高中数学必修2《点、直线、平面之间的位置关系》知识点
高中数学必修《点直线平面之间的位置关系》知识点

高中数学必修《点直线平面之间的位置关系》知识点高中数学必修的《点直线平面之间的位置关系》是一个重要的几何知识点,主要涉及直线与平面、点与直线、点与平面之间的位置关系。
这个知识点对于理解几何图形的形状和性质具有重要作用,也为后续的三角函数、向量等知识打下基础。
下面将详细介绍该知识点的内容。
一、直线与平面的位置关系1.平面方程:平面的一般方程为Ax+By+Cz+D=0,其中A、B、C为不能同时为0的实数,A、B、C为平面的法向量,D为常数项。
2.直线与平面的位置关系:(1)直线与平面相交:直线与平面相交可以有一个交点,也可以有无穷多个交点。
(2)直线含于平面:如果直线的所有点都在平面上,则直线被称为含于平面。
(3)直线与平面平行:如果直线与平面的交点集为空集,则直线与平面平行。
(4)直线与平面垂直:如果直线与平面的任意一条直线都垂直,则直线与平面垂直。
二、点与直线的位置关系1.点与直线的距离:点P(x0,y0)到直线Ax+By+C=0的距离公式为d=,Ax0+By0+C,/√(A^2+B^2)。
2.点到线段的距离:点P到线段AB的距离:(1)如果P在AB的延长线上,则距离为AP或BP的长度。
(2)如果P在线段AB的两边,则距离为点P到线段AB所在直线的距离。
(3)如果P在线段AB上,则距离为0。
三、点与平面的位置关系1.点在平面上:点P(x0,y0,z0)在平面Ax+By+Cz+D=0上的充要条件是Ax0+By0+Cz0+D=0。
2.点到平面的距离:点P到平面Ax+By+Cz+D=0的距离公式为d=,Ax0+By0+Cz0+D,/√(A^2+B^2+C^2)。
3.点关于平面的对称点:点P(x0,y0,z0)关于平面Ax+By+Cz+D=0的对称点的坐标为:(x',y',z')=(x0-2*Ax0/(A^2+B^2+C^2),y0-2*By0/(A^2+B^2+C^2),z0-2*Cz0/(A^2+B^2+C^2))。
点、直线、平面之间的位置关系(知识点汇总)大全

必修2第二章 点、直线、平面之间的位置关系1.四个公理:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(此公理可以用来判断直线是否在平面内)。
符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且。
公理2:过不在一条直线上的三点,有且只有一个平面。
三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面; ② 经过两条相交直线,有且只有一个平面; ③ 经过两条平行直线,有且只有一个平面; (它们给出了确定一个平面的依据)。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(这条公共直线即为两个平面的交线)。
符号语言:,,P P l P l αβαβ∈∈⇒=∈ 且。
公理4:平行于同一直线的两条直线互相平行(平行线的传递性)。
符号语言://,////a l b l a b ⇒且。
2.空间中直线与直线之间的位置关系(1)位置关系:两条直线⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点(2)异面直线:把不在任何一个平面内的两条直线叫做异面直线。
(3)两条异面直线所成的角:已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角)。
(易知:夹角范围090θ<≤︒)(4)等角定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
3.空间中直线与平面之间的位置关系直线l 与平面α//l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩直线在平面内()有无数个公共点直线与平面相交()有且只有一个公共点直线在平面外直线与平面平行()没有公共点4.空间中平面与平面之间的位置关系平面α与平面β//l αβαβ⎧⎨=⎩两个平面平行()没有公共点两个平面相交()有一条公共直线5.直线与平面平行的判定及其性质定理定理 定理内容 符号表示直线与平面 平行的判定平面外的一条直线与平面内的一条直线平行,则该直线与此平面平行ααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄ 平面与平面平行的判定 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行βαααββ//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⊂⊂P b a b a b a 直线与平面平行的性质一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα平面与平面平行的性质如果两个平行平面同时和第三个平面相交,那么它们的交线平行b a b a ////⇒⎪⎭⎪⎬⎫==βγαγβα(1)线面平行的其它判定方法 ①定义:直线与平面无公共点;②若两个平面平行,则在其中一个平面内的任意一条直线平行于另一个平面; 符号语言:αββα////a a ⇒⎭⎬⎫⊂; (2)面面平行的其它判定方法 ①定义:两个平面无公共点;②垂直于同一条直线的两个平面平行;符号语言:βαβα//⇒⎭⎬⎫⊥⊥a a ; ③平行于同一个平面的两个平面平行;符号语言:βαγβγα//////⇒⎭⎬⎫; ④如果一个平面内的两条相交直线平行于另一个平面内的两条相交直线,那么这两个平面互相平行;符号语言:βαβα//,,////⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫==⊂⊂B d b A c a d b c a dc b a ;6.直线与平面所成的角(1)直线与平面垂直:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α垂直,记作l α⊥。
2023年高中数学必修知识点总结点直线与平面的位置关系

高中数学必修2知识点总结02点、直线、平面旳位置关系点、直线、平面是构成空间几何体基本元素,研究它们之间旳性质以及互相之间旳位置关系,是研究空间几何体性质旳一般措施。
教材规定:理解空间中点、直线、平面旳位置关系;学会用数学语言表述有关平行、垂直旳鉴定与性质,并对某些结论进行论证;掌握直线和平面平行旳鉴定定理和性质定理;理解直线和平面垂直旳概念;掌握直线和平面垂直旳鉴定定理;掌握三垂线定理及其逆定理等一、直线与平面位置关系高考考试内容及考试规定:考试内容:1、平面及其基本性质;2、平行直线;对应边分别平行旳角;异面直线所成旳角;异面直线旳公垂线;异面直线旳距离;3、直线和平面平行旳鉴定与性质;直线和平面垂直旳鉴定与性质;点到平面旳距离;斜线在平面上旳射影;直线和平面所成旳角;三垂线定理及其逆定理;4、平行平面旳鉴定与性质;平行平面间旳距离;二面角及其平面角;两个平面垂直旳鉴定与性质;考试规定:1、掌握平面旳基本性质;可以画出空间两条直线、直线和平面旳多种位置关系旳图形,可以根据图形想像它们旳位置关系。
2、掌握两条直线平行与垂直旳鉴定定理和性质定理,掌握两条直线所成旳角和距离旳概念,对于异面直线旳距离,只规定会计算已给出公垂线时旳距离;3、掌握直线和平面平行旳鉴定定理和性质定理;掌握直线和平面垂直旳鉴定定理和性质定理;掌握斜线在平面上旳射影、直线和平面所成旳角、直线和平面旳距离旳概念掌握三垂线定理及其逆定理;4、掌握两个平面平行旳鉴定定理和性质定理,掌握二面角、二面角旳平面角、两个平行平面间旳距离旳概念,掌握两个平面垂直旳鉴定定理和性质定理。
二、空间中旳平行关系课标规定:1.平面旳基本性质与推论借助长方体模型,在直观认识和理解空间点、线、面旳位置关系旳基础上,抽象出空间线、面位置关系旳定义,并理解如下可以作为推理根据旳公理和定理:◆公理1:假如一条直线上旳两点在一种平面内,那么这条直线在此平面内;◆公理2:过不在一条直线上旳三点,有且只有一种平面;◆公理3:假如两个不重叠旳平面有一种公共点,那么它们有且只有一条过该点旳公共直线; ◆公理4:平行于同一条直线旳两条直线平行;◆定理:空间中假如两个角旳两条边分别对应平行,那么这两个角相等或互补。
(完整版)点、直线、平面之间的位置关系知识点总结,推荐文档

点、直线、平面之间的位置关系一、线、面之间的平行、垂直关系的证明书中所涉及的定理和性质可分为以下三类:1、平行关系与平行关系互推;2、垂直关系与垂直关系互推;线面垂直判定定理线面垂直的定义两平面的法线垂直则两平面垂直面面垂直判定定理线面平行判定定理线面平行性质定理线面平行转化面面平行判定定理面面平行性质定理3、平行关系与垂直关系互推。
以线或面为元素,互推的本质是以某一元素为中介,通过另外两元素与中介元素的垂直或平行关系,推导出该两元素的关系,总共有21种情况,能得出结论的有以下9种情况。
线线平行传递性:;b c c a b a //////⇒⎭⎬⎫面面平行传递性:;γαβγβα//////⇒⎭⎬⎫线面垂直、线面垂直线面平行:;⇒ααββα//a a a ⇒⎪⎭⎪⎬⎫⊄⊥⊥线面垂直线线平行(线面垂直性质定理):;⇒b a b a //⇒⎭⎬⎫⊥⊥αα线面垂直面面平行:;⇒βαβα//⇒⎭⎬⎫⊥⊥a a 线面垂直、面面平行线面垂直:;⇒βαβα⊥⇒⎭⎬⎫⊥a a //线线平行、线面垂直线面垂直:;⇒αα⊥⇒⎭⎬⎫⊥b a b a //线面垂直、线面平行面面垂直:。
⇒βααβ⊥⇒⎭⎬⎫⊥a a //备注:另外证明平行关系时可以从最基本的定义交点入手,证明垂直关系时可以从最基本的定义角度入手。
符号化语言一览表①线面平行;;;ααα////a a b b a ⇒⎪⎭⎪⎬⎫⊄⊂αββα////a a ⇒⎭⎬⎫⊂ααββα//a a a ⇒⎪⎭⎪⎬⎫⊄⊥⊥②线线平行:;;;;////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭ b a b a //⇒⎭⎬⎫⊥⊥αα////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭b c c a b a //////⇒⎭⎬⎫③面面平行:;;;,////,//a b a b O a b αααβββ⊂⊂⎫⎪=⇒⎬⎪⎭βαβα//⇒⎭⎬⎫⊥⊥a a γαβγβα//////⇒⎭⎬⎫④线线垂直:;b a b a ⊥⇒⎭⎬⎫⊂⊥αα⑤线面垂直:;;,,a b a b O l l a l b ααα⊂⊂⎫⎪=⇒⊥⎬⎪⊥⊥⎭,l a a a l αβαββα⊥⎫⎪=⇒⊥⎬⎪⊂⊥⎭ ;;βαβα⊥⇒⎭⎬⎫⊥a a //αα⊥⇒⎭⎬⎫⊥b a b a //⑥面面垂直:二面角900; ;;βααβ⊥⇒⎭⎬⎫⊥⊂a a βααβ⊥⇒⎭⎬⎫⊥a a //二、立体几何中的重要方法1、求角:(步骤-------Ⅰ找或作角;Ⅱ求角)⑴异面直线所成角的求法:①平移法:平移直线,构造三角形;②补形法:补成正方体、平行六面体、长方体等,发现两条异面直线间的关系.注:还可用向量法,转化为两直线方向向量的夹角.⑵直线与平面所成的角:①直接法(利用线面角定义);②先求斜线上的点到平面距离h ,与斜线段长度作比,得sin ;③三线三角公式.θ12cos cos cos θθθ=注:还可用向量法,转化为直线的方向向量与平面法向量的夹角.⑶二面角的求法:①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;②垂面法:作面与二面角的棱垂直; ③投影法(三垂线定理);④面积摄影法.注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;还可用向量法,转化为两个班平面法向量的夹角.2、求距离:(步骤-------Ⅰ找或作垂线段;Ⅱ求距离)⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;或转化为线面距离、点面距离;⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;⑶点到平面的距离:①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;②等体积法;还可用向量法:.||n d =3、证明平行、垂直的理论途径:①证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点(定义);(2)转化为两直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.②证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点(定义);(2)转化为线线平行;(3)转化为面面平行.③证明平面与平面平行的思考途径:(1)转化为判定两平面无公共点(定义);(2)转化为线面平行;(3)转化为线面垂直.④证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直.⑤证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直(定义);(2)转化为该直线与平面内相交的两条直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面交线垂直.⑥证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直.。
数学必修二直线与平面位置关系知识点

数学必修二直线与平面位置关系知识点
在数学必修二中,直线与平面的位置关系是一项重要的知识点。
下面是一些常见的直
线与平面的位置关系:
1. 直线与平面相交:当一条直线与一个平面有一个公共点时,我们称这条直线与平面
相交。
2. 直线在平面上:当一条直线的所有点都在一个平面上时,我们称这条直线在平面上。
3. 直线与平面平行:当一条直线与一个平面的所有点都不相交时,我们称这条直线与
平面平行。
4. 直线垂直于平面:当一条直线与一个平面的每一条与其有公共点的直线都垂直时,
我们称这条直线垂直于平面。
此外,还有一些特殊情况需要注意:
1. 平面平行于坐标轴:当一个平面与某一个坐标轴平行时,在该坐标轴上方的所有点
的坐标都相同,可以利用这个特点来求解一些几何问题。
2. 平面与平面相交:当两个平面相交时,它们的交线是一条直线。
可以根据平面的方
程来求解平面与平面的交线。
3. 平面与平面平行:当两个平面平行时,它们的法向量相互平行。
可以根据平面的法
向量来判断平面与平面的位置关系。
掌握这些直线与平面的位置关系知识点,可以帮助我们解决更复杂的几何问题,如求解直线与平面的交点、确定直线与平面的位置关系等。
人教A版高中数学必修2第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系课件

C D
B A
C1 D1
B1 A1
知识小结
实例引 入平面
平面的画 法和表示
点和平面的 位置关系
平面三 个公理
空间图形
文字叙述
符号表示
2.1.2空间中两直线的位置 关系
平面有知识(复习 )
判断下列命题对错: 1、如果一条直线上有一个点在一个平面上,则这条直线上
的所有点都在这个平面内。( )
2、将书的一角接触课桌面,这时书所在平面和课桌所在平
直线。(既不相交也不平行的两条直线) 判断:
(1)
m
β
m
l
α
l
直线m和l是异面直线吗?
(2)
,则 与 是异面直线
(3)a,b不同在平面 内,则a与b异面
异面直线的画法:
通常用一个或两个平面来衬托,异面直线
不同在任何一个平面的特点
a
b
b
a
b
a
2、空间中两直线的三种位置关系
1、相交
m P
l
2、平行
m l
b′
平
a′ θ O
移
若两条异面直线所成角为90°,则称它们互相垂直。 异面直线a与b垂直也记作a⊥b 异面直线所成角θ的取值范围:
例 3 在正方体ABCD—A1B1C1D1中指出下列各对线段所
成的角:
D1
C1
1)AB与CC1; 2)A1 B1与AC; A1
B1
3)A1B与D1B1。
1)AB与CC1所成的角 = 9 0°
4、平面的基本性质
公理3 如果两个不重合的平面有一个公共点,
那么它们有且只有一条过该点的公共直线.
符号表示为:
P l, Pl.
点直线平面之间的位置关系知识点总结

点、直线、平面之间的位置关系知识点总结立体几何知识点总结1.直线在平面内的判定1利用公理1:一直线上不重合的两点在平面内;则这条直线在平面内.2若两个平面互相垂直;则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内;即若α⊥β;A∈α;AB⊥β;则ABα.3过一点和一条已知直线垂直的所有直线;都在过此点而垂直于已知直线的平面内;即若A∈a;a⊥b;A∈α;b⊥α;则aα.4过平面外一点和该平面平行的直线;都在过此点而与该平面平行的平面内;即若Pα;P∈β;β∥α;P∈a;a∥α;则aβ.5如果一条直线与一个平面平行;那么过这个平面内一点与这条直线平行的直线必在这个平面内;即若a∥α;A∈α;A∈b;b∥a;则bα.2.存在性和唯一性定理1过直线外一点与这条直线平行的直线有且只有一条;2过一点与已知平面垂直的直线有且只有一条;3过平面外一点与这个平面平行的平面有且只有一个;4与两条异面直线都垂直相交的直线有且只有一条;5过一点与已知直线垂直的平面有且只有一个;6过平面的一条斜线且与该平面垂直的平面有且只有一个;7过两条异面直线中的一条而与另一条平行的平面有且只有一个;8过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质1点在平面上的射影自一点向平面引垂线;垂足叫做这点在这个平面上的射影;点的射影还是点.2直线在平面上的射影自直线上的两个点向平面引垂线;过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.3图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时;射影是一条线段;当图形所在平面不与射影面垂直时;射影仍是一个图形.4射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:i射影相等的两条斜线段相等;射影较长的斜线段也较长;ii相等的斜线段的射影相等;较长的斜线段的射影也较长;iii垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行;并且方向相同;则这两个角相等.推论若两条相交直线和另两条相交直线分别平行;则这两组直线所成的锐角或直角相等.异面直线所成的角1定义:a、b是两条异面直线;经过空间任意一点O;分别引直线a′∥a;b′∥b;则a′和b′所成的锐角或直角叫做异面直线a和b所成的角.2取值范围:0°<θ≤90°.3求解方法①根据定义;通过平移;找到异面直线所成的角θ;②解含有θ的三角形;求出角θ的大小.5.直线和平面所成的角1定义和平面所成的角有三种:i垂线面所成的角的一条斜线和它在平面上的射影所成的锐角;叫做这条直线和这个平面所成的角.ii垂线与平面所成的角直线垂直于平面;则它们所成的角是直角.iii一条直线和平面平行;或在平面内;则它们所成的角是0°的角.2取值范围0°≤θ≤90°3求解方法①作出斜线在平面上的射影;找到斜线与平面所成的角θ.②解含θ的三角形;求出其大小.③最小角定理斜线和平面所成的角;是这条斜线和平面内经过斜足的直线所成的一切角中最小的角;亦可说;斜线和平面所成的角不大于斜线与平面内任何直线所成的角.6.二面角及二面角的平面角1半平面直线把平面分成两个部分;每一部分都叫做半平面.2二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱;这两个平面叫做二面角的面;即二面角由半平面一棱一半平面组成.若两个平面相交;则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量;通常认为二面角的平面角θ的取值范围是0°<θ≤180°3二面角的平面角①以二面角棱上任意一点为端点;分别在两个面内作垂直于棱的射线;这两条射线所组成的角叫做二面角的平面角.如图;∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.②二面角的平面角具有下列性质:i二面角的棱垂直于它的平面角所在的平面;即AB⊥平面PCD.ii从二面角的平面角的一边上任意一点异于角的顶点作另一面的垂线;垂足必在平面角的另一边或其反向延长线上.iii二面角的平面角所在的平面与二面角的两个面都垂直;即平面PCD⊥α;平面PCD⊥β.③找或作二面角的平面角的主要方法.i定义法ii垂面法iii三垂线法Ⅳ根据特殊图形的性质4求二面角大小的常见方法①先找或作出二面角的平面角θ;再通过解三角形求得θ的值.②利用面积射影定理S′=S·cosα其中S为二面角一个面内平面图形的面积;S′是这个平面图形在另一个面上的射影图形的面积;α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离1定义面外一点引一个平面的垂线;这个点和垂足间的距离叫做这个点到这个平面的距离.2求点面距离常用的方法:1直接利用定义求①找到或作出表示距离的线段;②抓住线段所求距离所在三角形解之.2利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上;则已知点到两平面交线的距离就是所求的点面距离.3体积法其步骤是:①在平面内选取适当三点;和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h;求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4转化法将点到平面的距离转化为平行直线与平面的距离来求.8.直线和平面的距离1定义一条直线和一个平面平行;这条直线上任意一点到平面的距离;叫做这条直线和平面的距离.2求线面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②将线面距离转化为点面距离;然后运用解三角形或体积法求解之.③作辅助垂直平面;把求线面距离转化为求点线距离.9.平行平面的距离1定义个平行平面同时垂直的直线;叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分;叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.2求平行平面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②把面面平行距离转化为线面平行距离;再转化为线线平行距离;最后转化为点线面距离;通过解三角形或体积法求解之.10.异面直线的距离1定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度;叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.2求两条异面直线的距离常用的方法①定义法题目所给的条件;找出或作出两条异面直线的公垂线段;再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法。
人教A版数学必修第二册8_4_2空间点、直线、平面之间的位置关系课件

3.若M∈平面α,M∈平面β,则α与β的位置关系是( B )
A.平行
B.相交
C.异面
D.不确定
α与β相交于过 点M的一条直线
4.平面α∥平面β,直线a⊂α,则a与β的位置关系是___平__行____. β
α a
考点精讲
1.异面直线
(1)定义:不同在___任__何__一__个__平__面__内____的两条直线. (2)异面直线的画法:
空间点、直线、平面之间的位置关系
本节目标
学习目标
核心素养
1.了解空间中两条直线的三种位置关系,理解
两异面直线的定义,会用平面衬托来画异面直 1.通过空间中两条直线的位置关
线.(重点、难点)
系的学习,培养直观想象的核
2.了解直线与平面的三种位置关系,并会用图 心素养.
形语言和符号语言表示.(重点、易错点)
本课小结
判断直线与平面及平面与平面位置关系的常用方法
(1)定义法:借助线面、面面位置关系的定义判断; (2)模型法:借助长方体等熟悉的几何图形进行判断,有时起到事半功倍的效果; (3)反证法:反设结论进行推导,得出矛盾,到达准确的判断位置关系的目的.
[提示] 因为一个平面内任意一条直线都与另一个 平面平行,所以该平面与另一平面没有公共点,根 据两平面平行的定义知,这两个平面平行.
2.平面α内有无数条直线与平面β平行,那么 α∥β是否正确?
[提示] 不正确.如图,平面α内与平面β平行的 直线有无数条a1,a2,…,an,但此时α不平行于 β,而α∩β=l.
2.圆柱的两个底面的位置关系是( B )
A.相交
B.平行
C.平行或异面
D.相交或异面
3.下列命题:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、线线平行、面面平行、面面平行间的关系
5/ 8
直线与平面垂直的判定及其性质
一、 直线与平面所成的角
00,90 0
证明过程 Q PO , AO为 PA在平面 上的投影, 为直线 l与平面 所成的角。
2、性质:
AB AB AB CD
说明:( 1)判定直线与平面垂直的方法: ① 利用定义(可用反证法) 。 ② 利用判定定理。 ③ 利用性质定理。
7/ 8
④ 结合平行关系: a Pb, a
b
( 2)判定平面与平面垂直的方法:
① 利用定义判断(证)二面角的平面角是直角。
② 利用平面与平面垂直的判定定理。
三、空间中直线与直线之间的位置关系
1、异面直线
2、直线与直线的位置关系
相交 共面
平行 异面
3、公理 4 和定理 公理 4:
l1 Pl3 l 2 Pl3
l1 Pl 2
2/ 8
定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
4、求异面直线所成角的步骤: ① 作:作平行线得到相交直线; ② 证:证明作出的角即为所求的异面直线所成的角; ③ 构造三角形求出该角。
4/ 8
2、性质 1:
P Ia Ib
a Pb
(面面平行,则线面平行)
性质 2:
P mP
m
(面面平行,则线面平行)
说明( 1)判定直线与平面平行的方法: ① 利用定义:证明直线与平面无公共点。 ② 利用判定定理:从直线与直线平行等到直线与平面平行。 ③ 利用面面平行的性质:两个平面平行,则其中一个平面内的直线必平行于另一个平面。
位置关系 公共点
两个平面平行 没有公共点
符号表示
P
3/ 8
两个平面相交 有一条公共直线
Ia
图形表示
பைடு நூலகம்
一、线面平行
1、判定:
b
a
bP
b Pa
(线线平行,则线面平行)
直线、平面平行的判定及其性质
2、性质:
aP a
a Pb b
(线面平行,则线线平行)
二、面面平行
1、判定:
a
b
abP
P
aP
bP
(线面平行,则面面平行)
提示: 1、作平行线常见方法有:直接平移,中位线,平行四边形。
2、异面直线所的角的范围是
00,90 0 。
四、空间中直线与平面之间的位置关系
位置关系
直线 a在平面内
公共点
有无数个公共点
直线 a与平面 相交
有且只有一个公共点
符号表示
a
aI
A
直线 a与平面 平行
没有公共点
aP
图形表示
五、空间中平面与平面之间的位置关系
第二章 点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系
一、平面
1、平面及其表示
2、平面的基本性质 ① 公理 1:
Al Bl
l A B
② 公理 2:不共线的三点确定一个平面
③ 公理 3:
P P
l则P l
1/ 8
二、点与面、直线位置关系
1、A 1、点与平面有 2 种位置关系 2、B
1、 A l 2、点与直线有 2 种位置关系 2、 B l
二、二面角 -l - 00,1800
三、线面垂直
1、判定:
a b abA l la lb
证明过程 Q BO l , AO l , BOA是二面角 -l - 的平面角。
6/ 8
2、性质 1:
a b
a Pb
3、性质 2:
a b
ab
四、面面垂直
1、判定:
l l
文字表达:一个平面过另一个平面的垂线,则这两个平面垂直。
8/ 8