2014年河南中考数学真题及答案

合集下载

2014河南中招数学试题(解析版含详细答案)Word版

2014河南中招数学试题(解析版含详细答案)Word版

2014年河南省中招数学试卷及答案解析一、选择题(每小题3分,共24分)1.下列各数中,最小的数是 ( ) (A). 0 (B).13 (C).13(D).3- 答案:D解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵11333-<-< ∴最小的数是﹣3,故选A .2. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.875510n´,则n 等于 ( )(A) 10 (B) 11 (C).12 (D).13 答案:B解析:科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3875.5亿=3.8755×1011,故选B. 3.如图,直线AB CD 、相交于O ,射线OM 平分,,AOC ON OM 衈若 35AOM ??,则C O N Ð的度数为 ( ) (A) .35° (B). 45° (C) 55° (D). 65° 答案:C解析:根据角的平分线的性质及直角的性质,即可求解. ∠CON=90°-35°=55°, 故选C.4.下列各式计算正确的是 ( )(A )223a a a += (B )326)a a -=( (C )326·a a a = (D )222a b a b =+(+) 答案:B解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(-a 3)2=a 6计算正确,故选B5.下列说法中,正确的是 ( ) (A )“打开电视,正在播放河南新闻节目”是必然事件(B )某种彩票中奖概率为10%是指买十张一定有一张中奖 (C )神州飞船发射前需要对零部件进行抽样检查 (D )了解某种节能灯的使用寿命适合抽样调查 答案:D解析:根据统计学知识;(A )“打开电视,正在播放河南新闻节目”是随机事件,(A )错误。

(完整word)2014年河南省中招考试数学试卷及答案(word版),推荐文档

(完整word)2014年河南省中招考试数学试卷及答案(word版),推荐文档

2014年河南省中招考试数学试卷、选择题(每小题 3分,共24 分) 1•下列各数中,最小的数是 ()1 1 (A). 0 (B).;(C).-;(D).-33 32.据统计,2013年河南省旅游业总收入达到为 3.8755 X 10n,贝U n 等于 3875.5亿元.若将3875.5亿用科学计数法表示(A) 10 ( B) 11 (C).12(D).133. 如图,直线 AB 、CD 相交于 O ,射线 OM 平分/ AOC,ON ^ OM,若/ AOM =35 0,则/ CON 的度数为 ()(A) .35 0 (B). 450(C) .55°(D). 6504.下列各式计算正确的是( )(A ) a +2a =3a 2 ( B ) (-a 3)2=a 6(C) a 3 • a 2=a 6 (D ) ( a + b ) 2=a 2 + b 25. 下列说法中,正确的是()(A) “打开电视,正在播放河南新闻节目”是必然事件 (B) 某种彩票中奖概率为 10%是指买十张一定有一张中奖(c )神州飞船发射前钻要对冬部件进行抽样检查(D) 了解某种节能灯的使用寿命适合抽样调查7. 如图, Y ABCD 的对角线 AC 与BD 相交于点 O,AB 丄AC.若AB =4,AC =6,贝U BD 的长是() (A)8(B) 9 (C)10(D ) 118. 如图,在 Rt △ ABC 中,/ C=900, AC=1cm , BC=2cm ,点 P 从 A 出发,以 1cm/s 的速沿 折线AC —► CB—► BA 运动,最终回到 A 点。

设点P 的运动时间为x (s ),线段AP 的长 度为y ( cm ),则能反映y 与x 之间函数关系的图像大致是()9 .计算:3 27 I 2 = _________ . 10.不等式组 3x 6 _________________________ 0的所有整数解的和是4 2x >011. 在厶ABC 中,按以下步骤作图:①分别以 B 、C 为6:将两个长方体如图放皿,到所构成的几何体的左视田可能是(a a s s<A)(B)(C)(D)D、填空题(每小题 3分,共21 分)圆心,以大于〔BC的长为半径作弧,2两弧相交于两点M、N :②作直线MN交AB于点D,连接CD.若CD=AC,/ B=25°,则/ ACB 的度数为________________ .12.已知抛物线y=ax2+bx+c(0)与x轴交于A、B两点.若点A的坐标为(-2,0),抛物线的对称轴为直线为_________ .13. 一个不进明的袋子中装有仅颇色不同的依次从袋子中随机摸出一个小球不放回,人摸到白球的概率是_________ .x=2 .则线段AB的长2个红球和2个白球,两个人到第一个人摸到红球且第二个14.如图,在菱形ABCD中,AB =1,/ DAB=60 °,把菱形ABCD绕点A顺时针旋转30°得到菱形ABCD',其中点C的运动能路径为C C/,则图中阴影部分的面积为_________ .15.如图,矩形ABCD中,AD=5,AB=7.点E为DC上一个动点,把厶ADE沿AE折叠,当点D的对应点D/落在/ ABC的角平分线上时,DE的长为.三、解答题(本大题共8个,满分75分)16.(8分)先化简,再求值:x21-2x x ,其中x= , 2 -117. (9分)如图,CD是O O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作O O的切线PA、PB,切点分别为点A、B.(1)连接AC,若/ APO = 300,试证明△ ACP是等腰三角形;(2)填空:①当DP= _______ cm时,四边形AOBD是菱形;②当DP= _______ cm时,四边形AOBP是正方形.18. (9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.随机抽取本校300名男生进课外体育锻炼情况经常参加”课外体育锻炼的男生最喜欢的一种项目扇形统计图条形统计图请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,_______________ “经常参加”所对应的圆心角的度数为;(2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200 X 27—— =108 ”,请你判断这种说法是否正确,并说明理由.30019. ( 9分)在中俄“海上联合一2014”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A 正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度•(结果保留整数。

2014年河南中考数学真题卷含答案解析

2014年河南中考数学真题卷含答案解析

2014年河南省普通高中招生考试数学试题(含答案全解全析)参考公式:二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(-b2a ,4ac-b24a).第Ⅰ卷(选择题,共24分)一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.下列各数中,最小的数是( )A.0B.13C.-13D.-32.据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于( )A.10B.11C.12D.133.如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOM=35°,则∠CON的度数为( )A.35°B.45°C.55°D.65°4.下列各式计算正确的是( )A.a+2a=3a2B.(-a3)2=a6C.a3·a2=a6D.(a+b)2=a2+b25.下列说法中,正确的是( )A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前需要对零部件进行抽样检查D.了解某种节能灯的使用寿命适合抽样调查6.将两个长方体如图放置,则所构成的几何体的左视图可能是( )7.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB=4,AC=6,则BD的长是( )A.8B.9C.10D.118.如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A.设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是( )第Ⅱ卷(非选择题,共96分)二、填空题(每小题3分,共21分)3-|-2|= .9.计算:√27的所有整数解的和为.10.不等式组{3x+6≥0,4-2x>011.如图,在△ABC中,按以下步骤作图:①分别以点B、C为圆心,以大于1BC的长为半径作弧,2两弧相交于M、N两点;②作直线MN交AB于点D,连结CD.若CD=AC,∠B=25°,则∠ACB的度数为.12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,若点A的坐标为(-2,0),抛物线的对称轴为直线x=2,则线段AB的长为.13.一个不透明的袋子中装有仅颜色不同的2个红球和2个白球.两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.14.如图,在菱形ABCD中,AB=1,∠DAB=60°.把菱形ABCD绕点A顺时针旋转30°得到菱形AB'C'D',其中点C的运动路径为CC'⏜,则图中阴影部分的面积为.15.如图,矩形ABCD中,AD=5,AB=7.点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D'落在∠ABC的角平分线上时,DE的长为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:x2-1 x2-x ÷(2+x2+1x),其中x=√2-1.17.(9分)如图,CD是☉O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作☉O的切线PA、PB,切点分别为点A、B.(1)连结AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP= cm时,四边形AOBD是菱形;②当DP= cm时,四边形AOBP是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1=108”.请你判断这种说法是否正确,并说明理由.200×2730019.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan 68°≈2.5,√3≈1.7)20.(9分)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A、B的坐标分别为(5,0)、(2,6),点D为AB上一点,且BD=2AD.双曲线y=k(x>0)经过点D,交BC于点E.x(1)求双曲线的解析式;(2)求四边形ODBE的面积.21.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台.若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.22.(10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连结BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM 为△DCE中DE边上的高,连结BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.图1 图2(3)解决问题点A到BP的距如图3,在正方形ABCD中,CD=√2.若点P满足PD=1,且∠BPD=90°,请直接写出....离.图323.(11分)如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(5,0)两点,直线y=-3x+3与y轴4交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD 于点E.设点P 的横坐标为m. (1)求抛物线的解析式; (2)若PE=5EF,求m 的值;(3)若点E'是点E 关于直线PC 的对称点,是否存在点P,使点E'落在y 轴上?若存在,请直接..写出..相应的点P 的坐标;若不存在,请说明理由.答案全解全析:一、选择题1.D 正数大于0,负数小于0,两个负数绝对值大的反而小,所以-3<-13<0<13,故选D. 2.B 科学记数法是将一个数改写成a×10n=(1≤|a|<10,n 为整数)的形式,因为3 875.5亿=387 550 000 000=3.875×1011,故选B.3.C ∵OM 平分∠AOC,∴∠COM=∠AOM=35°, ∵ON ⊥OM,∴∠MON=90°,∴∠CON=90°-∠COM=90°-35°=55°,故选C.4.B 因为a+2a=3a,所以A 错;因为(-a 3)2=(-1)2×a 3×2=a 6,所以B 正确;因为a 3·a 2=a 5,所以C错;因为(a+b)2=a 2+2ab+b 2,所以D 错,故选B.5.D 选项A 是随机事件;选项B 中中奖概率为10%仅指事件发生的可能性,不一定中奖;选项C 中神舟飞船发射前对零部件检查必须是全面检查,A 、B 、C 均错,故选D.6.C 根据原几何体的特征及放置位置,可以判断选项C 符合左视图特征,故选C.7.C 在▱ABCD 中,AO=CO,BO=DO, ∵AC=6,∴AO=3,∵AB ⊥AC,∴在Rt △ABO 中,BO=√AB 2+AO 2=√42+32=5, ∴BD=2BO=10,故选C.8.A 当点P 在AC 上时,y=x,0≤x<1;当点P 在BC 上时,AP 为Rt △ACP 的斜边,AP=√AC 2+PC 2=√12+(x -1)2=√x 2-2x +2,即y=√x 2-2x +2,1≤x<3;此段函数图象一定不是直线,各选项中,选项A 符合,故选A.评析 本题考查函数的图象,理解函数图象的特征,根据动点位置确定解析式是关键. 二、填空题 9.答案 1解析 原式=3-2=1. 10.答案 -2解析 解不等式3x+6≥0,得x ≥-2,解不等式4-2x>0,得x<2,所以原不等式组的解集为-2≤x<2,其整数解为-2,-1,0,1,所以所有整数解的和为-2-1+0+1=-2. 11.答案 105°解析 由题意知MN 垂直平分BC,∴CD=BD, 又CD=AC,∴AC=CD=BD,∴∠DCB=∠B=25°, ∴∠A=∠CDA=50°,∴∠ACB=180°-∠A-∠B=105°. 12.答案 8解析 因为抛物线的对称轴为直线x=2,所以点A 、B 关于直线x=2对称,所以B(6,0),所以线段AB 长为AB=6-(-2)=8. 13.答案 13解析 分别用红1,红2,白1,白2表示两个红球和两个白球.画树状图.所有结果有12个,符合条件的结果有4个,所以所求概率P=13. 14.答案 π4+32-√3解析 由题意知,点A,B,C'三点共线,点A,D',C 三点共线,∴延长AD'过点C,延长AB 过点C',设BC 与C'D'交于点O,则∠BOD'=360°-∠BAD'-∠ABO-∠AD'O=90°,∴∠BOC'=90°,在△AD'C'中,AD'=C'D',∠AD'C'=∠ADC=120°,∴∠BC'O=30°, ∵BC'=AC'-AB=√3-1,∴S △BOC'=1BC'·h=1BC'·1BC'·√3=√3BC'2=√3-3(h 为△BOC'的边BC'上的高),同理,S △D'OC =√3-3,所以S 阴影=S 扇形ACC'-S △D'OC -S △BOC'=30π×3360-2(√32-34)=π4-√3+32. 评析 本题是以旋转为背景的不规则图形的阴影部分面积的计算问题,考查菱形的性质,扇形面积公式,四边形的内角和,直角三角形的面积计算,综合性强,难度较大.15.答案 53或52解析 作BF 平分∠ABC 交CD 于点F,作AG ⊥BF 于点G,由题意知AG=AB ·sin 45°=7√22, ∵7√22<5, ∴D'为以A 为圆心,AD 为半径的圆弧与BF 的交点,易知有两种情况,第一种情况:如图①,图① 在Rt △AGD'中,D'G=√D'A 2-AG 2=√22, ∴BD'=7√22+√22=4√2, ∴D'F=BF -D'B=5√2-4√2=√2,作D'H ⊥CD,垂足为H.在Rt △D'FH 中,易求得FH=HD'=1,∴DH=DF+FH=3,设DE=x,则D'E=x,EH=3-x,在Rt △EHD'中,EH 2+D'H 2=D'E 2,即(3-x)2+12=x 2,解得x=53,即D'E=53, 第二种情况:如图②,图② 作D'H ⊥CD,垂足为H,同理求得D'E=52.综上所述, DE 的长为53或52. 评析 本题是以矩形为载体,以折叠为背景的求线段长问题,主要考查矩形的性质,轴对称的性质,角平分线,勾股定理的运用,依据题意构造直角三角形是关键,本题属难题.三、解答题16.解析原式=(x+1)(x -1)x(x -1)÷2x+x 2+1x (4分) =x+1x ·x (x+1)2=1x+1.(6分)当x=√2-1时,原式=1√2-1+1=1√2=√22.(8分)17.解析 (1)证明:连结OA.∵PA 为☉O 的切线,∴OA ⊥PA.(1分)在Rt △AOP 中,∠AOP=90°-∠APO=90°-30°=60°.∴∠ACP=1∠AOP=1×60°=30°.(4分)∴∠ACP=∠APO.∴AC=AP.∴△ACP 是等腰三角形.(5分) (2)①1;(7分)②√2-1.(9分)18.解析 (1)144°.(2分)(2)(4分)(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为1 200×40300=160(人).(7分)(4)这种说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.(9分) (注:只要解释合理即可)19.解析 过点C 作CD ⊥AB,交BA 的延长线于点D,则AD 即为潜艇C 的下潜深度, 根据题意得∠ACD=30°,∠BCD=68°.设AD=x 米,则BD=BA+AD=(1 000+x)米.在Rt △ACD 中,CD=AD tan ∠ACD =x tan30°=√3x 米.(4分)在Rt △BCD 中,BD=CD ·tan 68°(米).∴1 000+x=√3x ·tan 68°.(7分)∴x= 1 000√3tan68°-1≈ 1 0001.7×2.5-1≈308. ∴潜艇C 离开海平面的下潜深度约为308米.(9分)20.解析 (1)过点B 、D 作x 轴的垂线,垂足分别为点M 、N.∵A(5,0)、B(2,6),∴OM=BC=2,BM=OC=6,AM=3.∵DN ∥BM,∴△ADN ∽△ABM.∴DN BM =AN AM =AD AB =13. ∴DN=2,AN=1,∴ON=4.∴点D 的坐标为(4,2).(3分)又∵双曲线y=k x(x>0)经过点D,∴2=k 4,即k=8.∴双曲线的解析式为y=8x .(5分)(2)∵点E 在BC 上,∴点E 的纵坐标为6. 又∵点E 在双曲线y=8x 上,∴点E 的坐标为(43,6).∴CE=43.(7分)∴S 四边形ODBE =S 梯形OABC -S △OCE -S △AOD =12×(BC+OA)×OC -12×OC×CE -12×OA×DN =12×(2+5)×6-12×6×43-12×5×2=12.∴四边形ODBE 的面积为12.(9分)21.解析 (1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元,则有{10a +20b =4 000,20a +10b =3 500.解得{a =100,b =150.即每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元.(4分)(2)①根据题意得y=100x+150(100-x),即y=-50x+15 000.(5分)②根据题意得100-x ≤2x,解得x ≥3313.∵在y=-50x+15 000中,-50<0,∴y 随x 的增大而减小.∵x 为正整数,∴当x=34时,y 取得最大值,此时100-x=66.即该商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大.(7分)(3)根据题意得y=(100+m)x+150(100-x),即y=(m-50)x+15 000,3313≤x ≤70且x 为正整数.①当0<m<50时,m-50<0,y 随x 的增大而减小.∴当x=34时,y 取得最大值.即该商店购进34台A 型电脑和66台B 型电脑,销售总利润最大;(8分) ②当m=50时,m-50=0,y=15 000.即该商店购进A 型电脑的数量满足3313≤x ≤70且x 为正整数时,均使销售总利润最大;(9分) ③当50<m<100时,m-50>0,y 随x 的增大而增大.∴x=70时,y 取得最大值.即该商店购进70台A 型电脑和30台B 型电脑,销售总利润最大.(10分)22.解析 (1)①60°;②AD=BE.(2分)(2)∠AEB=90°;AE=2CM+BE.(4分)(注:若未给出本判断结果,但后续理由说明完全正确,不扣分)理由:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°, ∴AC=BC,CD=CE,∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.∴△ACD ≌△BCE.(6分)∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC-∠CED=135°-45°=90°.(7分)在等腰直角三角形DCE 中,CM 为斜边DE 上的高,∴CM=DM=ME.∴DE=2CM.∴AE=DE+AD=2CM+BE.(8分)(3)√3-12或√3+12.(10分)【提示】∵PD=1,∠BPD=90°,∴BP 是以点D 为圆心、1为半径的☉D 的切线,点P 为切点.第一种情况:如图①,连结BD,AP,过点A 作AP 的垂线,交BP 于点P', 可证△APD ≌△AP'B,PD=P'B=1.∵CD=√2,∴BD=2,BP=√3,作AM ⊥PP',交PP'于点M,∴AM=12PP'=12(PB-BP')=√3-12.第二种情况:如图②,由上同理可得AM=12PP'=12(PB+BP')=√3+12.23.解析 (1)∵抛物线y=-x 2+bx+c 与x 轴交于A(-1,0),B(5,0)两点,∴{0=-(-1)2-b +c,0=-52+5b +c.∴{b =4,c =5.∴抛物线的解析式为y=-x 2+4x+5.(3分)(2)∵点P 的横坐标为m,∴P(m,-m 2+4m+5),E (m,-34m +3),F(m,0).∵点P 在x 轴上方,要使PE=5EF,点P 应在y 轴右侧, ∴0<m<5.∴PE=-m 2+4m+5-(-34m +3)=-m 2+194m+2.(4分) 分两种情况讨论:①当点E 在点F 上方时,EF=-34m+3.∵PE=5EF,∴-m 2+194m+2=5(-34m +3). 即2m 2-17m+26=0,解得m 1=2,m 2=132(舍去);(6分) ②当点E 在点F 下方时,EF=34m-3.∵PE=5EF,∴-m 2+194m+2=5(34m -3).即m 2-m-17=0,解得m 3=1+√692,m 4=1-√692(舍去); ∴m 的值为2或1+√692.(8分)(3)点P 的坐标为P 1(-12,114),P 2(4,5),P 3(3-√11,2√11-3).(11分)【提示】∵E 和E'关于直线PC 对称,∴∠E'CP=∠ECP.又∵PE ∥y 轴,∴∠EPC=∠E'CP=∠PCE.∴PE=EC.又∵CE=CE',∴四边形PECE'为菱形.过点E 作EM ⊥y 轴于点M,∴△CME ∽△COD.∴CE=|5m|.∵PE=CE,∴-m 2+194m+2=54m 或-m 2+194m+2=-54m. 解得m 1=-12,m 2=4,m 3=3-√11,m 4=3+√11(舍去). 可求得点P 的坐标为P 1(-12,114),P 2(4,5),P 3(3-√11,2√11-3). 评析 本题考查了用待定系数法求二次函数解析式,二次函数的图象及性质,以及图形的相似等知识.。

2014年河南省中考数学试卷-答案

2014年河南省中考数学试卷-答案

河南省2014年普通高中招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】将各数表示在数轴上,数轴上右边的点所表示的数比左边的点表示的数大;正数大于0,0大于负数,所以最小的数是3-,故选D. 【考点】有理数的大小比较. 2.【答案】B【解析】科学记数法是将一个数写成10n a ⨯的形式,其中110a ≤<,n 为整数.其中a 是只有一位整数的数;当原数的绝对值10≥时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值1<时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零),113875.5 3.875510=⨯亿,所以11n =,故选B.【考点】科学记数法. 3.【答案】C【解析】因为OM 平分AOC ∠,35AOM ∠=︒,所以35COM ∠=︒,因为ON OM ⊥,所以903555CON ∠=︒-︒=︒,故选C.【考点】角平分线的性质及垂线的性质. 4.【答案】B【解析】23a a a +=,326()a a -=,325a a a =g ,222()2a b a ab b +=++,故选B.【考点】整式的计算. 5.【答案】D【解析】A 为不确定事件,故错误;概率是从大量事件总结出的规律,小范围内不一定成立,故B 错误;神舟飞船发射前需要对所有零部件进行全面检查,故C 错误;节能灯的使用寿命适合抽样调查,故选D. 【考点】统计与概率. 6.【答案】C【解析】两个长方体如图放置,其左视图为C 选项,故选C. 【提示】由于审题不清看成主视图而选A 或实线与虚线混淆而选D. 【考点】简单几何体的三视图.7.【答案】C【解析】由平行四边形的对角线互相平分知OA OC =,因为6AC =,所以3OA =,因为AB AC ⊥,由勾股定理得5OB =,所以10BD =,故选C. 【考点】平行四边形的性质,勾股定理. 8.【答案】A【解析】点P 在AC 上运动时,线段AP 的长度和时间成一次函数关系;当点P 在BC 上运动时AP 的长度和时间不成一次函数关系;点P 在BA 上运动时,线段AP 的长度和时间又成一次函数关系,图象分为三部分,故选A.【提示】将点P 在BC 上运动时的总路程误认为是AP 的长度而致错. 【考点】点的运动变化与函数图象的对应关系.第Ⅱ卷二、填空题 9.【答案】1【解析】原式321=-=. 【考点】立方根,绝对值. 10.【答案】2-【解析】解不等式①得2x -≥,解不等式②得2x <,所以不等式的解集为22x -≤<,其中的整数解包括2-,1-,0,1,21012--++=-.【考点】不等式组的整数解的确定. 11.【答案】105【解析】由线段垂直平分线的性质知25DCB B ∠=∠=︒,由等腰三角形及三角形外角的性质知50A ADC ∠=∠=︒,由三角形内角和定理知80ACD ∠=︒,所以105ACB ∠=︒.【考点】尺规作图. 12.【答案】8【解析】抛物线经过点(2,0)-,对称轴为2x =,故点B 的坐标为(6,0),所以线段AB 的长为8. 【考点】二次函数的轴对称性. 13.【答案】13【解析】由题意画出树形图如下:由树形图知两个人依次从袋子中随机摸出一个小球不放回,第一个摸到红球且第二个人摸到白球的概率是41123=. 【提示】易忽略将第一个小球不放回而致错. 【考点】概率.14.【答案】π342+【解析】设BC 与D C ''交于点O ,由题意知,A ,B ,C '三点共线,连接BC ',则30AC D ''∠=︒,60CBC '∠=︒,所以90BOC '∠=︒,AC ',1BC '=-,12BO =-,32OC '=,1133)(2224BOC S =⨯-⨯=-△.同理34D OC S '△,3π32)442S =⨯=+阴影.【考点】不规则图形面积的计算. 15.【答案】52或53【解析】由题意知点D '在ABC ∠的平分线上,作D G AB '⊥于G ,D H CB '⊥于H ,D I CD '⊥于I ,则D H D G ''=,设D G x '=,在Rt AD G '△中有222(7)5x x -+=,解得13x =,24x =.当3D G '=时,在Rt ED I '△中222(73)2DE DE --+=,解得52DE =;当4D G '=时,在Rt ED I '△中222(74)1DE DE --+=,解得53DE =,所以DE 的长为52或53.【考点】图形的轴对称,勾股定理. 三、解答题16. 【解析】原式2(1)(1)21(1)x x x x x x x +-++=÷-21(1)x xx x +=+g 11x =+.当1x =时,原式===.【考点】分式的化简求值. 17.【答案】(1)证明:连接OA. PA Q 为O e 的切线,OA PA ∴⊥.在Rt AOP △中,90903060AOP APO ∠=︒-∠=︒-︒=︒,11603022ACP AOP ∴∠=∠=⨯︒=︒.ACP APO ∴∠=∠. AC AP ∴=.ACP ∴△是等腰三角形.(2)①1.1.【考点】切线的性质,等腰三角形的性质,菱形的判定,正方形的判定. 18.【答案】(1)144.(2)“篮球”选项的频数为40,正确补全条形统计图.(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为401200160300⨯=(人).(4)这种说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也有最喜欢乒乓球的,因此应多于108人.【考点】扇形统计图,条形统计图. 19.【答案】308.【解析】过点C 作CD AB ⊥,交BA 的延长线于点D ,则AD 即为潜艇C 的下潜深度. 根据题意得30ACD ∠=︒,68BCD ∠=︒. 设AD x =,则1000BD BA AD x =+=+.在Rt ACD △中,tan tan30AD xCD ACD ==∠︒.在Rt BCD △中,tan68BD CD =︒g .1000tan 68x ∴+=︒g .10003081.72.51x ∴=≈≈⨯-.∴潜艇C 离开海平面下潜深度约为308米.【考点】应用三角函数解直角三角形. 20.【答案】(1)8y x=. (2)12.【解析】(1)过点B ,D 作x 轴的垂线,垂足分别为点M ,N .(5,0)A Q ,(2,6)B ,2OM BC ∴==,6BM OC ==,3AM =.DN BM ∥Q ,ADN ABM ∴△△:.13DN AN AD BM AM AB ∴===. 2DN ∴=,1AN =,4ON ∴=.∴点D 的坐标为(4,2).又Q 双曲线ky x=(0x >)经过点D , 24k∴=,即8k =. ∴双曲线的解析式为8y x=.(2)Q 点E 在BC 上,∴点E 的纵坐标为6. 又Q 点E 在双曲线8y x=上, ∴点E 的坐标为4(,6)3.43CE ∴=.=OCE AOD ODBE OABC S S S S ∴--△△四边形梯形111()222BC OA OC OC CE OA DN =⨯+⨯-⨯⨯-⨯⨯ 1141(25)66522232=⨯+⨯-⨯⨯-⨯⨯ 12=.∴四边形ODBE 的面积为12.【考点】相似三角形的判定与性质,待定系数法求函数解析式,面积分解法求图形面积.21.【答案】(1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元,则有10204000,20103500,a b a b +=⎧⎨+=⎩ 解得100,150.a b =⎧⎨=⎩即每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元.(2)①根据题意得100150(100)y x x =+-, 即5015000y x =-+.②根据题意得1002x x -≤,解得1333x ≥.5015000y x =-+Q 中,500-<,∴y 随x 的增大而减小. Q x 为正整数,∴当34x =时,y 取得最大值,此时10066x -=.即商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大.(3)根据题意得(100)150(100)y m x x =++-, 即(50)15000y m x =-+.133703x ≤≤. ①当050m <<时,500m -<,y 随x 的增大而减小,∴当34x =时,y 取得最大值,即商店购进34台A 型电脑和66台B 型电脑才能获得最大利润;②当50m =时,500m -=,15000y =,即商店购进A 型电脑数量满足133703x ≤≤的整数时,均获得最大利润;③当50100m <<时,500m ->,y 随x 的增大而增大, 70x ∴=时,y 取得最大值,即商店购进70台A 型电脑和30台B 型电脑才能获得最大利润.【考点】一次函数,二元一次方程组. 22.【答案】(1)①60.②AD BE =, (2)90AEB ∠=︒;2AE CM BE =+.(3 【解析】(1)①60.②AD BE =.(2)90AEB ∠=︒;2AE CM BE =+.理由:ACB △Q 和DCE △均为等腰直角三角形, 90ACD DCE ∠=∠=︒,AC BC ∴=,CD CE =,ACB DCB DCE DCB ∠-∠=∠-∠,即ACD BCE ∠=∠.ACD BCE ∴≅△△.AD BE ∴=,135BEC ADC ∠=∠=︒,1354590AEB BEC CED ∴∠=∠-∠=︒-︒=︒.在等腰Rt DCE △中,CM 为斜边DE 上的高, CM DM ME ∴==.2DE CM ∴=. 2AE DE AD CM BE ∴=+=+.(3【提示】1PD =Q ,90BPD ∠=︒,BP ∴是以点D 为圆心,以1为半径的D e 的切线,点P 为切线.第一种情况:如图,过点A 作AP 的垂线,交BP 于点P ',可证APD AP B '≅△△,1PD P B '==.CD =Q 2BD ∴=,BP =.111()222AM PP PB BP ''∴==-=. 第二种情况:如图,可得11()22AM PP PB BP ''==+【考点】全等三角形,分类讨论数学思想. 23.【答案】(1)245y x x =-++. (2)①12m =. ②2或12+ (3)3(33)P -.【解析】解:(1)Q 抛物线2y x bx c =-++与x 轴交于(1,0)A -,(5,0)B 两点,220(1),055.b c b c ⎧=---+⎪∴⎨=-++⎪⎩4,c 5.b =⎧∴⎨=⎩ ∴抛物线的解析式为245y x x =-++.(2)Q 点P 的横坐标为m ,则2(,45)P m m m -++,3(,3)4E m m -+,(,0)F m .Q 点P 在x 轴上方,要使5PE EF =,点P 应在y 轴右侧,05m ∴<<.2344(3)4PE m m m ∴=-++--+21924m m =-++.分两种情况讨论:①当点E 在点F 上方时,334EF m =-+.5PE EF =Q ,219325(3)44m m m ∴-++=-+. 即2217260m m -+=,解得12m =,2132m =(舍去);②当点E 在点F 下方时,334EF m =-.5PE EF =Q ,219325(3)44m m m ∴-++=-.即2170m m --=,解得3m =4m =, m ∴为2或12.(3)点P 的坐标为1111(,)24P -,2(4,5)P ,3(33)P .【提示】Q E 和E '关于直线PC 对称,E CP ECP '∴∠=∠. 又PE y ∥Q 轴,EPC E CP PCE '∴∠=∠=∠.PE EC ∴=. 又CE CE '=Q ,∴四边形PECE '为菱形, 过点E 作EM y ⊥轴于点M ,CME COD ∴△△:.54CE m ∴=.PE CE =Q ,2195244m m m ∴-++=或2195244m m m -++=-.解得112m =-,24m =,33m =-43m =.可求得点P 的坐标为1111(,)24P -,2(4,5)P ,3(33)P .【考点】待定系数法求解析式,分类讨论思想方法的应用,数形结合的能力,相似三角形的判定与性质,菱形的判定与性质等知识.。

2014年河南省中招数学答案

2014年河南省中招数学答案

2014年河南省中招考试数学试卷(答案)一、选择题(每题3分,共24分)二、填空题(每题3分,共21分)三、解答题(本大题8分,共75分)16.原式=()()()2x1x12x x1x x1x+-++÷-…………………………………………………4分=()2x1xx x1++=1x1+…………………………………………………………………………6分当时,原式8分17.(1)连接OA,∵PA为⊙O的切线,∴O A⊥PA.……………………………1分在Rt△AOP中,∠AOP=900-∠APO=900-300=600.∴∠ACP=12∠AOP=12×600=300. …………………………………………4分∴∠ACP=∠APO, ∴AC=AP.∴△ACP是等腰三角形.………………………………………………………5分(2)①1;……………………………………………………………………………7分………………………………………………………………………9分18.(l)144:……………………………………………………………………………2分(2)(“篮球”选项的频数为40.正确补全条形统计图):………………………4分(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为1200×40300=160(人):………………………………………………………7分(4)这种说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人。

………9分(注:只要解释合理即可)19.过点C 作C D ⊥AB,交BA 的延长线于点D.则AD 即为潜艇C 的下潜深度. 根据题意得 ∠ACD=300,∠BCD=680. 设AD=x.则BD =BA 十AD=1000+x.在Rt △ACD 中,CD=xtan tan 30AD ACD =∠…………………………………4分在Rt △BCD 中,BD=C D ·tan688∴·tan688………………………………………………………………7分 ∴10003081.7 2.51≈≈⨯- ∴潜艇C 离开海平面的下潜深度约为308米。

河南省2014年中考数学试卷及答案(

河南省2014年中考数学试卷及答案(

2014年河南省中招考试数学试卷一、选择题(每小题 分,共 分)下列各数中,最小的数是( )☎✌✆  ☎✆13☎✆13☎✆ 据统计, 年河南省旅游业总收入达到 亿元 若将 亿用科学计数法表示为 × ⏹,则⏹等于( )(✌✆  ( ✆  ☎✆ ☎✆如图,直线✌、 相交于 ,射线 平分∠✌☠⊥若∠✌  ,则∠ ☠的度数为( )☎✌✆  ☎✆  ☎✆ ( ✆ 下列各式计算正确的是 ( )(✌)♋ ♋ ♋ ( )( ♋ ✆ ♋☎)♋ ·♋ ♋ ( )(♋+♌) ♋  ♌下列说法中,正确的是 ( )(✌)“打开电视,正在播放河南新闻节目”是必然事件( )某种彩票中奖概率为 %是指买十张一定有一张中奖(♍)神州飞船发射前钻要对冬部件进行抽样检查( )了解某种节能灯的使用寿命适合抽样调查将两个长方体如图放皿,到所构成的几何体的左视田可能是( )如图,✌的对角线✌与 相交于点 ✌⊥✌若✌ ✌ 则 的长是( )☎✌✆ ☎✆  ☎✆ ( ) 如图,在 ♦ △✌中,∠  ,✌♍❍, ♍❍,点 从✌出发,以 ♍❍♦的速沿折线✌  ✌运动,最终回到✌点。

设点 的运动时间为⌧(♦),线段✌的长度为⍓(♍❍),则能反映⍓与⌧之间函数关系的图像大致是 ( )二、填空题(每小题 分,共 分)计算:3272-- 不等式组3x6042x0+≥⎧⎨-⎩>的所有整数解的和是 在△✌中,按以下步骤作图:①分别以 、 为圆心,以大于12的长为半径作弧,两弧相交于两点 、☠;②作直线☠交✌于点 ,连接  若 ✌,∠  ,则∠✌的度数为 已知抛物线⍓♋⌧ ♌⌧♍☎♋≠ ✆与⌧轴交于✌、 两点.若点✌的坐标为( ✆,抛物线的对称轴为直线⌧.则线段✌的长为 一个不进明的袋子中装有仅颇色不同的 个红球和 个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 如图,在菱形✌中 ✌ ∠ ✌ 把菱形✌绕点✌顺时针旋转  得到菱形✌,其中点 的运动能路径为/CC ,则图中阴影部分的面积为 如图,矩形✌中,✌✌点☜为 上一个动点,把△✌☜沿✌☜折叠,当点 的对应点 落在∠✌的角平分线上时, ☜的长为  三、解答题(本大题共 个,满分 分) ☎分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中⌧2  ( 分)如图 是⊙ 的直径,且 ♍❍,点 为 的延长线上一点,过点 作⊙ 的切线 ✌、 ,切点分别为点✌、 ( )连接✌若∠✌=  ,试证明△✌是等腰三角形; ( )填空:①当  ♍❍时,四边形✌是菱形;APO DB②当  ♍❍时,四边形✌是正方形.( 分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校 名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图. 请根据以上信息解答下列问题:☎✆课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; ☎)请补全条形统计图;☎)该校共有 名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;☎)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为 ×27300”,请你判断这种说法是否正确,并说明理由.( 分)在中俄“海上联合— ”反潜演习中,我军舰✌测得潜艇 的俯角为  .位于军舰✌正上方 米的反潜直升机 侧得潜艇 的俯角为其它篮球羽毛球乒乓球2033275040302010项目人数“经常参加”课外体育锻炼的男生最喜欢的一种项目 条形统计图课外体育锻炼情况 扇形统计图经常参加从不参加 15%偶尔参加45% 试根据以上数据求出潜艇 离开海平面的下潜深度 (结果保留整数。

2014年河南省中招考试数学试卷及答案(解析版)

2014年河南省中招考试数学试卷及答案(解析版)

2014年河南省中招考试数学试卷及答案解析一、选择题(每小题 分,共 分)下列各数中,最小的数是()1313答案:解析:根据有理数的大小比较法则(正数都大于 ,负数都小于 ,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解: ﹣ < 13< <13,最小的数是﹣ ,故选 .据统计, 年河南省旅游业总收入达到 亿元 若将 亿用科学计数法表示为 × ,则 等于()( (答案:解析:科学记数法的表示形式为 的形式,其中 < , 为整数,表示时关键要正确确定 的值以及 的值. 亿 × ,故选 如图,直线 、 相交于 ,射线 平分∠ ⊥若∠ ,则∠ 的度数为()(答案:解析:根据角的平分线的性质及直角的性质,即可求解.∠ 故选下列各式计算正确的是()( ) ( )() · ( )( + )答案:解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;( 计算正确,故选下列说法中,正确的是()( )“打开电视,正在播放河南新闻节目”是必然事件( )某种彩票中奖概率为 %是指买十张一定有一张中奖( )神州飞船发射前需要对零部件进行抽样检查( )了解某种节能灯的使用寿命适合抽样调查答案:解析:根据统计学知识;( )“打开电视,正在播放河南新闻节目”是随机事件,( )错误。

( )某种彩票中奖概率为 %是指买十张一定有一张中奖是随机事件,( )错误。

( )神州飞船发射前需要对零部件进行抽样检查要全面检查。

( )了解某种节能灯的使用寿命适合抽样调查,( )正确。

故选将两个长方体如图放置,到所构成的几何体的左视图可能是()答案:解析:根据三视图可知, 正确。

如图, 的对角线 与 相交于点 ⊥ 若 则的长是()( ) 答案:解析:根据平行四边形的性质勾股定理可得, △ 1212×∴ 又 × 故 正确。

如图,在 △ 中,∠ , , ,点 从 出发,以 的速沿折线 运动,最终回到 点。

河南省2014年中考数学试卷及答案(

河南省2014年中考数学试卷及答案(

2014年河南省中招考试数学试卷一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A)。

0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875。

5亿元.若将3875.5亿用科学计数法表示为3。

8755×10n,则n等于()(A)10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM=350,则∠CON的度数为( )(A) .350(B). 450(C)。

550(D)。

6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目"是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是()7.如图,ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB =4,AC =6,则BD的长是()(A)8 (B)9 (C)10 (D)118。

如图,在Rt △ABC中,∠C=900,AC=1cm,BC=2cm,点P从A出发,以1cm/s的速沿折线AC CB BA运动,最终回到A点.设点P的运动时间为x(s),线段AP的长度为y(cm),则能反映y与x之间函数关系的图像大致是()二、填空题(每小题3分,共21分)9。

计算:3272--= 。

10.不等式组3x6042x0+≥⎧⎨-⎩>的所有整数解的和是。

11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N;②作直线MN 交AB 于点D,连接CD 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年河南省中招考试数学试卷一、选择题(每小题3分,共24分)1.下列各数中,最小的数是 ( ) (A). 0 (B).13 (C).-13(D).-3 2. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n ,则n 等于 ( ) (A) 10 (B) 11 (C).12 (D).133.如图,直线AB 、CD 相交于O ,射线OM 平分∠AOC,O N ⊥OM,若∠AOM =350,则∠CON 的度数为 ( )(A) .350 (B). 450 (C) .550 (D). 650 w W w . x K b 1.c o M 4.下列各式计算正确的是 ( ) (A )a +2a =3a 2 (B )(-a 3)2=a 6 (C )a 3·a 2=a 6 (D )(a +b )2=a 2 + b 25.下列说法中,正确的是 ( ) (A )“打开电视,正在播放河南新闻节目”是必然事件 (B )某种彩票中奖概率为10%是指买十张一定有一张中奖 (c )神州飞船发射前钻要对冬部件进行抽样检查 (D )了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是( )7.如图,ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )118.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。

设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( )二、填空题(每小题3分,共21分)9.2-= .10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是 .11.在△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD. 若CD=AC,∠B=250,则∠ACB的度数为.12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB的长为.13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是.14.如图,在菱形ABCD中,AB =1,∠DAB=600,把菱形ABCD绕点A顺时针旋转300得到菱形AB'C'D',其中点C的运动能路径为/CC,则图中阴影部分的面积为.15.如图,矩形ABCD中,AD=5,AB=7.点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D/落在∠ABC的角平分线上时,DE的长为.三、解答题(本大题共8个,满分75分)16.(8分)先化简,再求值:222x1x12x x x⎛⎫-+÷+⎪-⎝⎭,其中 117.(9分)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O 的切线PA、PB,切点分别为点A、B.(1)连接AC,若∠APO=300,试证明△ACP是等腰三角形;(2)填空:①当DP= cm时,四边形AOBD是菱形;②当DP= cm时,四边形AOBP是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题: (1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A 测得潜艇C 的俯角为300.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为680.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数。

参考数据:sin680≈0.9,cos680≈0.4,,tan680≈≈1.7)20.(9分)如图,在直角梯形OABC 中,BC//AO ,∠AOC=900,点A 、B 的坐标分别为(5,0)、(2,6),点D 为AB 上一点,且BD=2AD.双曲线y=kx(x >0)经过点D,交BC 于点E.(1)求双曲线的解析式; (2)求四边形ODBE 的面积。

21.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。

设购进A掀电脑x台,这100台电脑的销售总利润为y元。

①求y与x的关系式;②该商店购进A型、B型各多少台,才能使销售利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A 型电脑70台。

若商店保持两种电脑的售价不变,请你以上信息及(2)中的条件,设计出使这100台电脑销售总利润最大的进货方案。

X|k | B | 1 . c |O |m22.(10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE填空:(1)∠AEB的度数为;(2)线段AD,BE之间的数量关系是。

(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=900, 点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE。

请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由。

(3)解决问题如图3,在正方形ABCD中,P满足PD=1,且∠BPD=900,请直接写出点A到BP的距离。

23. (11分)如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(5,0)两点,直线y=-34x+3与y轴交于点C,,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m。

(1)求抛物线的解析式;(2)若PE =5EF,求m的值;(3)若点E/是点E关于直线PC的对称点、是否存在点P,使点E/落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由。

2014年河南省中招考试数学试卷(答案)一、选择题(每题3分,共24分)二、填空题(每题3分,共21分)16.原式=()()()2x 1x 12x x 1x x 1x+-++÷-…………………………………………………4分 =()2x 1xx x 1++=1x 1+…………………………………………………………………………6分当时,原式8分17.(1)连接OA ,∵PA 为⊙O 的切线,∴O A ⊥PA. ……………………………1分在Rt △AOP 中,∠AOP=900-∠APO=900-300=600. ∴∠ACP=12∠AOP=12×600=300. …………………………………………4分 ∴∠ACP=∠APO, ∴AC=AP .∴△ACP 是等腰三角形. ………………………………………………………5分 (2)①1;……………………………………………………………………………7分………………………………………………………………………9分 18.(l )144: ……………………………………………………………………………2分 (2)(“篮球”选项的频数为40.正确补全条形统计图):………………………4分 (3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为 1200×40300=160(人):………………………………………………………7分 (4)这种说法不正确.理由如下:新-课-标- 第- 一-网小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人。

………9分 (注:只要解释合理即可)19.过点C 作C D ⊥AB,交BA 的延长线于点D.则AD 即为潜艇C 的下潜深度. 根据题意得 ∠ACD=300,∠BCD=680. 设AD=x.则BD =BA 十AD=1000+x.在Rt △ACD 中,CD=xtan tan 30AD ACD =∠…………………………………4分在Rt △BCD 中,BD=C D ·tan688∴·tan688………………………………………………………………7分 ∴10003081.7 2.51≈≈⨯- ∴潜艇C 离开海平面的下潜深度约为308米。

………………………………………9分20.(1)过点B、D作x轴的的垂线,垂足分别为点M、N.∵A (5.0)、B(2,6),∴OM=BC=2,BM=OC=6,AM=3.∵DN∥BM,∴△AND∽△ABM.∴13 DN AN AD BM AM AB===∴DN =2,AN=1,∴ON=4∴点D的坐标为(4,2).………………………………………………………………3分又∵双曲线y=kx(x>0)经过点D,∴k=2×4=8∴双曲线的解析式为y=8x.…………………………………………………………5分(2)∵点E在BC上,∴点E的纵坐标为6.又∵点E在双曲线y=8x上,∴点E的坐标为(43,6),∴CE=43………………………………………………………7分∴S四边形ODBE=S梯形OABC-S△OCE-S△AOD=12×(BC+OA)×OC-12×OC×CE-12×OA×DN=12×(2+5)×6-12×6×43-12×5×2=12∴四边形ODBE的面积为12.…………………………………………………………9分21.(1)设每台A型电脑的销售利润为a元,每台B型电脑的销售利润为b元,则有10a20b400020a10b=3500+=⎧⎨+⎩解得a=100b=150⎧⎨⎩即每台A型电脑的销售利润为100元,每台B型电脑的销售利润为150元. ……4分(2)①根据题意得y=100x+150(100-x),即y=-50x+15000…………………5分②根据题意得100-x≤2x,解得x≥3313,∵y=-50x+15000,-50<0,∴y随x的增大而减小.∵x为正整数,∴当x=34最小时,y取最大值,此时100-x=66.即商店购进A型电脑34台,B型电脑66台,才能使销售总利润最大………7分(3)根据题意得y=(100+m)x+150(100-x),即y=(m-50)x+15000.3313≤x≤70.①当0<m<50时,m-50<0,y随x的增大而减小.∴当x =34时,y取得最大值.即商店购进34台A型电脑和66台B型电脑才能获得最大利润;…………8分②当m=50时,m -50=0,y =15000. 即商店购进A 型电脑数最满足3313≤x ≤70的整数时,均获得最大利润;…9分 ③当50<m <100时,m -50>0,y 随x 的增大而增大. ∴x=70时,y 取得最大值.即商店购进70台A 型电脑和30台B 型电脑才能获得最大利润.……………10分 22. (1)①60;②AD=BE. ……………………………………………………………2分(2)∠AEB =900;AE=2CM+BE. ………………………………………………4分 (注:若未给出本判断结果,但后续理由说明完全正确,不扣分) 理由:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 900, ∴AC=BC, CD=CE, ∠ACB=∠DCB=∠DC E -∠DCB, 即∠ACD= ∠BCE∴△AC D ≌△BCE. ………………………………………………………………6分 ∴AD = BE, ∠BEC=∠ADC=1350.∴∠AEB=∠BE C -∠CED=1350-450=900.…………………………………7分在等腰直角三角形DCE 中,CM 为斜边DE 上的高,∴CM= DM= ME ,∴DE=2CM.∴AE=DE+AD=2CM+BE ………………………………………………………8分…………………………………………………………10分 【提示】PD =1,∠BPD=900,∴BP 是以点D 为圆心、以1为半径的OD 的切线,点P 为切点. 第一种情况:如图①,过点A 作AP 的垂线,交BP 于点P /,可证△AP D ≌△AP /B,PD=P /B=1,∴∴AM=12PP /=12(PB-BP /第二种情况如图②,可得AM12PP /=12(PB+BP /X|k | B | 1 . c |O |m23. (1)∵抛物线y=-x 2+bx+c 与x 轴交于A (-1,0) , B(5,0)两点,∴220=1b+c0=55b+c⎧---⎨-+⎩()∴b=4c=5⎧⎨⎩∴抛物线的解析式为y=-x2+4x+5.………………………………………………3分(2)点P横坐标为m,则P(m,-m2+4m+5),E(m,-34m+3),F(m,0),∵点P在x轴上方,要使PE=5EF,点P应在y轴右侧,∴0<m<5.PE=-m2+4m+5-(-34m+3)= -m2+194m+2……………………………4分分两种情况讨论:①当点E在点F上方时,EF=-34m+3.∵PE=5EF,∴-m2+194m+2=5(-34m+3)即2m2-17m+26=0,解得m1=2,m2=132(舍去)………………………………6分②当点E在点F下方时,EF=34m-3.∵PE=5EF,∴-m2+194m+2=5(34m-3),即m2-m-17=0,解得m3,m4(舍去),新课标第一网∴m的值为2或12+………………………………………………………………8分(3),点P的坐标为P1(-12,114),P2(4,5), P3(,-3).……………………11分【提示】∵E和E/关于直线PC对称,∴∠E/CP=∠ECP; 又∵P E∥y轴,∴∠EPC=∠E/CP=∠PCE, ∴PE=EC,又∵CE=CE/,∴.四边形PECE/为菱形.过点E作E M⊥y轴于点M,∴△CM E∽△COD,∴CE=5m 4.∵PE=CE,∴-m2+194m+2=54m或-m2+194m+2=-54m,解得m1=-12,m2=4, m3,m4(舍去)可求得点P的坐标为P1(-12,114),P2(4,5), P3(,-3)。

相关文档
最新文档