用Matlab件求常微分方程解(或通解)
matlab解常微分方程组

matlab解常微分方程组摘要:一、引言1.常微分方程组简介2.Matlab 在解常微分方程组中的应用二、Matlab 解常微分方程组的基本步骤1.安装并配置Matlab2.准备常微分方程组模型3.使用Matlab 求解器求解方程组4.分析解的结果三、Matlab 解常微分方程组的常用命令1.初始化常微分方程组2.定义方程组3.使用ode45 等求解器解方程组4.输出结果四、Matlab 解常微分方程组的实际应用1.物理模型中的应用2.工程领域中的应用3.生物学和经济学模型中的应用五、结论1.Matlab 在解常微分方程组方面的优势2.需要注意的问题和技巧3.展望Matlab 在常微分方程组求解领域的发展前景正文:一、引言常微分方程组在自然科学、工程技术和社会科学等领域中有着广泛的应用。
随着科技的发展,Matlab 作为一种功能强大的数学软件,已经成为常微分方程组求解的重要工具。
本文将介绍Matlab 解常微分方程组的基本方法、常用命令以及实际应用。
二、Matlab 解常微分方程组的基本步骤1.安装并配置Matlab:首先需要在计算机上安装Matlab 软件。
安装完成后,需要对Matlab 进行配置,以便更好地使用相关功能。
2.准备常微分方程组模型:根据实际问题,建立相应的常微分方程组模型。
这包括确定变量、方程和边界条件等。
3.使用Matlab 求解器求解方程组:Matlab 提供了丰富的求解器,如ode45、ode23、ode113 等。
根据问题特点选择合适的求解器,调用相关函数求解常微分方程组。
4.分析解的结果:求解完成后,需要对结果进行分析,检查其合理性和准确性。
可以使用Matlab 内置的图形功能绘制解的图像,直观地了解解的变化规律。
三、Matlab 解常微分方程组的常用命令1.初始化常微分方程组:使用`pdsolve`函数可以求解常微分方程组。
首先需要定义微分方程和边界条件,然后调用`pdsolve`函数求解。
使用Matlab进行微分方程求解的方法

使用Matlab进行微分方程求解的方法引言微分方程是数学中非常重要的一部分,广泛应用于物理、经济、工程等领域。
对于大部分微分方程的解析解往往难以求得,而数值解法则成为了一种常用的解决手段。
Matlab作为一种强大的科学计算软件,也提供了丰富的工具和函数用于求解微分方程,本文将介绍一些常见的使用Matlab进行微分方程求解的方法。
一、数值求解方法1. 欧拉方法欧拉方法是最简单的一种数值求解微分方程的方法,它将微分方程的微分项用差分的方式进行近似。
具体的公式为:y(n+1) = y(n) + hf(x(n), y(n))其中,y(n)表示近似解在第n个点的值,h为步长,f(x, y)为微分方程的右端项。
在Matlab中使用欧拉方法进行求解可以使用ode113函数,通过设定不同的步长,可以得到不同精度的数值解。
2. 中点法中点法是较为精确的一种数值求解微分方程的方法,它的计算公式为:k1 = hf(x(n), y(n))k2 = hf(x(n) + h/2, y(n) + k1/2)y(n+1) = y(n) + k2中点法通过计算两个斜率的平均值来得到下一个点的值,相较于欧拉方法,中点法能提供更精确的数值解。
3. 4阶龙格库塔法龙格库塔法是一类高阶数值求解微分方程的方法,其中4阶龙格库塔法是最常用的一种。
它的计算公式为:k1 = hf(x(n), y(n))k2 = hf(x(n) + h/2, y(n) + k1/2)k3 = hf(x(n) + h/2, y(n) + k2/2)k4 = hf(x(n) + h, y(n) + k3)y(n+1) = y(n) + (k1 + 2k2 + 2k3 + k4)/64阶龙格库塔法通过计算多个斜率的加权平均值来得到下一个点的值,相较于欧拉方法和中点法,它的精度更高。
二、Matlab函数和工具除了可以使用以上的数值方法进行微分方程求解之外,Matlab还提供了一些相关的函数和工具,方便用户进行微分方程的建模和求解。
matlab欧拉法解常微分方程

matlab欧拉法解常微分方程matlab欧拉法解常微分方程欧拉法是解决微分方程数值计算的一种基本方法,是通过估算函数图像的变化来得到函数的近似值。
而matlab是一种强大的数值计算软件,也能轻易地实现欧拉法解常微分方程的计算。
步骤一:选择解题模型选择合适的数学模型很重要。
对于已经给定的微分方程,需要将它化为标准的形式。
例如,我们有如下的微分方程:y’ = 2y - 3,y(0) = 1将其化为标准的形式:dy/dx = 2y -3 将初始值y(0) = 1带入。
步骤二:确定计算步长确定计算步长h。
步长的大小与计算精度有直接关系,步长太小,计算量将很大,而精度较高;步长太大,精度较低。
步长的计算公式为:h = (b-a)/n其中,a和b是区间限制,n是初始步数。
步骤三:使用欧拉法求解微分方程根据欧拉法的公式,假设在t时刻函数y的值是y(t),求在下一个时刻t+h如何估算y值,公式为:y(t+h) = y(t)+ h * y'(t)将y'(t)=2y-3代入上式,得:y(t+h) = y(t)+ h* (2y(t)-3)接下来,根据初始值y(0) = 1,带入计算步长可得出一系列的近似值。
步骤四:绘制函数图像对于计算结果,应绘制出函数的近似图像。
通过matlab绘制y(x)的图像,也可以通过计算的数据进行近似曲线的绘制。
步骤五:测试计算结果通过计算结果与初始值进行比较,看算法是否正确和有效。
也可以将步长不同的计算结果进行比较,判断精度和计算效率的高低。
欧拉法解常微分方程在matlab中的使用,相较于手工计算,更具有高效、准确、方便的优势。
正因如此,在各类数学、物理、工程等领域中都有着广泛的应用。
MATLAB实验四_求微分方程的解

参数说明
[T,Y] = solver(odefun,tspan,y0)
odefun 为显式常微分方程,可以用命令 inline 定义,或 在函数文件中定义,然后通过函数句柄调用。
dy 2 2 y 2 x 2x 求初值问题 的数值解,求解范 例: dx 围为 [0,0.5] y( 0 ) 1
dsolve的输出个数只能为一个 或 与方程个数相等。
只有很少一部分微分方程(组)能求出解析解。 大部分微分方程(组)只能利用数值方法求数值解。
Matlab函数数值求解
[T,Y] = solver(odefun,tspan,y0)
其中 y0 为初值条件,tspan为求解区间;Matlab在数值求解 时自动对求解区间进行分割,T (列向量) 中返回的是分割点 的值(自变量),Y (数组) 中返回的是这些分割点上的近似解, 其列数等于因变量的个数。
数学实验
实验四
求微分方程的解
问题背景和实验目的
自牛顿发明微积分以来,微分方程在描述事物运 动规律上已发挥了重要的作用。实际应用问题通过 数学建模所得到的方程,绝大多数是微分方程。 由于实际应用的需要,人们必须求解微分方程。 然而能够求得解析解的微分方程十分有限,绝大多 数微分方程需要利用数值方法来近似求解。 本实验主要研究如何用 Matlab 来计算微分方程 (组)的数值解,并重点介绍一个求解微分方程的 基本数值解法--Euler折线法。
Runge-Kutta 方法
Euler 法与 R-K法误差比较
Matlab 解初值问题
用 Maltab自带函数 解初值问题 求解析解:dsolve 求数值解:
ode45、ode23、 ode113、ode23t、ode15s、 ode23s、ode23tb
如何使用MATLAB求解微分方程(组)ppt课件

差,输出参数,事件等,可缺省。 9
使用ODE?时如何编 写微分方程 ?
方式一:带额外参数,使用时需对参数进行赋值
function odefun(t,x,flag,R,L,C) %用flag说明R、L、C为变 量
xdot=zeros(2,1);
%表明其为列向量
xdot(1)=-R/L*x(1)-1/L*x(2)+1/L*f(t);
2
Where ?
工程控制
ODE
医学生理
航空航天
金融分析
3
Where ?
算法开发 数据分析
数值计算 MAT LAB
数据可视化
4
When ?
当对问题进行建模后,有常微分方程 需要求解时。
在生物建模中,经常需要求解常微分 方程。如药物动力学的房室模型的建模 仿真。
5
方法 ode23
ode45
数 ode113
当无法藉由微积分技巧求 得解析解时,这时便只能利 用数值分析的方式来求得其 数值解了。实际情况下,常 微分方程往往只能求解出其
数值解。
在数学中,刚性方程是指一 个微分方程,其数值分析的解 只有在时间间隔很小时才会稳 定,只要时间间隔略大,其解 就会不稳定。
目前很难去精确地去定义哪 些微分方程是刚性方程,但是 大体的想法是:这个方程的解
y(1)=x(2);
y1
y2
y(2)= -t*x(1)+exp(t)*x(2)+3*sin(2*t);
end
1000
求解程序ห้องสมุดไป่ตู้键步骤
[t,y]=ode45('odefun',[3.9 4.0],[2 8])
y
实验二MATLAB 求微分方程的解

实验二 微分方程求解一、问题背景与实验目的实际应用问题通过数学建模所归纳而得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法,既要研究微分方程(组)的解析解法(精确解),更要研究微分方程(组)的数值解法(近似解).对微分方程(组)的解析解法(精确解),Matlab 有专门的函数可以用,本实验将作一定的介绍.本实验将主要研究微分方程(组)的数值解法(近似解),重点介绍 Euler 折线法.二、相关函数(命令)及简介1.dsolve('equ1','equ2',…):Matlab 求微分方程的解析解.equ1、equ2、…为方程(或条件).写方程(或条件)时用 Dy 表示y 关于自变量的一阶导数,用用 D2y 表示 y 关于自变量的二阶导数,依此类推.2.simplify(s):对表达式 s 使用 maple 的化简规则进行化简. 例如: syms xsimplify(sin(x)^2 + cos(x)^2) ans=13.[r,how]=simple(s):由于 Matlab 提供了多种化简规则,simple 命令就是对表达式 s 用各种规则进行化简,然后用 r 返回最简形式,how 返回形成这种形式所用的规则.例如: syms x[r,how]=simple(cos(x)^2-sin(x)^2) r = cos(2*x) how = combine4.[T,Y] = solver(odefun,tspan,y 0) 求微分方程的数值解. 说明:(1) 其中的 solver 为命令 ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 之一.(2) odefun是显式常微分方程:⎪⎩⎪⎨⎧==00)(),(yt y y t f dt dy(3) 在积分区间 tspan =],[0f t t 上,从0t 到f t ,用初始条件0y 求解.(4) 要获得问题在其他指定时间点 ,210,,t t t 上的解,则令 tspan =],,,[,210f t t t t (要求是单调的).(5) 因为没有一种算法可以有效地解决所有的 ODE 问题,为此,Matlab 提供了多种求解器 Solver ,对于不同的ODE 问题,采用不同的Solver .(6) 要特别的是:ode23、ode45 是极其常用的用来求解非刚性的标准形式的一阶常微分方程(组)的初值问题的解的 Matlab 的常用程序,其中:ode23 采用龙格-库塔2 阶算法,用3 阶公式作误差估计来调节步长,具有低等的精度.ode45 则采用龙格-库塔4 阶算法,用5 阶公式作误差估计来调节步长,具有中等的精度.5.ezplot(x,y ,[tmin,tmax]):符号函数的作图命令.x,y 为关于参数t 的符号函数,[tmin,tmax] 为 t 的取值范围.6.inline():建立一个内联函数.格式:inline('expr', 'var1', 'var2',…) ,注意括号里的表达式要加引号.例:Q = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi)三、实验内容1. 几个可以直接用 Matlab 求微分方程精确解的例子: 例1:求解微分方程22xxexy dxdy -=+,并加以验证.求解本问题的Matlab 程序为:syms x y %line1 y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') %line2diff(y ,x)+2*x*y-x*exp(-x^2) %line3 simplify(diff(y ,x)+2*x*y-x*exp(-x^2)) %line4 说明:(1) 行line1是用命令定义x,y 为符号变量.这里可以不写,但为确保正确性,建议写上;(2) 行line2是用命令求出的微分方程的解:1/2*exp(-x^2)*x^2+exp(-x^2)*C1(3) 行line3使用所求得的解.这里是将解代入原微分方程,结果应该为0,但这里给出:-x^3*exp(-x^2)-2*x*exp(-x^2)*C1+2*x*(1/2*exp(-x^2)*x^2+exp(-x^2)*C1)(4) 行line4 用 simplify() 函数对上式进行化简,结果为 0, 表明)(x y y =的确是微分方程的解.例2:求微分方程0'=-+x e y xy 在初始条件e y 2)1(=下的特解,并画出解函数的图形.求解本问题的 Matlab 程序为: syms x yy=dsolve('x*Dy+y-exp(x)=0','y(1)=2*exp(1)','x') ezplot(y)微分方程的特解为:y=1/x*exp(x)+1/x* exp (1) (Matlab 格式),即xe e y x+=,解函数的图形如图 1:图1例3:求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++035y x dt dy e y x dtdx t在初始条件0|,1|00====t t y x 下的特解,并画出解函数的图形.求解本问题的 Matlab 程序为: syms x y t[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=0','x(0)=1','y(0)=0','t') simple(x); simple(y);ezplot(x,y ,[0,1.3]);axis auto微分方程的特解(式子特别长)以及解函数的图形均略. 2. 用ode23、ode45等求解非刚性的标准形式的一阶常微分方程(组)的初值问题的数值解(近似解).例4:求解微分方程初值问题⎪⎩⎪⎨⎧=++-=1)0(2222y x x y dxdy 的数值解,求解范围为区间[0, 0.5].fun=inline('-2*y+2*x^2+2*x','x','y'); [x,y]=ode23(fun,[0,0.5],1); x'; y';plot(x,y ,'o-') >> x' ans =0.0000 0.0400 0.0900 0.1400 0.1900 0.2400 0.2900 0.3400 0.3900 0.4400 0.4900 0.5000 >> y' ans =1.0000 0.9247 0.8434 0.7754 0.7199 0.6764 0.6440 0.6222 0.6105 0.6084 0.6154 0.6179 图形结果为图 2.图2例 5:求解描述振荡器的经典的 V er der Pol 微分方程.7,0)0(',1)0(,0)1(222====+--μμy y y dtdy y dty d分析:令,,121dtdx x y x ==则.)1(,1221221x x x dtdx x dtdx --==μ先编写函数文件verderpol.m : function xprime = verderpol(t,x) global mu;xprime = [x(2);mu*(1-x(1)^2)*x(2)-x(1)]; 再编写命令文件vdp1.m : global mu; mu = 7; y0=[1;0][t,x] = ode45('verderpol',[0,40],y0); x1=x(:,1);x2=x(:,2); plot(t,x1)图形结果为图3.图33. 用 Euler 折线法求解前面讲到过,能够求解的微分方程也是十分有限的.下面介绍用 Euler 折线法求微分方程的数值解(近似解)的方法.Euler 折线法求解的基本思想是将微分方程初值问题⎪⎩⎪⎨⎧==00)(),,(yx y y x f dx dy化成一个代数方程,即差分方程,主要步骤是用差商hx y h x y )()(-+替代微商dxdy ,于是:⎪⎩⎪⎨⎧==-+)()),(,()()(00x y y x y x f h x y h x y k k k k 记)(,1k k k k x y y h x x =+=+,从而)(1h x y y k k +=+,则有1,,2,1,0).,(,),(1100-=⎪⎩⎪⎨⎧+=+==++n k y x hf y yh x x x y y k k k k k k 例 6:用 Euler 折线法求解微分方程初值问题⎪⎩⎪⎨⎧=+=1)0(,22y y x y dxdy 的数值解(步长h 取0.4),求解范围为区间[0,2].解:本问题的差分方程为1,,2,1,0).2),( ),(,,4.0,1,021100-=⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+====++n k y x y y x f y x hf y y h x x h y x k k k k k k (其中: 相应的Matlab 程序见附录 1. 数据结果为:0 1.0000 0.4000 1.4000 0.8000 2.1233 1.2000 3.1145 1.6000 4.4593 2.0000 6.3074图形结果见图4:图4特别说明:本问题可进一步利用四阶 Runge-Kutta 法求解,读者可将两个结果在一个图中显示,并和精确值比较,看看哪个更“精确”?(相应的 Matlab 程序参见附录 2).四、自己动手1. 求微分方程0sin 2')1(2=-+-x xy y x 的通解.2. 求微分方程x e y y y x sin 5'2''=+-的通解.3. 求微分方程组⎪⎪⎩⎪⎪⎨⎧=-+=++00y x dtdy y x dtdx在初始条件0|,1|00====t t y x 下的特解,并画出解函数()y f x =的图形. 4. 分别用 ode23、ode45 求上述第 3 题中的微分方程初值问题的数值解(近似解),求解区间为[0,2]t ∈.利用画图来比较两种求解器之间的差异.5. 用 Euler 折线法求解微分方程初值问题⎪⎩⎪⎨⎧=-=1)0(,12'32y y xy y 的数值解(步长h 取0.1),求解范围为区间[0,2].6. 用四阶 Runge-Kutta 法求解微分方程初值问题⎩⎨⎧=-=1)0(,cos 'y x e y y x 的数值解(步长h 取0.1),求解范围为区间[0,3].四阶 Runge-Kutta 法的迭代公式为(Euler 折线法实为一阶 Runge-Kutta 法):1,,2,1,0),()2,2()2,2(),()22(6,),(342312143211100-=⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧++=++=++==++++=+==++n k hL y h x f L L h y h x f L L h y h x f L y x f L L L L L hy y h x x x y y k k k k k k k k k k k k 相应的 Matlab 程序参见附录 2.试用该方法求解第5题中的初值问题. 7. 用 ode45 方法求上述第 6 题的常微分方程初值问题的数值解(近似解),从而利用画图来比较两者间的差异.五、附录附录 1:(fulu1.m)clearf=sym('y+2*x/y^2'); a=0; b=2; h=0.4;n=(b-a)/h+1; x=0; y=1;szj=[x,y]; for i=1:n-1y=y+h*subs(f,{'x','y'},{x,y}); x=x+h;szj=[szj;x,y]; end szjplot(szj(:,1),szj(:,2))附录 2:(fulu2.m)clearf=sym('y-exp(x)*cos(x)'); a=0; b=3; h=0.1;n=(b-a)/h+1; x=0; y=1;szj=[x,y];for i=1:n-1l1=subs(f,{'x','y'},{x,y});l2=subs(f,{'x','y'},{x+h/2,y+l1*h/2});l3=subs(f,{'x','y'},{x+h/2,y+l2*h/2});l4=subs(f,{'x','y'},{x+h,y+l3*h});y=y+h*(l1+2*l2+2*l3+l4)/6;x=x+h;szj=[szj;x,y];endszjplot(szj(:,1),szj(:,2))。
matlab求解常微分方程

matlab求解常微分⽅程本⽂主要介绍matlab中求解常微分⽅程(组)的dsolve和ode系列函数,并通过例⼦加深读者的理解。
⼀、符号介绍D: 微分符号;D2表⽰⼆阶微分,D3表⽰三阶微分,以此类推。
⼆、函数功能介绍及例程1、dsolve 函数dsolve函数⽤于求常微分⽅程组的精确解,也称为常微分⽅程的符号解。
如果没有初始条件或边界条件,则求出通解;如果有,则求出特解。
1)函数格式Y = dsolve(‘eq1,eq2,…’ , ’cond1,cond2,…’ , ’Name’)其中,‘eq1,eq2,…’:表⽰微分⽅程或微分⽅程组;’cond1,cond2,…’:表⽰初始条件或边界条件;‘Name’:表⽰变量。
没有指定变量时,matlab默认的变量为t;2)例程例1.1(dsolve 求解微分⽅程)求解微分⽅程:dsolve('Dy=3*x^2','x')例1.2(加上初始条件)求解微分⽅程:例2(dsolve 求解微分⽅程组)求解微分⽅程组:由于x,y均为t的导数,所以不需要在末尾添加’t’。
2、ode函数在上⽂中我们介绍了dsolve函数。
但有⼤量的常微分⽅程,虽然从理论上讲,其解是存在的,但我们却⽆法求出其解析解,此时,我们需要寻求⽅程的数值解。
ode是Matlab专门⽤于解微分⽅程的功能函数。
该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。
不同类型有着不同的求解器,具体说明如下图。
其中,ode45求解器属于变步长的⼀种,采⽤Runge-Kutta算法;其他采⽤相同算法的变步长求解器还有ode23。
ode45表⽰采⽤四阶-五阶Runge-Kutta算法,它⽤4阶⽅法提供候选解,5阶⽅法控制误差,是⼀种⾃适应步长(变步长)的常微分⽅程数值解法,其整体截断误差为(Δx)^5。
解决的是Nonstiff(⾮刚性)常微分⽅程。
matlab解常微分方程

matlab解常微分⽅程1. ODE常微分⽅程ordinary differential equation的缩写,此种表述⽅式常见于编程,如MATLAB中Simulink求解器solver已能提供了7种微分⽅程求解⽅法:ode45(Dormand-Prince),ode23(Bogacki-Shampine),ode113(Adams),ode15s(stiff/NDF),ode23s(stiff/Mod. Rosenbrock),ode23t(mod.stiff/Trapezoidal),ode23tb(stiff/TR-BDF2)。
微分⽅程、微分⽅程组⾃标量 因变量 ⼀元 多元 函数 映射⼀元:只有⼀个因变量多元:有多个因变量导数 偏导:谁对谁的导数,因变量对⾃变量的导数,默认或缺省⾃变量为t 、x ?⼀元⽅程 多元⽅程 多元⽅程组 n个⽅程解n个未知量微分⽅程 ⼀阶 ⾼阶微分⽅程 ⼀阶微分⽅程组⼀阶常微分⽅程:Dx/dt + x = e^t⾼阶常微分⽅程:d^2x/dt^2+dx/dt+x=e^2t⼀阶微分⽅程组(多元):dy/dt+x=e^2tdx/dt+2y-x=e^t初始条件:dy/dt0=... dx/dt0=... y0=... x0=...可以解出:y=f(t)=.... x=f(t)=.... 两个⽅程解两个未知数(因变量)⼀个N阶(多元)微分⽅程可以写成(分解成)N个⼀阶微分⽅程(即微分⽅程组)如:x.. + 2x. -x = u令x.=x2; x=x1 则...微分⽅程的精确解: r=dsolve('eqn1','eqn2',...,'cond1','cond2',...,'var').数值解: [t,y]=solver('odefun',tspan,y0,options)1. 求精确解1.微分⽅程r=dsolve('eqn1','eqn2',...,'cond1','cond2',...,'var').该命令中可以⽤D表⽰微分符号,其中D2表⽰⼆阶微分,D3表⽰三阶微分,以此类推。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用Matlab件求常微分方程解(或通解)
————————————————————————————————作者:————————————————————————————————日期:
《高等数学》实验报告
实验人员:系(班):
学号:
姓名:
实验地点:电教楼五号机房
实验名称:Matlab 高等数学实验
实验时间:2014-6-3 16:30--18:30
实验名称:用Matlab 软件求常微分方程的解(或通解)
实验目的:熟练掌握Matlab 软件求常微分方程的解(或通解)
实验内容:(给出实验程序与运行结果)
一、求微分方程的特解.
1、⎪⎩
⎪⎨⎧===+-10)0(,6)0(034'22y y y dx dy dx y d 程序:>> dsolve('D2y-4*Dy+3*y','y(0)=6,Dy(0)=10','x')
ans = 4*exp(x)+2*exp(3*x)
吕梁学院《高等数学》实验报告
2、⎪⎩
⎪⎨⎧===++0)0(,2)0(044'22y y y dx dy dx y d 程序:>>dsolve('4*D2y+4*Dy+y','y(0)=2,Dy(0)=0','x')
ans =
2*exp(-1/2*x)+exp(-1/2*x)*x
3、⎪⎩
⎪⎨⎧===++15)0(',0)0(029422y y y dx dy dx y d 程序:>>dsolve('D2y+4*Dy+29*y=0','y(0)=9,Dy(0)=15','x') ans =
33/5*exp(-2*x)*sin(5*x)+9*exp(-2*x)*cos(5*x)
4、⎪⎩
⎪⎨⎧===+-3)0(',0)0(013422y y y dx dy dx y d 程序:>>dsolve('D2y-4*dy+13*y=0','y(0)=0','Dy(0)=3','x') ans =
3/13*sin(13^(1/2)*x)*13^(1/2)-4/13*cos(13^(1/2)*x)*dy+4/13*dy
5、⎪⎩
⎪⎨⎧-===--5)0(',0)0(04322y y y dx dy dx y d 程序:>>dsolve('D2y-3*Dy-4*y','y(0)=0,Dy(0)=-5','x')
ans =
exp(-x)-exp(4*x)
二、求齐次非线性微分方程的通解
1、133222+=--x y dx
dy dx y d 程序:>>dsolve('D2y-2*Dy-3*y=3*x+1','x')
ans =
exp(-x)*C2+exp(3*x)*C1+1/3-x
2、x xe y dx
dy dx y d 22265=+- 程序:>>dsolve('D2y-5*Dy+6*y=x*exp(2*x)','x')
ans =
exp(3*x)*C2+exp(2*x)*C1-1/2*x*exp(2*x)*(2+x)
3、x x y dx
y d cos 422=+ 程序:>>dsolve('D2y+4*y=x*cos(x)','x')
ans =
sin(2*x)*C2+cos(2*x)*C1+2/9*sin(x)+1/3*x*cos(x)
4、x e y dx
y d x cos 22+=+ 程序:>>dsolve('D2y+y=exp(x)','x')
ans =
sin(x)*C2+cos(x)*C1+1/2*exp(x)
>>dsolve('D2y+y=cos(x)','x')
ans =
sin(x)*C2+cos(x)*C1+1/2*cos(x)+1/2*sin(x)*x 则原式=
sin(x)*C2+cos(x)*C1+1/2*exp(x)+sin(x)*C2+cos(x)*C1+1/2*cos(x)+1/2*sin(x)*x
5、x y dx
dy dx y d 2sin 5222=+- 程序:>>dsolve('D2y-2*Dy+5*y=sin(2*x)','x')
ans =
exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x)
三、微分方程实例
1、试求x y =''的经过点M (0,1)且在此点与直线12+=
x y 相切的积分曲线。
由题意得⎪⎩⎪⎨⎧===21)0(,1)0('"y y x y
程序:>>dsolve('D2y=x','y(0)=1,Dy(0)=1/2','x')
ans =
1/6*x^3+1/2*x+1
实验心得: Matlab 是一个画图和解题的好工具,图的精美与准确让我佩服数学实验课内容简单、易理解,但也有挑战性。
我觉得数学建模很枯燥,很乏味,但是慢慢了解了Matlab 软件基础和功能后,我越发喜
欢这个看似无所不能的软件。
随着对软件的不断深入,我觉得Matlab软件还是很有意思的,即使Matlab软件界面全部是英文,而且有很多专业的词汇,很多地方作为初学者的我还看不太懂,特别是一些细节方面的问题,比如“:”“;”的区别、“.*”和“*”的区别等等,但随着我一边上网查阅相关资料,一边解决老师的上机作业,我体会到在面对不知道的问题的时候要学会自己去寻找方法解决。
同时,通过使用Matlab软件,使我懂得无论做什么事情都应该学会耐心、细致。