期间减少毛细管压力。

因此,一个无裂缝的单片材料被生产。

我们通过在终端添加聚二甲基硅氧烷用疏水性质还合成了一个异常的产品。

重要的是,因为我们的合成不需要煅烧或附加其他程序,溶胶可以直接应用到基板上,特别是应用到外部表面的建筑物。

因此,这些纳米材料的用途是恢复和保护建筑基质。

使用这些技术(物理吸附、扫描电镜、透射电子显微镜、原子力显微镜、核共振磁光谱学),我们深入的调查了这些材料的结构,显示了,由于辛胺所起的作用它们是由硅颗粒组成的,在混合材料里,聚二甲基硅氧烷作为形成二氧化硅粒子的链接桥梁。

最后,我们证明这些产品作为巩固一个特定的建筑石材的有效性并且使它具有疏水性。

关键词:纳米材料、溶胶凝胶过程,PDMS /二氧化硅混合,分子剂、建筑材料、愈合剂,疏水性产品。

引言溶胶凝胶材料的一个众所周知的缺点是在干燥条件下他们的敏感性易于收缩和倾向裂纹因为毛细管的压力。

我们研究小组曾设计了一个创新的合成策略,在表面活性剂里(正辛胺)用一个四乙氧基硅烷单体转换溶胶−凝胶(以正矽酸乙酯)。

这个合成中,HCl被用作催化剂、包括水为了水解乙氧基的团体和乙醇需要共溶剂。

我们的目标是基于溶胶−凝胶路线设计一个程序,可以应用于建筑石雕或者其他类似的户外材料。

表面活性剂提供了防止凝胶开裂的有效方法,由于两个因素:(1)粗化的凝胶网网状物,减少了毛细管的压力;(2)减少表面张力,也减少了毛细管的压力。

后来,我们通过移除酸催化剂改进了这个过程。

在辛胺存在的条件下在硅氧烷和以正矽酸乙酯之间通过共缩和我们还合成了无裂纹的有机无机混合凝胶杂化。

在产品中有机成分赋予韧性和灵活性,在防止凝胶开裂方面具有协作性:此外,有机组被集成的硅聚合物给它疏水属性。

最近,在这些表面活性剂合成纳米材料中,我们也集成了二氧化钛粒子。

由于钛二氧化碳的光催化活性的结果从而获得自清洗产品。

这些低成本低和简单的路线的实际效益已被确认。

在这些材料用来保护和恢复的石头和其他建筑材料。

此外,其他研究工作在我们后来的战略领域(辛胺添加)里获得了无裂纹产品。

目前的研究工作的目标是设计一个在没有挥发性有机化合物的条件下在一个基板材质上制备原位合成一种生产纳米材料的无溶胶−凝路线。

这些产品都是专门为保护或恢复建筑石材或作为其他类似的衬底。

然而,他们可以被使应用于其他的应用程序。

这个新奇过程对于我们的之前的路线是防止乙醇的使用或从溶胶中使用有机溶剂。

有两个重要原因目的是消除乙醇和其他挥发性有机溶剂:(1)使“绿色”保护产品(2)增加干物质产品的比例应用到衬底提高它的有效性。

这里介绍的过程是基于通过Tanev和Pinnavaia提出了路线二氧化硅前兆,像矽酸乙酯、被聚集在中性胺表面活性剂胶束产生一个类似六角形介孔的二氧化硅(HMS)分子筛。

组装过程涉及硅的部分水解与表面活性剂头基前兆氢结合。

Pinnavaia提出的路线,添加乙醇作为助溶剂提高模板溶解度。

后来,Mercier和Pinnavaia12作为制备HMS材料通过正辛烷和正矽酸乙酯混合在一个没有乙醇作为助溶剂的水溶液里。

在这个制备过程中、水添加过剩(以正矽酸乙酯/水的摩尔比率大约是1:30)。

溶胶−凝胶转变之后,细微结构造材料沉淀通过过滤被分离。

对于我们的特殊要求(纳米材料在衬底上产生),我们不能过度添加水因为相分离和过滤必须完全避免。

因此,我们添加了一定比例的辛胺水溶液在硅前驱被溶解的能力,在溶胶-凝胶过渡期间防止阶段分离。

为了实现增溶必须降低表面活性剂和含水率。

为了加快溶胶−凝胶过渡我们使用一个硅低聚物相反硅单体(以正矽酸乙酯),和较低的表面活性剂浓度。

根据前面所说的,获取无裂纹材料产品,我们已经开发了一个简单和低成本的程序,在原位上的衬底材料、纳米材料主要是为了修复和保护石制品。

开始溶胶只包含一个表面活性剂水溶液和一个硅低聚物。

此外,我们还开发了一个简单的修改过程,在溶胶开始时添加一个有机成分,使最终的产品给疏水属性。

另一方面从所取得的实验数据另一个重要的成就是现在的工作要进行深入调查合成材料的结构和设计结构模型。

这些模型是也用于解释不同组件(表面活性剂、有机成分,……)材料最终属性所起的作用。

在干燥过程中我们还讨论了材料的性质。

本论文的组织如下:(1)我们当前的细节是在我们的实验室里合成设计。

(2)我们对获得的产品进行完整的描述,基于实验的获得数据我们提出两个结构模型。

(3)我们把这些产品使用到具有历史意义的建筑上的石头上,初步评估他们为保护和修复效果的目的。

所有的例子中对于比较,两个商业产品也被评估。

实验部分合成阶段:硅纳米材料被准备开始溶胶包含测试工程师40 WN(从瓦克)在存在表面活性剂(辛胺,从奥德里奇)。

根据其技术数据表,TES40 WN(以下简称TES40)是单体和乙氧基硅烷低聚物的混合。

平均链的长度大约5Si−O单位。

从傅里叶变换红外光谱谱获得了这个产品,包括作为支持信息,乙氧基复合化合物的典型现状峰值。

第二组实验运行作为一个变体基础溶胶成分。

添加端羟基聚二甲基硅氧烷(以下简称PDMS)制备一个有机−无机混合纳米材料。

PDMS(从ABCR)的聚合度为12(摩尔质量400−700)并且OH百分比在4到6% w / w这个范围。

PDMS的傅里叶变换红外光谱,被作为支持信息,被确认存在终端Si−OH团体中。

制备过程如下:(1)辛胺溶液与浓度的显著的表面活性剂高于其的相对应临界胶束浓度(cmc),这是0.010摩尔·dm−3,13通过有力的搅拌。

具体来说,一个1.57摩尔·dm−辛胺的水溶液被雇佣。

溶液的浊度是因为胶束的形成。

(2)辛胺水溶液是在搅拌下用TES40混合,TES40的几个摩尔比率的范围是从1:0.1 × 10‑3 到 1:7.5 × 10‑3。

表1中给出的是试剂比例采用细节。

被同均匀化的溶胶通过大功率超声波搅拌(60 W·cm - 3)10分钟,然后的尺寸用尺寸为3.15厘米直径4.61厘米长投影在圆柱和透明的模具上。

在实验室条件下维持(相对湿度为60%20°C和温度的)投放溶胶。

这个研究那些溶胶被选择生产无裂纹单片。

制备有机无机纳米材料,通过逐滴添加PDMS到溶胶里合成了第二组溶胶。

调查影响PDMS纳米材料的性能,两个不同的比例(5、10卷。

%)被使用。

详细的试剂比例论文综合的给出了表。

2。

设计工作图1所示的是一个简单的合成路线的说明。

纳米材料的特征:溶胶被立即合成,在布鲁克菲尔德公司使用同心圆筒粘度计对他们的流变特性进行了研究(模型dv ii +与UL / Y适配器)。

实验温度是25°通过循环的水在一个恒温浴被测定。

剪切应力与剪切速率的生成流量曲线。

对于比较的目的,流变学特性的两个商业产品:Silres BS 290由瓦克提供的,Tegovakon V 100年从赢创(以下简称BS290和TV100,分别)同时进行。

TV100是以正矽酸乙酯和二辛基锡化合物二月桂酸锡(DOTL)为催化剂部分预聚合的无溶剂组分的单组分愈合剂。

BS290作为疏水处理一个无溶剂硅烷/硅氧烷的混合应用程序。

以下的规格制造商,BS290在乙醇中被稀释(稀释= 12%的重量。

)。

溶胶是被放在模具之前所描述的。

凝胶在实验室的铸溶胶条件(在相对湿度60%,温度为20°C)通过简单的干燥直到达到定量。

这两个商业产品允许在同样的条件下凝胶。

溶胶的稳定性是在封闭的容器里进行测量。

通过肉眼检查在干凝胶中裂缝。

下面描述的所有实验是在六个月后进行合成。

材料的体积收缩是在干燥期间利用数字测径器计算出了干凝胶整块材料体积的变化。

干凝胶的机械性能通过用单轴抗压强度试验进行了调查获得测试。

使用的设备是一个日本岛津公司的AG-I 测试机,最大负荷的是5 KN。

的压缩载荷应用程序的速度是0.5毫米/分钟。

结构特征是使用一个微粒学ASAP2020由N2物理吸附在77K下测定的。

所得的等温线用于计算孔隙体积、孔隙大小分布和干凝胶粉的比表面积的表面区域。

干凝胶的表面也直观的用扫描电子显微镜(SEM),从出品公司使用一个FEG SEM显微镜西陇模型,结构分辨率为1.5海里。

图像是使用了二次电子探测器在一个电压10千伏。

材料碎片的研究中借助扫描电子显微镜为了被可视化一层被涂上一个细导电层的黄金。

从干凝胶粉中透射电子显微图也获得使用陡环形黑场扫描透射电子显微镜(HAADF-STEM)通过一个带JEOL HAADF探测器配备的JEOL 2010 - feg TEM /茎电子显微镜。

对于电子显微镜分析、样品准备通过沉淀少量的粉末直接涂在莱西碳层铜网格上。

干凝胶表面形貌的研究表面是在开发模式操作下用原子力显微镜(AFM,Nanotec把电nica s l)得到的。

这个纳米材料的化学键的研究下分析了傅里叶变压器红外分光光度法(FTIR)。

干凝胶粉中光谱的记录是用 FTIR-8400S记录的从日本岛津公司(4厘米−1分辨率)在该地区从4000年到648年cm−1 实验在衰减全反射模式(ATR)被制定。

单次脉冲(SP)mas核磁共振实验在带有多核探测器设备的Bruker A V ANCE WB400Bruker 光谱仪上被测定的。

干凝胶粉样品被4毫米长的氧化锆转子以8 kHz进行旋转。

29SiMAS核磁共振光谱被测得的频率为79.49 MHz,使用一个1.8μs的脉冲宽度(π/ 2脉冲μs长度= 5.4),一个60年代的延迟时间和2000的扫描数字。

这个化学位移值在以ppm为单位从四甲基硅烷被报道。

在石头上的有效性:产品的研究被应用的到一个共同的建筑石材上。

石头的选择是一个生物钙质石头是从圣克里斯托瓦尔采石场(Ca diz,西班牙)选择的,在西班牙象征的西南地区一直被应用在不朽的建筑上,如塞维利亚的大教堂。

这是一个黄色奶油石头大约含50%的泥晶方解石水泥和圆形石英和长石颗粒,碎屑组件。

研究了多种汞的孔隙度值约为21%。

石头样品被削减成4厘米的立方体的形式直到重量达到常数。

在溶胶研究中用一个类似的方法通过喷射流程一个立方体的面如图1所示。

比较有效的商业方法,BS290和TV100也同样适用。

这个石头样本在实验室条件下直到达到恒重。

产品在样本完全干燥之后吸收的相应比例的剩余产品,指示为干物质进行计算。

相关文档
最新文档