物理化学第二章
合集下载
物理化学第2章 热力学第一定律

注意:物系变化后,那些不影响的部分不能 叫做环境。
6
(3) 物系分类
根据体系与环境间是否有能量、物质交 换,将物系分成三类: a、敞开物系:物系与环境间既有物质交换, 又有能量交换; b、封闭物系:物系与环境间没有物质交换, 但有能量交换; c、隔离物系:物系与环境间没有物质交换, 又没有能量交换;
第二章 热力学第一定律
热力学是建立在大量科学实验基础上的 宏观理论,是研究各种形式的能量相互转化 的规律,由此而得出各种自动变化、自动进 行的方向、限度以及外界条件变化时对它们 的影响等。
1
§2.1 热力学基本概念
一、热力学概述 热力学:是应用热力学的基本定律研究化 学变化及其有关的物理变化的科学。 1、 研究对象: 热力学研究的对象是大量微观粒子 的宏观性质,(粒子数大体上不低于1023 数量级。)热力学不研究少数粒子所构成 的物质和个别粒子的行为。
(b) 广度性质是系统所含物质量的一次齐函 数,强度性质是零次齐函数。 (c) 两个广度性质相除,所得为强度性质 如:m / V =ρ V / n = Vm
13
** 3、状态与状态函数
(1)状态:当体系的所有性质都有确定值时,就 称体系处于某一状态。因此体系的状态是体系 性质的综合表现。 (2)独立变量(状态变量、状态参数、状态参 变量): 当体系处于一定状态时,其强度性质和容 量性质都有一定的数值,但体系的这些性质是 相互关联的,只有几个是独立的,因而可用几 个独立性质来描述体系的状态。
2、物系的性质
物系的性质:物系处于某种条件下(状态或 热力学状态)的物理量,这些性质或物理量又称热 力学变量。如T、P、V、N、、U、H、G、CP、S 等。仔细分析这些性质就会发现,它们有的值与物 质量有关,具有加和性,有的无加和性。
物理化学(第二章)

=(U2 + p2V ) −(U + pV ) 2 1 1 1
系统在恒 且非体积功为零的过程中与环境交换的热量 的过程中与环境交换的热量。 系统在恒压,且非体积功为零的过程中与环境交换的热量。
Q= ∆U −W ∆U =Q+W
W = −p环(V −V ) 2 1
= − p 系 (V 2 − V1 )
= − ( p 2V 2 − p1V1 )
U2
Q+W
dU =δQ+δW
第一类永动机 是不可能造成的。 是不可能造成的。 永远在做功,却不消耗能量。 永远在做功,却不消耗能量。
∆U =Q+W = 0
若 <0 则 >0. W , Q
W < 0,
Q= 0
∆ = Q+W U
推论: 、 推论: 1、隔离系统 内能守恒
W = 0 Q= 0
∆ =0 U
4、热和功的分类 、 显热 热 相变热(潜热) 相变热(潜热) 化学反应热 功 非体积功( ) 非体积功(W’) 体积功
5、体积功的计算 、
dV = Asdl
截面 As
环 境
δW = Fd l
热 源
系统
Q F = p环 As
V=As l l dl
p环
∴δW = p环 Asdl
= p环d( Asl ) = p环dV
x = f ( y, z)
∂x dy+ ∂x dz dx = ∂y ∂z y z
(2)广度性质 ) 摩尔热力学能: 摩尔热力学能: (3)绝对值未知 ) 始态
U Um = n
∆ U
强度性质
末态
U1
U2
系统在恒 且非体积功为零的过程中与环境交换的热量 的过程中与环境交换的热量。 系统在恒压,且非体积功为零的过程中与环境交换的热量。
Q= ∆U −W ∆U =Q+W
W = −p环(V −V ) 2 1
= − p 系 (V 2 − V1 )
= − ( p 2V 2 − p1V1 )
U2
Q+W
dU =δQ+δW
第一类永动机 是不可能造成的。 是不可能造成的。 永远在做功,却不消耗能量。 永远在做功,却不消耗能量。
∆U =Q+W = 0
若 <0 则 >0. W , Q
W < 0,
Q= 0
∆ = Q+W U
推论: 、 推论: 1、隔离系统 内能守恒
W = 0 Q= 0
∆ =0 U
4、热和功的分类 、 显热 热 相变热(潜热) 相变热(潜热) 化学反应热 功 非体积功( ) 非体积功(W’) 体积功
5、体积功的计算 、
dV = Asdl
截面 As
环 境
δW = Fd l
热 源
系统
Q F = p环 As
V=As l l dl
p环
∴δW = p环 Asdl
= p环d( Asl ) = p环dV
x = f ( y, z)
∂x dy+ ∂x dz dx = ∂y ∂z y z
(2)广度性质 ) 摩尔热力学能: 摩尔热力学能: (3)绝对值未知 ) 始态
U Um = n
∆ U
强度性质
末态
U1
U2
物理化学第2章 热力学第二定律

BSm$ (B)
§3.7 熵变的计算
一、单纯状态变化过程
1. 等温过程 2.变温过程
S QR T
①等容变温过程
S T2 Qr T2 nCp,mdT
T T1
T1
T
nC
p,m
ln
T2 T1
②等压变温过程
S T2 Qr T T1
T2 nCV ,mdT
T1
T
nCV
,m
ln
T2 T1
U3 0
p
W3
nRTc
ln V4 V3
A(p1,V1,Th )
B(p2,V2,Th )
Th
Qc W3
D(p4,V4,TC )
C(p3,V3,TC )
Tc
环境对系统所作功如 DC曲线下的面积所示
a db
c
V
过程4:绝热可逆压缩 D( p4,V4,TC ) A( p1,V1,Th )
Q4 0
p
用一闭合曲线代表任意可逆循环。 在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。 根据任意可逆循环热温商的公式:
δ Q
T R
0
将上式分成两项的加和
B Q
( AT
)R1
A Q
( BT
)R2
0
移项得:
B A
(
Q T
)R1
B A
(
Q T
)R
2
说明任意可逆过程的热温商的值决定于始终 状态,而与可逆途径无关,这个热温商具有状态 函数的性质。
所以Clausius 不等式为
dS 0
等号表示绝热可逆过程,不等号表示绝热不
可逆过程。
熵增加原理可表述为:
§3.7 熵变的计算
一、单纯状态变化过程
1. 等温过程 2.变温过程
S QR T
①等容变温过程
S T2 Qr T2 nCp,mdT
T T1
T1
T
nC
p,m
ln
T2 T1
②等压变温过程
S T2 Qr T T1
T2 nCV ,mdT
T1
T
nCV
,m
ln
T2 T1
U3 0
p
W3
nRTc
ln V4 V3
A(p1,V1,Th )
B(p2,V2,Th )
Th
Qc W3
D(p4,V4,TC )
C(p3,V3,TC )
Tc
环境对系统所作功如 DC曲线下的面积所示
a db
c
V
过程4:绝热可逆压缩 D( p4,V4,TC ) A( p1,V1,Th )
Q4 0
p
用一闭合曲线代表任意可逆循环。 在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。 根据任意可逆循环热温商的公式:
δ Q
T R
0
将上式分成两项的加和
B Q
( AT
)R1
A Q
( BT
)R2
0
移项得:
B A
(
Q T
)R1
B A
(
Q T
)R
2
说明任意可逆过程的热温商的值决定于始终 状态,而与可逆途径无关,这个热温商具有状态 函数的性质。
所以Clausius 不等式为
dS 0
等号表示绝热可逆过程,不等号表示绝热不
可逆过程。
熵增加原理可表述为:
物理化学第二章

z z dz= dx + dy ; x y y x
③状态函数的环路积分为零(始末同归,状变为零)即 ∫ dz = 0 .
4,过程与途径 , 1)定义:物系状态发生的一切变化叫过程,完成某一过程所经历 定义: 定义 的具体步骤叫途径 2)分类:单纯状态变化,化学变化(化学组成变化),相变化(化学 分类: 分类 组成不变而聚集态变化) ①定温过程:T始 = T终 = T环 (中间有波动). ②定压过程: P = P = P (中间有波动). 环 始 终 ③定容过程:V始 = V终 = 常数 (过程中物系体积始终不变). ④绝热过程; δQ = 0 (系统与环境间无热交换)的过程. ⑤循环过程:物系经一系列变化又回到始态的过程. ⑥可逆过程:循原过程的逆过程,能使物系与环境均复原者,则 原过程与逆过程互为可逆过程.
1 B
数及t=0时反应进度(为0)及B的摩尔数). 当ξ=1mol时发生单位反应. 注意:方程式一定的反应,以任意反应物计算ξ均相同,但νB ,ξ均 与方程式书写有关,ξ只表示反应程度,与转化率无关. (3)反应的摩尔焓变 反应的摩尔焓变:△rHm(kJ/mol)=△rH(kJ)/△ξ(mol) 反应的摩尔焓变 2,化学反应热效应(反应热 ,化学反应热效应 反应热 反应热) (1)定义:当产物与反应物温度相同且在反应过程中只做体积功的化 定义:衡 , 1)定义:物系各种性质不随时间而变化的平衡状态. )定义: 2)分类: )分类: ①热平衡—物系各部分温度相同. ②力学平衡—在略去重力场情况下,物系各部分压力相等(物 系各部分间及物系与环境间无不平衡力存在). ③相平衡—物质在各相间分布达平衡. ④化学平衡—物系组成不随时间而变化. 6,热力学能(U)或内能 ,热力学能( ) 物系内部一切形式能量总和(包括平动,转动,振动,核 能,电子运动,化学键,分子间作用能等)只能求相对值,不 能求绝对值,具有能量单位:J,kJ(atml or atmm3 or cal or kcal etc)是容量(广度)性质的状态函数.
③状态函数的环路积分为零(始末同归,状变为零)即 ∫ dz = 0 .
4,过程与途径 , 1)定义:物系状态发生的一切变化叫过程,完成某一过程所经历 定义: 定义 的具体步骤叫途径 2)分类:单纯状态变化,化学变化(化学组成变化),相变化(化学 分类: 分类 组成不变而聚集态变化) ①定温过程:T始 = T终 = T环 (中间有波动). ②定压过程: P = P = P (中间有波动). 环 始 终 ③定容过程:V始 = V终 = 常数 (过程中物系体积始终不变). ④绝热过程; δQ = 0 (系统与环境间无热交换)的过程. ⑤循环过程:物系经一系列变化又回到始态的过程. ⑥可逆过程:循原过程的逆过程,能使物系与环境均复原者,则 原过程与逆过程互为可逆过程.
1 B
数及t=0时反应进度(为0)及B的摩尔数). 当ξ=1mol时发生单位反应. 注意:方程式一定的反应,以任意反应物计算ξ均相同,但νB ,ξ均 与方程式书写有关,ξ只表示反应程度,与转化率无关. (3)反应的摩尔焓变 反应的摩尔焓变:△rHm(kJ/mol)=△rH(kJ)/△ξ(mol) 反应的摩尔焓变 2,化学反应热效应(反应热 ,化学反应热效应 反应热 反应热) (1)定义:当产物与反应物温度相同且在反应过程中只做体积功的化 定义:衡 , 1)定义:物系各种性质不随时间而变化的平衡状态. )定义: 2)分类: )分类: ①热平衡—物系各部分温度相同. ②力学平衡—在略去重力场情况下,物系各部分压力相等(物 系各部分间及物系与环境间无不平衡力存在). ③相平衡—物质在各相间分布达平衡. ④化学平衡—物系组成不随时间而变化. 6,热力学能(U)或内能 ,热力学能( ) 物系内部一切形式能量总和(包括平动,转动,振动,核 能,电子运动,化学键,分子间作用能等)只能求相对值,不 能求绝对值,具有能量单位:J,kJ(atml or atmm3 or cal or kcal etc)是容量(广度)性质的状态函数.
物理化学 第二章 热力学第一定律

1)热: 系统状态变化时,因其与环境之间存在温度差 而引起的能量交换形式称为热,以符号Q表示。 热的符号规定: Q的数值以系统实际得失来衡量,热的传递方向 通过Q的数值为正或负来表示:若系统吸热(即 环境放热),则Q值规定为正;若系统对环境放 热,则Q值规定为负。
热的本质: 从微观角度讲,物质的温度高低反映该物质内 部粒子无序热运动的平均强度大小,热实质上 是系统与环境两者内部粒子无序热运动平均强 度不同而交换之能量。 传热过程的推动力:温度差。 热是途径函数: 系统经历某一变化过程中所发生的系统和环境 之间以热的形式的能量交换,与变化过程的具 体途径有关。热不是状态函数。
化学反应热: 系统因发生化学反应而与环境交 换的热称为化学反应热。 2)功 系统状态发生变化时,除热之外,系统与环境 之间所发生的其它所有形式的能量交换均称为 功,以符号W来表示。 功的符号规定:功的数值同样以系统的实际得 失来衡量,并规定系统从环境获得功为正,对 环境作功为负(注意:这一正负号的规定可能与 其它版本的教材中的规定不同)。
若系统由始态(p1,V1,T1)经某一过程变至终态 (p2,V2,T2),则该过程的体积功W为过程中系 统各微小体积变化与环境交换的功之和: W=∑δ W=-∫pambdV 注意:仍然要用pamb而不能用p(系统)计算!
功也是途径函数: 系统的体积变化相同时,体积功数值的大小取 决于环境的压力pamb。 如果系统经历一个pamb=0的过程,如气体向真空 膨胀的过程,则与环境之间无体积功的交换。 当系统从同一始态经历不同的途径变至同一终 态,因为途径不同,pamb不同,故体积功也就不 同。体积功为途径函数。 功不是状态函数,数学上不是全微分,微小的 功不能写成dW,而应写作δ W。
4.热与功 热与功是系统状态发生变化时,与环境交换能 量的两种不同形式。 热与功只是能量交换形式,而且只有系统进行 某一过程时才能以热与功的形式与环境进行能 量的交换。热与功的数值不仅与系统开始与终 了状态有关,而且还与状态变化时所经历的途 径有关。热与功称作途径函数(不是状态函数)。 热和功的单位: 具有能量的单位,为焦耳(J)或千焦耳(kJ)。
大学课程《物理化学》第二章(热力学第二定律)知识点汇总

B
VB ,m
V nB T , p ,n jB
H nB T , p ,n jB G nB T , p ,n jB
U B ,m
U nB T , p ,n jB
S nB T , p ,n jB
T2 p1 dT S S '1 S '2 nR ln C p p2 T1 T
dU TdS pdV
T p V S S V
dH TdS Vdp
( U )V T S
T V p S S p
S系统 S B S A
Qr
T
S孤立=S系统 S环境 0
A
熵变的计算
总则
S环境
Q实际 T环境
理想气体等温过程的熵变
S S B S A
B
Qr
A
Q ( )r T T
Wmax Qr S T T
可逆相变过程的熵变
V2
V1
dG SdT Vdp B dnB
B
dU TdS pdV B dnB
B
U dU TdS pdV dnB nB S ,V ,n j B
B
U H F G nB S ,V ,n j B nB S , p ,n j B nB T ,V ,n j B B nB T , p ,n j B
B
dG SdT Vdp B dnB
B
纯理想气体的化学势
Gm Vm p T p T
VB ,m
V nB T , p ,n jB
H nB T , p ,n jB G nB T , p ,n jB
U B ,m
U nB T , p ,n jB
S nB T , p ,n jB
T2 p1 dT S S '1 S '2 nR ln C p p2 T1 T
dU TdS pdV
T p V S S V
dH TdS Vdp
( U )V T S
T V p S S p
S系统 S B S A
Qr
T
S孤立=S系统 S环境 0
A
熵变的计算
总则
S环境
Q实际 T环境
理想气体等温过程的熵变
S S B S A
B
Qr
A
Q ( )r T T
Wmax Qr S T T
可逆相变过程的熵变
V2
V1
dG SdT Vdp B dnB
B
dU TdS pdV B dnB
B
U dU TdS pdV dnB nB S ,V ,n j B
B
U H F G nB S ,V ,n j B nB S , p ,n j B nB T ,V ,n j B B nB T , p ,n j B
B
dG SdT Vdp B dnB
B
纯理想气体的化学势
Gm Vm p T p T
物化第二章

CV,m
δQV dT
Um T V
f(T)
C p,m
δQ p dT
H m T
p
f(T)
35
1. 摩尔定容热容
(1) 定义 在某温度T 时,物质的量为n 的物质在恒
容且非体积功为零的条件下,若温度升高无限小
量dT 所需要的热量为Q,1则δQV
就定义为该
物质在该温度下的摩尔定容n 热dT容,以
δW pambdV
p
注意:1. 加“-”号,因为气体膨胀(dV>0)而系统输
出功(W<0) 。上式对气体压缩过程同样适用。 19
2. 计算功时用的是环境的压力pamb。
注意:功是能量传递的一种形式,且是与途径有关的量, 而不是状态函数,而是途径函数。
例:
1 mol
Wa pa,环(V2-V1)=0
例如,理想气体的状态方程可表示为:
pV=nRT 11
(2)状态函数的分类-广度量和强度量
描述热力学系统的性质分为:
广度量:在均相系统中,它们的数值与系统所含
物质的数量成正比(如V、H、U、G、 A等)。
强度量:在确定的状态下,它们的数值与系统所
含物质的多少无关(如 P、T、ρ、x等)
广度性质具有加和性,强度性质则无; 将广度性质除以描述数量的广度性质,可得 到一强度性质(如Vm=V/n, Cm=C/n 等等)。 12
恒压过程:
变化过程中始终p(系) = p(环) = 常数。 仅仅是p(终) = p(环) = 常数,为恒外压过程
恒容过程:过程中系统的体积始终保持不变。
绝热过程:系统与环境间无热交换的过程。
循环过程:经历一系列变化后又回到始态的过程。 循
物理化学-第二章-热力学第一定律及其应用精选全文

上一内容 下一内容 回主目录
返回
2024/8/13
状态与状态函数
状态函数的特性: 异途同归,值变相等;周而复始,数值还原。
状态函数的性质:
(1) 状态函数的值取决于状态,状态改变则状态函数必定改 变(但不一定每个状态函数都改变);任何一个状态函数 改变,系统的状态就会改变。
上一内容 下一内容 回主目录
即
ΔU=Q+W (封闭系统)
对于无限小过程,则有
dU=δQ+δW (封闭系统)
上一内容 下一内容 回主目录
返回
2024/8/13
3. 焦耳实验 盖.吕萨克—焦尔实验
实验结果:水温未变 dT=0 dV≠0
表明:Q =0
自由膨胀 W=0
上一内容 下一内容 回主目录
返回
2024/8/13
dU= Q+ W =0
1. 热(heat)
a) 定义:体系与环境之间因温差而传递的能量称为热,用 符号Q 表示。单位:KJ 或 J。 b) Q的取号:体系吸热,Q>0;体系放热,Q<0 。
c) 性质:热不是状态函数,是一个过程量;热的大小和具 体的途径有关。
上一内容 下一内容 回主目录
返回
2024/8/13
功和热
不能说在某个状态时系统有多少热量,只能说 在某个具体过程中体系和环境交换的热是多少。
热力学能是状态函数,用符号U表示,单位为J。它 的绝对值无法测定,只能求出它的变化值。
U= U2 –U1
上一内容 下一内容 回主目录
返回
2024/8/13
热力学能
纯物质单相系统
若n确定
U=U ( n,T,V ) U=U (T,V )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.平衡压力和温度下的相变,即 是可逆相变。因为压力恒定,此时相变焓 在量值上等于可逆热。
B( ) B( )
p ,T
S H /T
例:
100℃ 101.325kPa H2O (l) H2O(g)
vap H = Q = 40.700 kJ mol-1
熵的引出
移项得:
B Q Q ( ) ( ) R A T 1 A T R2 B
说明任意可逆过程的热温 商的值决定于始终状态,而 与可逆途径无关,这个热温 商具有状态函数的性质。
任意可逆过程
熵的定义
克劳修斯根据可逆过程的热温商值决定于始终态而 与可逆过程无关这一事实定义了“熵”(entropy) 这个函数,用符号“S”表示,单位为: J K 1 设始、终态A,B的熵分别为 SA 和 SB ,则:
如果是一个隔离体系,环境与体系间既无热 的交换,又无功的交换,则熵增加原理可表述为: 一个隔离体系的熵永不减少。
克劳修斯不等式的意义
克劳修斯不等式引进的不等号,在热力学上可以
作为变化方向与限度的判据。
Q dS T
“>” 号为不可逆过程 “=” 号为可逆过程 “>” 号为自发过程 “=” 号为处于平衡状态
Q
或
dS
Q T
这些都称为克劳修斯不等式,也可作为热力 学第二定律的数学表达式。
熵增加原理
对于绝热体系, Q 0 ,所以克劳修斯不等式为 dS 0
等号表示绝热可逆过程,不等号表示绝热不 可逆过程。熵增加原理可表述为:在绝热条件下, 趋向于平衡的过程使体系的熵增加。或者说在绝 热条件下,不可能发生熵减少的过程。
Qi ) 0 ( i Ti
可逆时等于零,不可逆时小于零。
克劳修斯不等式
设有一个循环, A B 为不可逆过程, BA 为可逆过程,整个循环为不可逆循环。 则有
A Q Q ( )IR,AB ( ) R 0 B T T i
A
B
Q Q ( SB )R SB)IR,AB SAS(A T i T
第二类永动机:是一种热机,它只是从单一热源吸热使 之完全变为功而不留下任何影响。
2.4 自发变化不可逆症结
T1高温热源 Q1 Q2 M Q2 T2低温热源 同前面例子相似,要求热全部转化为功而不引起环境 的变化(不可能实现) W
2.3 热力学第二定律(The Second Law of Thermodynamics) 热力学第二定律的几种说法是在总结众多自发过 程的特点之后提出来的。 后果不可消除原理 它是自发过程不可逆性的一种较为形象的描述, 其内容是: 任意挑选一自发过程,指明它所产生的后果不论用 什么方法都不能令其消除,即不能使得发生变化的 体系和环境在不留下任何痕迹的情况下恢复原状
Qi <0 0 而不可逆循环的热温商之和小于零: ( )R i Ti
W Q1 Q 2 任意 Qh Q2
W T2 T 1 可逆 Qh T2
T 1 Q1 0 T2 Q2
任意
可逆
Q1 Q 2 0 T1 T2
循环过程有可逆不可逆循环之分 任何循环过程的热温商之和小于等于零:
2.5 注意事项(防止断章取义)
热力学第二定律强调(指明)一个方向的不可能,均有 前提条件,即不影响环境(或体系)的条件下不可能。 热在一定的条件下可以全部转化为功,如气体等温膨胀, 但系统发生变化。(体积增大) 低温物体在一定条件下可以可以将热量传给高温物体 (冰箱),但环境发生变化。(见下一节卡诺循环)
2.在101.3 kPa 下,110 ℃的水变为110 ℃水蒸气 ,吸热 ,吸热Qp, 在该相变过程中下列哪个关系式不成立?( )
(A) S体> 0
(B) S环不确定
(C) S体+S环> 0 (D) S环< 0
标准摩尔熵(standart molar entropy) △S = ST-S0 = ST 在指定温度T和100 kPa下, 1mol纯物质的规定熵 称为该物质的标准摩尔熵,简称标准熵,用符 号Som表示。 单位为J· K-1· mol-1。 一些物质在298.15K的标准熵见p262。
1.简单可逆过程熵变的计算 2.环境熵变的计算 3.简单不可逆过程熵变的计算
常见可逆过程 a.恒温可逆
1.气体可逆膨胀压缩过程
b.绝热可逆
2 可逆相变:
1. 环境的熵变
1.环境熵变的计算
Samb δQ sys δQ amb Tamb Tamb
2. 系统恒温过程的熵变 (1)恒温可逆状态变化的熵变
第二章 热力学第二定律 课前回顾
2.可逆过程 理想化过程,要求经过一个循环后体系和环境都能恢 复到原来的状态
2.1 自发变化的共同特征
例如: (1) (2) (3) (4) 气体向真空膨胀;(有压力差存在) 热量从高温物体传入低温物体;(有温差存在) 水往低处流;(有势差存在) 浓度不等的溶液混合均匀;(存在着浓差)
⑷合成氨反应
N2(g) +3H2 (g)= 2NH3(g) (-) ⑸从溶液中析出结晶 (-)
热力学第三定律 熵的绝对值至今还无法求得,为此,Planck根据 一系列实验现象及科学推测,得出了热力学第三定律: 在热力学温度0K时,任何纯物质完善晶体的熵值等于 零。 由热力学第三定律, 可以求得在指定温度T下的熵 值ST,称为规定熵。必须指出,规定熵是以T = 0 K, S = 0为比较标准而求得的,实际上是一个熵变值。
熵值的大小规律:
⑴ S气 > S液 > S固
⑵
⑶
S(复杂分子) > S(简单分子)
S(高温)> S(低温)
⑷
S(低压气体) > S(高压气体)
CaCO3(s) NH4Cl(s)
CaO(s) + CO2(g)
混乱度增加
NH4+(aq) + Cl-(aq) 混乱度增加
试判断下列过程的△S是正还是负。 ⑴ 冰融化成水 (+) ⑵炸药爆炸 (+) ⑶ 甲烷燃烧 CH4(g) +2O2(g) =CO2(g) + 2H2O(l) (-)
任何热机从高温 T2热源吸热Q2,一部分转化为功W, 另一部分Q1传给低温T1热源.将热机所作的功与所 吸的热之比值称为热机效率,或称为热机转换系数, 用 表示。 恒小于 1。
W Q1 Q2 T2 T1 Q2 Q2 T2
P33,例1。
1
卡诺定理
卡诺定理:所有工作于同温热源和同温冷源之间的热 机,其效率都不能超过可逆机,即可逆机的效率最大。
高 温 热源
1796---1832
Carnot N.L.S . 法国物理学家
低 温 热源
卡诺循环
卡诺循环(Carnot cycle)
(1) 恒温可逆膨胀 (2)绝热可逆膨胀 (3)恒温可逆压缩 (4)绝热可逆压缩
卡 诺 循环 第 四 步
热机效率(efficiency of the engine )
化学变化的方向性
十九世纪,汤姆荪(Thomsom)和贝塞罗特(Berthlot) 就曾经企图用△H的符号作为化学反应方向的判据。他们认 为自发化学反应的方向总是与放热的方向一致,而吸热反 应是不能自动进行的。虽然这能符合一部分反应,但后来 人们发现有不少吸热反应也能自动进行,如众所周知的水 煤气反应就是一例。这就宣告了此结论的失败。可见,要 判断化学反应的方向,必须另外寻找新的判据。
即卡诺循环中,热效应与温度商值的加和等于零。
2.3 熵
用一闭合曲线代表任意可逆循环。 在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。 根据任意可逆循环热温商的公式:
Q ( T )R 0 可分成两项的加和
A Q Q A ( T )R1 B ( T )R 2 0 B
dSiso 0
因为隔离体系中一旦发生一个不可逆过程,则一定 是自发过程。
热力学第二定律的本质
混乱度最大原则:一切自发过程(不可逆过 程)都是向混乱度增加的方向进行。 热力学第二定律指出,凡是自发的过程都是 不可逆的,而一切不可逆过程都可以归结为热转 换为功的不可逆性。
计算要点 1.体系熵变必须沿可逆过程求其热温商; 2.环境熵变必须沿实际过程求其热温商,且体系 热与环境热大小相同,符号相反; 3.判断过程的方向必须用总熵变,绝热时可用体 系熵变; 4.计算体系熵变的基本公式:
I < 40%
550℃
1度电 / 500 g 煤
Th TC 823 300 63% Th 823
火力发电厂的改造利用
热电厂的能量利用
从卡诺循环得到的结论
W Q1 Q 2 T2 T 1 Qh Q2 T2
Q1 T1 1 1 Q2 T2
Q1 Q2 T1 T2 Q1 Q2 0 T 1 T2
Q 40700 J mol -1 S = = = 109 J K -1 mol -1 T 373.15 K
Q 40700 J mol -1 Ssur = - = = -109 J K -1 mol -1 T 373.15 K
1.理想气体等温 (T = 300 K) 膨胀过程中从热源吸热 600 J,所做的功仅是变到相同终态时最大功的 1/10,则体 系的熵变ΔS = _______ J· K-1。
2.2 自发变化不可逆症结
T1高温热源 Q1 M Q2 T2低温热源 W
2.3 热力学第二定律(The Second Law of Thermodynamics) 开尔文(Kelvin) :“不可能从单一热源取出热使之完全 变为功,而不发生其它的变化。”
克劳修斯(Clausis)的说法:“不可能把热从低温物体传 到高温物体,而不引起其它变化。” 症结是一致的:不可能存在所需要的那种热机