最新长沙市中考数学试题及答案
2024年湖南省长沙市中考数学真题卷及答案解析

2024年湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符合题意的选项。
本大题共10个小题,每小题3分,共30分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.2.(3分)我国近年来大力推进国家教育数字化战略行动,截至2024年6月上旬,上线慕课数量超过7.8万门,学习人次达1290000000,建设和应用规模居世界第一.用科学记数法将数据1290000000表示为( )A.1.29×108B.12.9×108C.1.29×109D.129×107 3.(3分)“玉兔号”是我国首辆月球车,它和着陆器共同组成“嫦娥三号”探测器.“玉兔号”月球车能够耐受月球表面的最低温度是﹣180℃、最高温度是150℃,则它能够耐受的温差是( )A.﹣180℃B.150℃C.30℃D.330℃4.(3分)下列计算正确的是( )A.x6÷x4=x2B.+=C.(x3)2=x5D.(x+y)2=x2+y25.(3分)为庆祝五四青年节,某学校举办班级合唱比赛,甲班演唱后七位评委给出的分数为:9.5,9.2,9.6,9.4,9.5,8.8,9.4,则这组数据的中位数是( )A.9.2B.9.4C.9.5D.9.66.(3分)在平面直角坐标系中,将点P(3,5)向上平移2个单位长度后得到点P′的坐标为( )A.(1,5)B.(5,5)C.(3,3)D.(3,7)7.(3分)对于一次函数y=2x﹣1,下列结论正确的是( )A.它的图象与y轴交于点(0,﹣1)B.y随x的增大而减小C.当时,y<0D.它的图象经过第一、二、三象限8.(3分)如图,在△ABC中,∠BAC=60°,∠B=50°,AD∥BC,则∠1的度数为( )A.50°B.60°C.70°D.80°9.(3分)如图,在⊙O中,弦AB的长为8,圆心O到AB的距离OE=4,则⊙O的半径长为( )A.4B.C.5D.10.(3分)如图,在菱形ABCD中,AB=6,∠B=30°,点E是BC边上的动点,连接AE,DE,过点A作AF⊥DE于点F.设DE=x,AF=y,则y与x之间的函数解析式为(不考虑自变量x的取值范围)( )A.y=B.y=C.y=D.y=二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)为了比较甲、乙、丙三种水稻秧苗的长势,每种秧苗各随机抽取40株,分别量出每株高度,计算发现三组秧苗的平均高度一样,并且得到甲、乙、丙三组秧苗高度的方差分别是3.6,10.8,15.8,由此可知 种秧苗长势更整齐(填“甲”、“乙”或“丙”).12.(3分)某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会.小明家参与抽奖,获得一等奖的概率为 .13.(3分)要使分式有意义,则x需满足的条件是 .14.(3分)半径为4,圆心角为90°的扇形的面积为 (结果保留π).15.(3分)如图,在△ABC中,点D,E分别是AC,BC的中点,连接DE.若DE=12,则AB的长为 .16.(3分)为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘以10,再加上4.6,将此时的运算结果再乘以10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是 .三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:()﹣1+|﹣|﹣2cos30°﹣(π﹣6.8)0.18.(6分)先化简,再求值:2m﹣m(m﹣2)+(m+3)(m﹣3),其中m=.19.(6分)如图,在Rt△ABC中,∠ACB=90°,AB=2,AC=2,分别以点A,B为圆心,大于AB的长为半径画弧,两弧分别交于点M和N,作直线MN分别交AB,BC 于点D,E,连接CD,AE.(1)求CD的长;(2)求△ACE的周长.20.(8分)中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势.2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图.类型人数百分比纯电m54%混动n a%%氢燃料3b%油车5c%请根据以上信息,解答下列问题:(1)本次调查活动随机抽取了 人;表中a= ,b= ;(2)请补全条形统计图:(3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;(4)若此次汽车展览会的参展人员共有4000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人?21.(8分)如图,点C在线段AD上,AB=AD,∠B=∠D,BC=DE.(1)求证:△ABC≌△ADE;(2)若∠BAC=60°,求∠ACE的度数.22.(9分)刺绣是我国民间传统手工艺,湘绣作为中国四大刺绣之一,闻名中外,在巴黎奥运会倒计时50天之际,某国际旅游公司计划购买A、B两种奥运主题的湘绣作品作为纪念品.已知购买1件A种湘绣作品与2件B种湘绣作品共需要700元,购买2件A种湘绣作品与3件B种湘绣作品共需要1200元.(1)求A种湘绣作品和B种湘绣作品的单价分别为多少元?(2)该国际旅游公司计划购买A种湘绣作品和B种湘绣作品共200件,总费用不超过50000元,那么最多能购买A种湘绣作品多少件?23.(9分)如图,在▱ABCD中,对角线AC,BD相交于点O,∠ABC=90°.(1)求证:AC=BD;(2)点E在BC边上,满足∠CEO=∠COE.若AB=6,BC=8,求CE的长及tan∠CEO 的值.24.(10分)对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),可分为四种类型,我们不妨约定:既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形:只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;只有内切圆,而无外接圆的四边形称为“内切型单圆”四边形:既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.请你根据该约定,解答下列问题:(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”).①平行四边形一定不是“平凡型无圆”四边形; ②内角不等于90°的菱形一定是“内切型单圆”四边形; ③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R,内切圆半径为r,则有R=r. (2)如图1,已知四边形ABCD内接于⊙O,四条边长满足:AB+CD≠BC+AD.①该四边形ABCD是“ ”四边形(从约定的四种类型中选一种填入);②若∠BAD的平分线AE交⊙O于点E,∠BCD的平分线CF交⊙O于点F,连接EF.求证:EF是⊙O的直径.(3)已知四边形ABCD是“完美型双圆”四边形,它的内切圆⊙O与AB,BC,CD,AD 分别相切于点E,F,G,H.①如图2,连接EG,FH交于点P.求证:EG⊥FH;②如图3,连接OA,OB,OC,OD,若OA=2,OB=6,OC=3,求内切圆⊙O的半径r及OD的长.25.(10分)已知四个不同的点A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)都在关于x的函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象上.(1)当A,B两点的坐标分别为(﹣1,﹣4),(3,4)时,求代数式2024a+1012b+的值;(2)当A,B两点的坐标满足a2+2(y1+y2)a+4y1y2=0时,请你判断此函数图象与x轴的公共点的个数,并说明理由;(3)当a>0时,该函数图象与x轴交于E,F两点,且A,B,C,D四点的坐标满足:2a2+2(y1+y2)a++=0,2a2﹣2(y3+y4)a++=0.请问是否存在实数(m>1),使得AB,CD,m•EF这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3?若存在,求出m的值和此时函数的最小值;若不存在,请说明理由(注:m•EF表示一条长度等于EF的m倍的线段).2024年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
2023长沙中考数学试卷及答案

2023长沙中考数学试卷及答案尊敬的教师、学生和家长:以下是2023年长沙市中考数学试卷及答案,仅供参考:一、选择题1. 下列四个数中,最小的数是()。
A. $-\dfrac{3}{5}$B. $-\dfrac{4}{7}$C. $-\dfrac{2}{3}$D. $-\dfrac{5}{8}$答案:B2. 若 $x+y=0$,则 $\dfrac{x}{y}+\dfrac{y}{x}$ 的值为()。
A. $-2$B. $0$C. $1$D. $2$答案:A3. 已知函数 $f(x)$ 的图象如图所示,那么下列说法中错误的是()。
A. $f(x)$ 为奇函数B. $f(3)=f(-3)$C. $f(1)>0$ 且 $f(-1)<0$D. $f(x)$ 在 $[-1,1]$ 内单调递减答案:D二、填空题1. 把 $8$ 千克的糖分成 $125$ 相等的部分,每部分重为\_\_\_\_\_ 克。
答案:$64$2. 已知等差数列 $a_1,a_2,\cdots,a_{10}$ 的公差为 $3$,$a_1+a_2+\cdots+a_{10}=55$,$a_2+a_4+\cdots+a_{10}=30$,则$a_1=\_\_\_\_$,$a_3=\_\_\_\_$。
答案:$2$,$8$3. 小明得到的一元二次方程 $x^2-2mx+n=0$ 的两根相差 $3$,则 $m=\_\_\_\_$,$n=\_\_\_\_$。
答案:$3$,$-4$三、解答题1. 设 $A,B,C$ 是三点,$AB=BC$,$\angle BAC=100^\circ$,$\angle ABC=140^\circ$。
求 $\angle BCA$ 的度数。
解答如下:连接 $AC$ 并作 $\angle BCA$ 的平分线 $CD$,如图所示:由角平分线定理,可得:$$\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{BC}{AC}$$又因为 $AB=BC$,所以 $\dfrac{BD}{DC}=1$,于是$BD=DC$。
2024年湖南省中考数学真题卷含答案解析

2024年湖南省初中学业水平考试数 学本试题卷共6页.时量120分钟.满分120分.注意事项:1.答题前,考生先将自己的姓名、准考证号写在答题卡和本试题卷上,并认真核对条形码上的姓名、准考证号和相关信息:2.选择题部分请按题号用2B 铅笔填涂方框,修改时用橡皮擦干净,不留痕迹;3.非选择题部分请按题号用0.5毫米黑色墨水签字笔书写,否则作答无效:4.在草稿纸、试题卷上作答无效;5.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;6.答题卡上不得使用涂改液、涂改胶和贴纸.一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在日常生活中,若收入300元记作300+元,则支出180元应记作( )A. 180+元 B. 300+元C. 180-元D. 480-元2. 据《光明日报》2024年3月14日报道:截至2023年末,我国境内有效发明专利量达到401.5万件,高价值发明专利占比超过四成,成为世界上首个境内有效发明专利数量突破400万件的国家,将4015000用科学记数法表示应为( )A. 70.401510⨯ B. 64.01510⨯ C. 540.1510⨯ D.34.01510⨯3. 如图,该纸杯的主视图是()A. B. C. D.4. 下列计算正确是( )A. 22321a a -= B. 32(0)a a a a ÷=≠ C. 236a a a ⋅= D.()3326a a =5.)AB. C. 14D.6. 下列命题中,正确的是( )A. 两点之间,线段最短B. 菱形的对角线相等C. 正五边形的外角和为720︒D. 直角三角形是轴对称图形7. 如图,AB ,AC 为O 的两条弦,连接OB ,OC ,若45A ∠=︒,则BOC ∠的度数为( )A. 60︒B. 75︒C. 90︒D. 135︒8. 某班的5名同学1分钟跳绳的成绩(单位:次)分别为:179,130,192,158,141.这组数据的中位数是( )A. 130B. 158C. 160D. 1929. 如图,在ABC 中,点D E ,分别为边AB AC ,的中点.下列结论中,错误的是( )A DE BC∥ B. ADE ABC△△∽ C. 2BC DE =D.的..12ADE ABC S S =10. 在平面直角坐标系xOy 中,对于点(),P x y ,若x ,y 均为整数,则称点P 为“整点”.特别地,当yx(其中0xy ≠)的值为整数时,称“整点”P 为“超整点”,已知点()24,3P a a -+在第二象限,下列说法正确的是( )A. 3a <-B. 若点P 为“整点”,则点P 的个数为3个C. 若点P 为“超整点”,则点P 的个数为1个D. 若点P 为“超整点”,则点P 到两坐标轴的距离之和大于10二、填空题:本题共8小题,每小题3分,共24分.11. 计算:()2024--=________.12. 有四枚材质、大小、背面图案完全相同的中国象棋棋子“”“”“”“”,将它们背面朝上任意放置,从中随机翻开一枚,恰好翻到棋子“”的概率是________.13. 分式方程21x +=1的解是_______.14. 一个等腰三角形的一个底角为40︒,则它的顶角的度数是________度.15. 若关于x 的一元二次方程2420x x k -+=有两个相等的实数根,则k 的值为________.16. 在一定条件下,乐器中弦振动的频率f 与弦长l 成反比例关系,即kf l=(k 为常数.0k ≠),若某乐器的弦长l 为0.9米,振动频率f 为200赫兹,则k 的值为________.17. 如图,在锐角三角形ABC 中,AD 是边BC 上高,在BA ,BC 上分别截取线段BE ,BF ,使BE BF =;分别以点E ,F 为圆心,大于12EF 的长为半径画弧,在ABC ∠内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN AB ⊥于点N .若2MN =,4AD MD =,则AM =________.的18. 如图,左图为《天工开物》记载的用于春(chōng )捣谷物的工具——“碓(duì)”的结构简图,右图为其平面示意图,已知AB CD ⊥于点B ,AB 与水平线l 相交于点O ,OE l ⊥.若4BC =分米,12OB =分米.60BOE ∠=︒,则点C 到水平线l 的距离CF为________分米(结果用含根号的式子表示).三、解答题:本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.19. 计算:01|3|cos 602⎛⎫-+-+︒ ⎪⎝⎭.20. 先化简,再求值:22432x x x x x-⋅++,其中3x =.21. 某校为了解学生五月份参与家务劳动的情况,随机抽取了部分学生进行调查、家务劳动的项目主要包括:扫地、拖地、洗碗、洗衣、做饭和简单维修等.学校德育处根据调查结果制作了如下两幅不完整的统计图:请根据以上信息,解答下列问题:(1)本次被抽取的学生人数为 人;(2)补全条形统计图:(3)在扇形统计图中,“4项及以上”部分所对应扇形的圆心角度数是︒;(4)若该校有学生1200人,请估计该校五月份参与家务劳动的项目数量达到3项及以上的学生人数.22. 如图,在四边形ABCD 中,AB CD ∥,点E 在边AB 上, .请从“①B AED ∠=∠;②AE BE =,AE CD =”这两组条件中任选一组作为已知条件,填在横线上(填序号),再解决下列问题:(1)求证:四边形BCDE 为平行四边形;(2)若AD AB ⊥,8AD =,10BC =,求线段AE 的长.23. 某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?24. 某数学研究性学习小组在老师的指导下,利用课余时间进行测量活动.活动主题测算某水池中雕塑底座的底面积测量工具皮尺、测角仪、计算器等模型抽象某休闲广场的水池中有一雕塑,其底座的底面为矩形ABCD ,其示意图如下:活动过程测绘过程与数据信息①在水池外取一点E ,使得点C ,B ,E 在同一条直线上;②过点E 作GH CE ⊥,并沿EH 方向前进到点F ,用皮尺测得EF的长为4米;③在点F 处用测角仪测得60.3CFG ∠=︒,45BFG ∠=︒,21.8AFG ∠=︒;④用计算器计算得:sin60.30.87︒≈,cos60.30.50︒≈,tan60.3 1.75︒≈.sin21.80.37︒≈,cos21.80.93︒≈,tan21.80.40︒≈.请根据表格中提供的信息,解决下列问题(结果保留整数):(1)求线段CE 和BC 的长度:(2)求底座的底面ABCD 的面积.25. 已知二次函数2y x c =-+的图像经过点()2,5A -,点()11,P x y ,()22,Q x y 是此二次函数的图像上的两个动点.(1)求此二次函数表达式;(2)如图1,此二次函数的图像与x 轴的正半轴交于点B ,点P 在直线AB 的上方,过点P 作PC x ⊥轴于点C ,交AB 于点D ,连接AC DQ PQ ,,.若213x x =+,求证DCPDQ A S S △△的值为定值;(3)如图2,点P 在第二象限,212x x =-,若点M 在直线PQ 上,且横坐标为11x -,过点M 作MN x ⊥轴于点N ,求线段MN 长度的最大值.26. 【问题背景】已知点A 是半径为r 的O 上的定点,连接OA ,将线段OA 绕点O 按逆时针方向旋转9(0)0αα︒<<︒得到OE ,连接AE ,过点A 作O 的切线l ,在直线l 上取点C ,使得CAE ∠为锐角.【初步感知】(1)如图1,当60α=︒时,CAE ∠=︒;的【问题探究】(2)以线段AC 为对角线作矩形ABCD ,使得边AD 过点E ,连接CE ,对角线AC ,BD 相交于点F .①如图2,当2AC r =时,求证:无论α在给定的范围内如何变化,BC CD ED =+总成立:②如图3,当43=AC r ,23CE OE =时,请补全图形,并求tan α及A BB C的值.2024年湖南省初中学业水平考试数 学本试题卷共6页.时量120分钟.满分120分.注意事项:1.答题前,考生先将自己的姓名、准考证号写在答题卡和本试题卷上,并认真核对条形码上的姓名、准考证号和相关信息:2.选择题部分请按题号用2B 铅笔填涂方框,修改时用橡皮擦干净,不留痕迹;3.非选择题部分请按题号用0.5毫米黑色墨水签字笔书写,否则作答无效:4.在草稿纸、试题卷上作答无效;5.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;6.答题卡上不得使用涂改液、涂改胶和贴纸.一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在日常生活中,若收入300元记作300+元,则支出180元应记作( )A. 180+元 B. 300+元C. 180-元D. 480-元【答案】C 【解析】【分析】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.首先审清题意,明确“正”和“负”所表示的意义,结合题意解答即可;【详解】解:收入为“+”,则支出为“-”,那么支出180元记作180-元.故选:C .2. 据《光明日报》2024年3月14日报道:截至2023年末,我国境内有效发明专利量达到401.5万件,高价值发明专利占比超过四成,成为世界上首个境内有效发明专利数量突破400万件的国家,将4015000用科学记数法表示应为( )A. 70.401510⨯ B. 64.01510⨯ C. 540.1510⨯ D.34.01510⨯【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:4015000用科学记数法表示为64.01510⨯.故选:B .3. 如图,该纸杯的主视图是()A. B. C. D.【答案】A 【解析】【分析】直接依据主视图即从几何体的正面观察,进而得出答案.此题主要考查了简单几何体的三视图,正确把握观察角度是解题的关键.【详解】解:该纸杯的主视图是选项A ,故选:A .4. 下列计算正确的是( )A. 22321a a -= B. 32(0)a a a a ÷=≠ C. 236a a a ⋅= D.()3326a a =【答案】B 【解析】【分析】本题考查了合并同类项,同底数幂的乘除法,积的乘方,根据以上运算法则逐项分析即可.【详解】解:A 、22232a a a -=,故该选项不正确,不符合题意; B 、32(0)a a a a ÷=≠,故该选项正确,符合题意;C 、235a a a ⋅=,故该选项不正确,不符合题意; D 、()3328a a =,故该选项不正确,不符合题意;故选:B .5. )A. B. C. 14 D.【答案】D 【解析】【分析】此题主要考查了二次根式的乘法,正确计算是解题关键.直接利用二次根式的乘法运算法则计算得出答案.=故选:D6. 下列命题中,正确的是( )A. 两点之间,线段最短B. 菱形的对角线相等C. 正五边形的外角和为720︒D. 直角三角形是轴对称图形【答案】A 【解析】【分析】本题考查了命题与定理的知识,多边形外角性质,菱形性质及轴对称图形的特点,解题的关键是掌握这些基础知识点.【详解】解:A 、两点之间,线段最短,正确,是真命题,符合题意;B 、菱形的对角线互相垂直,不一定相等,选项错误,是假命题,不符合题意;C 、正五边形的外角和为360︒,选项错误,是假命题,不符合题意;D 、直角三角形不一定轴对称图形,只有等腰直角三角形是轴对称图形,选项错误,是假命题,不符合题意;故选:A .7. 如图,AB ,AC 为O 的两条弦,连接OB ,OC ,若45A ∠=︒,则BOC ∠的度数为( )A. 60︒B. 75︒C. 90︒D. 135︒【答案】C【解析】【分析】本题考查了圆周角定理,熟知在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半是解题的关键.根据圆周角定理可知12A BOC ∠=∠,即可得到答案.【详解】根据题意,圆周角A ∠和圆心角BOC ∠同对着 BC,∴12A BOC ∠=∠,45A ∠=︒ ,224590BOC A ∴∠=∠=⨯︒=︒.故选:C .8. 某班的5名同学1分钟跳绳的成绩(单位:次)分别为:179,130,192,158,141.这组数据的中位数是( )A. 130B. 158C. 160D. 192【答案】B【解析】【分析】本题考查了中位数,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.据此求解即可.【详解】解:从小到大排序为130,141,158,179,192,最中间的数是158,∴中位数是158,故选:B .是9. 如图,在ABC 中,点D E ,分别为边AB AC ,的中点.下列结论中,错误的是( )A DE BC ∥ B. ADE ABC △△∽ C. 2BC DE = D. 12ADE ABC S S = 【答案】D【解析】【分析】本题考查了三角形中位线的性质,相似三角形的判定和性质,由三角形中位线性质可判断A C 、;由相似三角形的判定和性质可判断B D 、,掌握三角形中位线的性质及相似三角形的判定和性质是解题的关键.【详解】解:∵点D E ,分别为边AB AC ,的中点,∴DE BC ∥,2BC DE =,故A C 、正确;∵DE BC ∥,∴ADE ABC △△∽,故B 正确;∵ADE ABC △△∽,∴221124ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭△△,∴14ADE ABC S S = ,故D 错误;故选:D .10. 在平面直角坐标系xOy 中,对于点(),P x y ,若x ,y 均为整数,则称点P 为“整点”.特别地,当y x(其中0xy ≠)的值为整数时,称“整点”P 为“超整点”,已知点()24,3P a a -+在第二象限,下列说法正确的是( )A. 3a <- B. 若点P 为“整点”,则点P 的个数为3个C. 若点P 为“超整点”,则点P 的个数为1个D. 若点P 为“超整点”,则点P 到两坐标轴的距离之和大于10【答案】C.【解析】【分析】本题考查了新定义,点到坐标轴的距离,各象限内点的特征等知识,利用各象限内点的特征求出a 的取值范围,即可判断选项A ,利用“整点”定义即可判断选项B ,利用“超整点”定义即可判断选项C ,利用“超整点”和点到坐标轴的距离即可判断选项D .【详解】解:∵点()24,3P a a -+在第二象限,∴24030a a -<⎧⎨+>⎩,∴32a -<<,故选项A 错误;∵点()24,3P a a -+为“整点”, 32a -<<,∴整数a 为2-,1-,0,1,∴点P 的个数为4个,故选项B 错误;∴“整点”P 为()8,1-,()6,2-,()4,3-,()2,4-,∵1188=--,2163=--,3344=--,422=--∴“超整点”P 为()2,4-,故选项C 正确;∵点()24,3P a a -+为“超整点”,∴点P 坐标为()2,4-,∴点P 到两坐标轴的距离之和246+=,故选项D 错误,故选:C .二、填空题:本题共8小题,每小题3分,共24分.11. 计算:()2024--=________.【答案】2024【解析】【分析】本题考查了求一个数的相反数,熟练掌握相反数的定义是解题的关键.根据相反数的定义,即可求解.【详解】解:()20242024--=,故答案为:2024.12. 有四枚材质、大小、背面图案完全相同的中国象棋棋子“”“”“”“”,将它们背面朝上任意放置,从中随机翻开一枚,恰好翻到棋子“”的概率是________.【答案】14【解析】【分析】本题考查了概率,熟练掌握概率公式是解本题的关键.概率=所求情况数与总情况数之比.根据概率公式计算即可.【详解】解:∵共有4枚棋子,∴从中任意摸出一张,恰好翻到棋子“”的概率是14.故答案为:1413. 分式方程21x +=1的解是_______.【答案】x=1【解析】【分析】先给方程两边同乘最简公分母x+1,把分式方程转化为整式方程2=x+1,求解后并检验即可.【详解】解:方程的两边同乘x+1,得2=x+1,解得x=1.检验:当x=1时,x+1=2≠0.所以原方程的解为x=1.故答案为:x=1.【点睛】此题考查了解分式方程,掌握解分式方程的一般步骤及方法是解题的关键.14. 一个等腰三角形的一个底角为40︒,则它的顶角的度数是________度.【答案】100【解析】【分析】本题考查了等腰三角形的性质和三角形内角和,解答时根据等腰三角形两底角相等,求出顶角度数即可.【详解】解:因为其底角为40°,所以其顶角180402100=︒-︒⨯=︒.故答案为:100.15. 若关于x 的一元二次方程2420x x k -+=有两个相等的实数根,则k 的值为________.【答案】2【解析】【分析】本题考查根据一元二次方程根的情况求参数.一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根,则240b ac ∆=->;有两个相等的实数根,则240b ac ∆=-=;没有实数根,则24<0b ac ∆=-.据此即可求解.【详解】解:由题意得:()22444120b ac k ∆=-=--⨯⨯=,解得:2k =故答案为:216. 在一定条件下,乐器中弦振动的频率f 与弦长l 成反比例关系,即k f l=(k 为常数.0k ≠),若某乐器的弦长l 为0.9米,振动频率f 为200赫兹,则k 的值为________.【答案】180【解析】【分析】本题考查了待定系数法求反比例函数解析式,把0.9l =,200f =代入k f l =求解即可.【详解】解:把0.9l =,200f =代入k f l =,得2000.9k =,解得180k =,故答案为:180.17. 如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE BF =;分别以点E ,F 为圆心,大于12EF 的长为半径画弧,在ABC ∠内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN AB ⊥于点N .若2MN =,4AD MD =,则AM =________.【答案】6【解析】【分析】本题考查了尺规作图,角平分线的性质等知识,根据作图可知BP 平分ABC ∠,根据角平分线的性质可知2DM MN ==,结合4AD MD =求出AD ,AM .详解】解:作图可知BP 平分ABC ∠,∵AD 是边BC 上的高,MNAB ⊥,2MN =,∴2MD MN ==,∵4AD MD =,∴8AD =,∴6AM AD MD =-=,故答案为:6.18. 如图,左图为《天工开物》记载的用于春(chōng )捣谷物的工具——“碓(duì)”的结构简图,右图为其平面示意图,已知AB CD ⊥于点B ,AB 与水平线l 相交于点O ,OE l ⊥.若4BC =分米,12OB =分米.60BOE ∠=︒,则点C 到水平线l 的距离CF 为________分米(结果用含根号的式子表示).【答案】(6-##()6-+【解析】【分析】题目主要考查解三角形及利用三角形等面积法求解,延长DC 交l 于点H ,连接OC,根据题意及解三角形确定BH =OH =,再由等面积法即可求解,作出辅助线是解题关键.【详解】解:延长DC 交l 于点H ,连接OC ,如图所示:在Rt OBH △中,906030BOH ∠=︒-︒=︒,12dmOB =【12tan 30BH ∴=⨯︒=,OH =OBH OCH OBCS S S =+△△△ 111222OB BH OH CF OB BC ∴⋅=⋅+⋅即11112124222CF ⨯=⨯+⨯⨯,解得:6CF =-.故答案为:(6-.三、解答题:本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.19计算:01|3|cos 602⎛⎫-+-+︒ ⎪⎝⎭【答案】52【解析】【分析】题目主要考查实数的混合运算,特殊角的三角函数、零次幂的运算等,先化简绝对值、零次幂及特殊角的三角函数、算术平方根,然后计算加减法即可,熟练掌握各个运算法则是解题关键.【详解】解:01|3|cos 602⎛⎫-+-+︒ ⎪⎝⎭13122=++-52=.20. 先化简,再求值:22432x x x x x-⋅++,其中3x =.【答案】1x x +,43【解析】【分析】本题主要考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.先计算乘法,再计算加法,然后把3x =代入化简后的结果,即可求解.【详解】解:22432x x x x x-⋅++()()22232x x x x x x+-⋅++=.23x x x-=+1x x +=,当3x =时,原式31433+==.21. 某校为了解学生五月份参与家务劳动的情况,随机抽取了部分学生进行调查、家务劳动的项目主要包括:扫地、拖地、洗碗、洗衣、做饭和简单维修等.学校德育处根据调查结果制作了如下两幅不完整的统计图:请根据以上信息,解答下列问题:(1)本次被抽取的学生人数为 人;(2)补全条形统计图:(3)在扇形统计图中,“4项及以上”部分所对应扇形的圆心角度数是 ︒;(4)若该校有学生1200人,请估计该校五月份参与家务劳动项目数量达到3项及以上的学生人数.【答案】(1)100(2)见解析 (3)36(4)300人【解析】【分析】题目主要考查条形统计图与扇形统计图,样本估计总体,求扇形统计图圆心角等,理解题意,结合统计图得出相关信息是解题关键.(1)根据参与1项家务劳动的人数及比例即可得出结果;(2)先求出参加3项家务劳动的学生人数,然后补全统计图即可;(3)用360度乘以4项及以上所占的比例即可;(4)用总人数乘以参与家务劳动的项目数量达到3项及以上的比例即可.【小问1详解】解:根据题意得:3030%100÷=人,的故答案为:100;【小问2详解】100330421015----=,补全统计图如下:【小问3详解】1036036100︒⨯=︒,故答案为:36;【小问4详解】15101200300100+⨯=人.22. 如图,在四边形ABCD 中,AB CD ∥,点E 在边AB 上, .请从“①B AED ∠=∠;②AE BE =,AE CD =”这两组条件中任选一组作为已知条件,填在横线上(填序号),再解决下列问题:(1)求证:四边形BCDE 为平行四边形;(2)若AD AB ⊥,8AD =,10BC =,求线段AE 的长.【答案】(1)①或②,证明见解析;(2)6【解析】【分析】题目主要考查平行四边形的判定和性质,勾股定理解三角形,理解题意,熟练掌握平行四边形的判定和性质是解题关键.(1)选择①或②,利用平行四边形的判定证明即可;(2)根据平行四边形的性质得出10DE BC ==,再由勾股定理即可求解.【小问1详解】解:选择①,证明:∵B AED ∠=∠,∴DE CB ∥,∵AB CD ∥,∴四边形BCDE 为平行四边形;选择②,证明:∵AE BE =,AE CD =,∴CD BE =,∵AB CD ∥,∴四边形BCDE 为平行四边形;【小问2详解】解:由(1)得10DE BC ==,∵AD AB ⊥,8AD =,∴6AE ==.23. 某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?【答案】(1)50元、30元(2)400棵【解析】【分析】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)设脐橙树苗和黄金贡柚树苗的单价分别为x 元/棵,y 元/棵,根据“购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元”列方程组求解即可;(2)购买脐橙树苗a 棵,根据“总费用不超过38000元”列不等式求解即可.【小问1详解】解:设脐橙树苗和黄金贡柚树苗的单价分别为x 元/棵,y 元/棵,根据题意,得211023190x y x y +=⎧⎨+=⎩,解得5030x y =⎧⎨=⎩,答:脐橙树苗和黄金贡柚树苗的单价分别为50元/棵,30元/棵;【小问2详解】解:设购买脐橙树苗a 棵,则购买黄金贡柚树苗()1000a -棵,根据题意,得()5030100038000a a +-≤,解得400a ≤,答:最多可以购买脐橙树苗400棵.24. 某数学研究性学习小组在老师的指导下,利用课余时间进行测量活动.活动主题测算某水池中雕塑底座的底面积测量工具皮尺、测角仪、计算器等模型抽象某休闲广场的水池中有一雕塑,其底座的底面为矩形ABCD ,其示意图如下:活动过程测绘过程与数据信息①在水池外取一点E ,使得点C ,B ,E 在同一条直线上;②过点E 作GH CE ⊥,并沿EH 方向前进到点F ,用皮尺测得EF的长为4米;③在点F 处用测角仪测得60.3CFG ∠=︒,45BFG ∠=︒,21.8AFG ∠=︒;④用计算器计算得:sin60.30.87︒≈,cos60.30.50︒≈,tan60.3 1.75︒≈.sin21.80.37︒≈,cos21.80.93︒≈,tan21.80.40︒≈.请根据表格中提供的信息,解决下列问题(结果保留整数):(1)求线段CE 和BC 的长度:(2)求底座的底面ABCD 的面积.【答案】(1)7米;3米(2)18平方米【解析】【分析】题目主要考查解三角形的应用,理解题意,结合图形求解是解题关键.(1)根据题意得tan tan60.3 1.75CE CFE EF∠=︒=≈,即可确定CE 长度,再由45BFG ∠=︒得出4BE EF ==米,即可求解;(2)过点A 作AM GH ⊥于点M ,继续利用正切函数确定6AB ME ==米,即可求解面积.【小问1详解】解:∵GH CE ⊥,EF 的长为4米,60.3CFG ∠=︒,∴tan tan60.3 1.75CE CFE EF∠=︒=≈,∴7CE =米;∵45BFG ∠=︒,∴4BE EF ==米,∴3CB CE BE =-=米;【小问2详解】过点A 作AM GH ⊥于点M ,如图所示:∵21.8AFG ∠=︒,∴tan tan21.80.4AM AFG MF∠=︒=≈,∵4AM BE ==米,∴10MF =米,∴1046AB ME ==-=米,∴底座的底面ABCD 的面积为:3618⨯=平方米.25. 已知二次函数2y x c =-+的图像经过点()2,5A -,点()11,P x y ,()22,Q x y 是此二次函数的图像上的两个动点.(1)求此二次函数的表达式;(2)如图1,此二次函数的图像与x 轴的正半轴交于点B ,点P 在直线AB 的上方,过点P 作PC x ⊥轴于点C ,交AB 于点D ,连接AC DQ PQ ,,.若213x x =+,求证DC PDQ A S S △△的值为定值;(3)如图2,点P 在第二象限,212x x =-,若点M 在直线PQ 上,且横坐标为11x -,过点M 作MN x ⊥轴于点N ,求线段MN 长度的最大值.【答案】(1)29y x =-+(2)为定值3,证明见解析(3)374【解析】【分析】(1)用待定系数法求解即可;(2)先求出直线AB 的解析式,()211,9P x x -+,则()()2113,39Q x x +-++,()11,3D x x -+,表示出()()23PD x x =+-+,13CD x =-+,代入DC PDQA S S △△即可求解;(3)设()211,9P x x -+,则()2112,49Q x x --+,求出直线PQ 的解析式,把11x x =-代入即可求出线段MN 长度的最大值.【小问1详解】∵二次函数2y x c =-+的图像经过点()2,5A -,∴54c =-+,∴9c =,∴29y x =-+;【小问2详解】当0y =时,209x =-+,∴123,3x x =-=,∴()3,0B ,设直线AB 的解析式为y kx b =+,∴2530k b k b -+=⎧⎨+=⎩,∴13k b =-⎧⎨=⎩,∴3y x =-+,设()211,9P x x -+,则()()2113,39Q x x +-++,()11,3D x x -+,∴()()()2211111193623PD x x x x x x =-+--+=-++=+-+,13CD x =-+.∴()()()()()11111233332PDQ ADC S x x x x S x x +-++-==-++ ,∴DCPDQA S S △△的值为定值;【小问3详解】设()211,9P x x -+,则()2112,49Q x x --+,设直线PQ 的解析式为y mx n =+,∴2112119249mx n x mx n x ⎧+=-+⎨-+=-+⎩,∴12129m x n x =⎧⎨=-+⎩,∴12129y x x x -=+,当11x x =-时,()22111113712924y x x x x ⎛⎫=--+=-++ ⎪⎝⎭,∴当12x =-时,线段MN 长度的最大值374.【点睛】本题考查了待定系数法求函数解析式,二次函数与几何综合,数形结合是解答本题的关键.26. 【问题背景】已知点A 是半径为r 的O 上的定点,连接OA ,将线段OA 绕点O 按逆时针方向旋转9(0)0αα︒<<︒得到OE ,连接AE ,过点A 作O 的切线l ,在直线l 上取点C ,使得CAE ∠为锐角.【初步感知】(1)如图1,当60α=︒时,CAE ∠= ︒;【问题探究】(2)以线段AC 为对角线作矩形ABCD ,使得边AD 过点E ,连接CE ,对角线AC ,BD 相交于点F .①如图2,当2AC r =时,求证:无论α在给定的范围内如何变化,BC CD ED =+总成立:②如图3,当43=AC r ,23CE OE =时,请补全图形,并求tan α及A B B C的值.【答案】(1)30︒;①证明见解析;②补全图形见解析,43,12【解析】【分析】(1)可证OEA △是等边三角形,则60OAE ∠=︒,由直线l 是O 的切线,得到90OAC ∠=︒,故906030CAE ∠=︒-︒=︒;(2)①根据矩形的性质与切线的性质证明OAE FCD △≌△,则AE CD =,而BC AD =,由AD AE DE =+,得到BC CD DE =+;②过点O 作OG AE ⊥于点G ,AH OE ⊥于点H ,在Rt AOC 中,先证明点E 在线段OC 上,4tan 3AC AO α==,由等腰三角形的性质得12EOG α∠=,根据互余关系可得12EAH EOG α∠=∠=,可求4tan 3AH OH α==,解OAE △,求得1tan 2EAH ∠=,可证明12ACB α∠=,故在Rt ABC △中,1tan tan 22AB ACB BC α∠===.【详解】解:(1)由题意得60AOE α∠==︒,∵OA OE =,∴OEA △是等边三角形,∴60OAE ∠=︒,∵直线l 是O 的切线,∴90OAC ∠=︒,∴906030CAE ∠=︒-︒=︒,故答案为:30︒;(2)①如图:∵OA OE =,∴OAE OEA ∠=∠,∵AOE α∠=,∴180OAE OEA α∠+∠+=︒,∴18019022OAE αα︒-∠==︒-,∵90OAC ∠=︒,∴12DAC α∠=,∵四边形ABCD 是矩形,∴FA DF =,12CF DF AC r ===,∴12DAC FDA α∠=∠=,∴1122DFC ααα∠=+=,∵OA OE r ==,∴,OA FC OE FD ==,∵AOE DFC ∠=∠,∴OAE FCD △≌△,∴AE CD =,∵四边形ABCD 是矩形,∴BC AD =,∵AD AE DE =+,∴BC CD DE =+;②补全图形如图:过点O 作OG AE ⊥于点G ,AH OE ⊥于点H ,在Rt AOC 中,4,3OA r AC r ==,∴由勾股定理得53OC r =,∵23CEOE =,∴23CE r =,∴OC OE CE =+,∴点E 在线段OC 上,∴在Rt ACO ,4tan 3AC AO α==,∵OG AE ⊥,OA OE =,∴12EOG α∠=,∵AH OE ⊥,∴90EOG OEA EAH OEA ∠+∠=∠+∠=︒,∴12EAH EOG α∠=∠=,在Rt OAH △中,4tan 3AHOH α==,∴设4,3AH m OH m ==,∴由勾股定理得5OA OE m ==,∴532HE m m m =-=,∴在Rt AHE △中,1tan tan22HE EAH AH α∠===∵四边形ABCD 是矩形,∴AD BC ∥,∴12ACB DAC α∠=∠=,而12EAH α∠=,∴12ACB α∠=,∴在Rt ABC △中,1tan tan 22AB ACB BC α∠===.【点睛】本题考查了圆的切线的性质,等腰三角形的性质,全等三角形的判定与性质,矩形的性质,解直角三角形,勾股定理,熟练掌握知识点,正确添加辅助线是解决本题的关键.。
湖南长沙中考数学试卷word版有答案

2021 年长沙市中考数学试卷及参考答案一、选择题 〔在以下各题的四个选项中, 只有一项为哪一项符合题意的。
请在答题卡中填涂符合题意的选项。
此题共 10 个小题,每题 3 分,共 30 分〕1. - 相反数是〔 〕A .1B . -3C . -1D . 3332..以下 平面图形中,既是轴对称图形,又是中心对称图形的是〔A. B. C.3.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但 甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是〔〕A . S 甲2 < S 乙2B . S 甲2 > S 乙2C . S 甲2 = S 乙2D .不能确定4.一个不等式组的解集在数轴上表示出来如下图,那么以下符合条件的不等式组为 〔〕x 2 x 2A.-1 B.-1xx● ○x 2 x 2C.-1D.-1xx-3 -2 -1 0 1 23 4 55.以下四边形中,对角线一定不相等的是〔 〕A .正方形B .矩形C .等腰梯形D .直角梯形6.以下四个角中,最有可能与 70°角互补的是〔〕A B C D7.小明骑自行车上学 ,开始以正常速度匀速行驶, 但行至中途时 ,自行车出了故障, 只好停下 来修车,车修好后, 因怕耽误上课, 他比修车前加快了速度继续匀速行驶, 下面是行驶路程 s 〔m 〕关于时间 t 〔 min 〕的函数图象,那么符合小明行驶情况的大致图象是〔〕ssssOOOOttttACDB8.如图,菱形 ABCD 中,对角线 AC 与 BD 相交于点 O , OE ∥ DC 且交 BC 于 E ,AD=6cm, 那么 OE 的长为〔〕A 、 6cmB 、 4cmC 、 3cmD 、 2cm第 8 题9. 某闭合电路中,电源的电压为定值,电流I 〔A 〕与电阻 R 〔 Ω〕成反比例.如图表示的 是该电路中电流 I 与电阻 R 之间函数关系的图像,那么用电阻R 表示电流 I 的函数解析式为〔 〕A.I=2B. I=3 RR 6 D. I=-6C. I=RR10.现有 3 ㎝, 4 ㎝, 7 ㎝, 9 ㎝长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是〔〕A . 1 个B . 2 个C . 3 个D . 4 个二、 填空题〔此题共 8 个小题,每题 3 分,共 24 分〕11.函数关系式: y= x - 1, 那么自变量 x 的取值范围是__________ 12. 如图,在△ ABC 中, ∠A=45°,∠ B=60°,那么外角∠ ACD= 度.13.假设实数 a,b 满足: 3 -1 b 2 0 ,那么a b = . a14. 如果一次函数 y=mx+3 的图象经过第一、二、四象限,那么 m 的取值范围是 15.任意抛掷一枚硬币,那么“正面朝上〞是事件A16. 在半径为 1cm 的圆中,圆心角为120°的扇形的弧长是cm;C17.如图, A B ∥ CD ∥ EF,那么∠ BAC+∠ ACE+∠CEF=度;第 9 题图第 12 题图BDE第 17 题图F18. 如图,等腰梯形 ABC D 中, AD//BC , AB=AD=2 ,∠ B=60°,那么 BC 的长为;三、解答题 : 〔此题共2 个小题,每题6 分,共 12 分〕19.〔 6 分〕计算:〔 1-1 2 sin 30 。
2024年湖南省长沙市中考数学试题(解析版)

2024年长沙市初中学业水平考试试卷数学注意事项:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本学科试卷共25个小题,考试时量120分钟,满分120分.一、选择题(在下列各题的四个选项中,只有一项是符合题的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查轴对称图形和中心对称图形的识别,熟知定义:轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.据此逐项判断即可.【详解】解:A 中图形轴对称图形,不是中心对称图形,故本选项不符合题意;B 中图形既是轴对称图形又是中心对称图形,故本选项符合题意;C 中图形是轴对称图形,不是中心对称图形,故本选项不符合题意;D 中图形不是轴对称图形,是中心对称图形,故本选项不符合题意,故选:B .2. 我国近年来大力推进国家教育数字化战略行动,截至2024年6月上旬,上线慕课数量超过7.8万门,学习人次达1290000000建设和应用规模居世界第一.用科学记数法将数据1290000000表示为( )A. 81.2910×B. 812.910×C. 91.2910×D. 712910×【答案】C 是【解析】【分析】本题考查科学记数法,科学记数法的一般形式为10n a ×,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:用科学记数法将数据1290000000表示为91.2910×,故选:C .3. “玉兔号”是我国首辆月球车,它和着陆器共同组成“嫦娥三号”探测器.“玉兔号”月球车能够耐受月球表面的最低温度是180−℃、最高温度是150℃,则它能够耐受的温差是( )A. 180−℃B. 150℃C. 30℃D. 330℃【答案】D【解析】【分析】本题考查了温差的概念和有理数的运算,解决本题的关键是气温最高值与最低值之差,计算解决即可. 【详解】解:能够耐受的温差是()150180330−−=℃, 故答案为:D .4. 下列计算正确的是( )A. 642x x x ÷=B.C. 325()x x =D. 222()x y x y +=+【答案】A【解析】【分析】此题主要考查同底数幂的除法、二次根式的加减、幂的乘方、完全平方公式的运算,解题的关键是熟知运算法则.【详解】解:A 、 642x x x ÷=,计算正确;BC 、326()x x =,原计算错误;D 、222()2x y x xy y +=++,原计算错误;故选A .5. 为庆祝五四青年节,某学校举办班级合唱比赛,甲班演唱后七位评委给出的分数为:9.5,9.2,9.6,9.4,9.5,8.8,9.4,则这组数据的中位数是( )A. 9.2B. 9.4C. 9.5D. 9.6【答案】B【解析】 【分析】本题考查了中位数的定义,中位数是一组数据从小到大排列后居于中间的一个数或中间两个数的平均数,根据中位数的定义解题即可.【详解】解:甲班演唱后七位评委给出的分数为:8.8,9.2,9.4,9.4,9.5,9.5,9.6,∴中位数为:9.4,故选B .6. 在平面直角坐标系中,将点()3,5P 向上平移2个单位长度后得到点P ′的坐标为( )A. ()1,5B. ()5,5C. ()3,3D. ()3,7【答案】D【解析】【分析】本题考查坐标与图形变换-平移变换,根据点的坐标平移规则:左减右加,上加下减求解即可.【详解】解:在平面直角坐标系中,将点()3,5P 向上平移2个单位长度后得到点P ′的坐标为()3,52+,即()3,7,故选:D . 7. 对于一次函数21y x =−,下列结论正确的是( ) A. 它的图象与y 轴交于点()0,1−B. y 随x 的增大而减小C. 当12x >时,0y <D. 它的图象经过第一、二、三象限【答案】A【解析】【分析】本题考查一次函数的性质,根据一次函数的性质逐个判断即可得到答案.【详解】解:A.当0x =时,1y =−,即一次函数21y x =−的图象与y 轴交于点()0,1−,说法正确; B.一次函数21y x =−图象y 随x 增大而增大,原说法错误; C.当12x >时,0y >,原说法错误; D.一次函数21y x =−图象经过第一、三、四象限,原说法错误; 故选A .的的8. 如图,在ABC 中,60BAC ∠=°,50B ∠=°,AD BC ∥.则1∠的度数为( )A. 50°B. 60°C. 70°D. 80°【答案】C【解析】 【分析】本题主要考查了三角形内角和定理、平行线的性质等知识点,掌握平行线的性质成为解题的关键. 由三角形内角和定理可得70C ∠=°,再根据平行线的性质即可解答.【详解】解:∵在ABC 中,60BAC ∠=°,50B ∠=°, ∴18070C BAC B ∠∠−∠−=°=°,∵AD BC ∥,∴170C ∠∠==°.故选:C .9. 如图,在O 中,弦AB 的长为8,圆心O 到AB 的距离4OE =,则O 的半径长为( )A. 4B.C. 5D. 【答案】B【解析】 【分析】本题考查垂径定理、勾股定理,先根据垂径定理得到AE ,再根据勾股定理求解即可.【详解】解:∵在O 中,弦AB 的长为8,圆心O 到AB 的距离4OE =,∴OE AB ⊥,142AE AB ==,在Rt AOE △中,OA, 故选:B .10. 如图,在菱形ABCD 中,6AB =,30B ∠=°,点E 是BC 边上的动点,连接AE ,DE ,过点A 作AF DE ⊥于点P .设DE x =,AF y =,则y 与x 之间的函数解析式为(不考虑自变量x 的取值范围)( )A. 9y x =B. 12y x =C. 18y x =D. 36y x= 【答案】C【解析】【分析】本题考查菱形的性质、含30度角的直角三角形的性质、相似三角形的判定与性质,利用相似三角形的性质求解x 、y 的关系式是解答的关键.过D 作DH BC ⊥,交BC 延长线于H ,则90DHE ∠=°,根据菱形的性质和平行线的性质得到6CD AD AB ===,ADF DEH ∠=∠,30DCH B ∠=∠=°,进而利用含30度角的直角三角形的性质132DH CD ==,证明AFD DHE ∽得到AF AD DH DE=,然后代值整理即可求解. 【详解】解:如图,过D 作DH BC ⊥,交BC 延长线于H ,则90DHE ∠=°,∵在菱形ABCD 中,6AB =,30B ∠=°,∴AB CD ∥,AD BC ∥,6CD AD AB ===,∴ADF DEH ∠=∠,30DCH B ∠=∠=°, 在Rt CDH △中,132DH CD ==, ∵AF DE ⊥, ∴90AFD DHE ∠=∠=°,又ADF DEH ∠=∠,∴AFD DHE ∽, ∴AF AD DH DE=, ∵DE x =,AF y =,∴63yx =,∴18yx =,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11. 为了比较甲、乙、丙三种水稻秋苗的长势,每种秧苗各随机抽取40株,分别量出每株高度,计算发现三组秧苗的平均高度一样,并且得到甲、乙、丙三组秧苗高度的方差分别是3.6,10.8,15.8,由此可知____种秧苗长势更整齐(填“甲”、“乙”或“丙”).【答案】甲【解析】【分析】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵3.610.815.8<<,∴甲种秧苗长势更整齐,故答案为:甲.12. 某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会,小明家参与抽奖,获得一等奖的概率为______.【答案】15##0.2【解析】【分析】本题考查概率公式,掌握概率的意义是解题的关键.利用概率公式直接进行计算.【详解】解:小明家参与抽奖,获得一等奖的概率为21 2355=++,故答案为:15.13. 要使分式619x−有意义,则x需满足的条件是______.【答案】19x≠【解析】【分析】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.【详解】解:∵分式619x −有意义, ∴190x −≠,解得19x ≠,故答案为:19x ≠.14. 半径为4,圆心角为90°的扇形的面积为______(结果保留π).【答案】4π【解析】 【分析】本题考查扇形的面积公式,根据扇形的面积公式2π360n r S =(n 为圆心角的度数,r 为半径)求解即可.【详解】解:由题意,半径为4,圆心角为90°的扇形的面积为290π44π360×=, 故答案为:4π.15. 如图,在ABC 中,点D ,E 分别是AC BC ,的中点,连接DE .若12DE =,则AB 的长为______.【答案】24【解析】【分析】本题主要考查三角形中位线定理,熟知三角形的中位线平行于第三边且等于第三边的一半是解题的关键.【详解】解:∵D ,E 分别是AC ,BC 的中点,∴DE 是ABC 的中点,∴221224AB DE ==×=,故答案为:24.16. 为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘以10,再加上4.6,将此时的运算结果再乘以10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是______.【答案】2009【解析】【分析】本题考查二元一次方程的解,理解题意是解答的关键.设这位参与者的出生年份是x ,从九个数字中任取一个数字为a ,根据题意列二元一次方程,整理得1001109x a =+,根据a 的取值得到x 的9种可能,结合实际即可求解.【详解】解:设这位参与者的出生年份是x ,从九个数字中任取一个数字为a ,根据题意,得()10 4.6101978915a x +×+−=, 整理,得100461978915a x ++−=∴1001109x a =+, ∵a 是从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,∴x 的值可能为1209,1309,1409,1509,1609,1709,1809,1909,2009,∵是为庆祝中国改革开放46周年,且参与者均为在校中学生,∴x 只能是2009,故答案为:2009.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第2425题每小题10分,共72分解答应写出必要的文字说明、证明过程或演算步骤)17. 计算:()011()π 6.84−−°−. 【答案】3【解析】【分析】本题考查了实数的混合运算,先根据绝对值、零指数幂、负整数指数幂的意义,特殊角的三角函值化简,再算加减即可.【详解】解:原式41=+3=.18. 先化简,再求值:()()()2233m m m m m −−++−,其中52m =. 【答案】49m −;1【解析】【分析】本题考查整式的混合运算及其求值,先根据整式的混合运算法则化简原式,再代值求解即可.【详解】解:()()()2233m m m m m −−++−22229m m m m =−++−49m =−. 当52m =时,原式54910912=×−=−=.19. 如图,在Rt ABC △中,90ACB ∠=°,AB =2AC =,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧分别交于点M 和N ,作直线MN 分别交AB BC ,于点D ,E ,连接CD AE ,.(1)求CD 的长;(2)求ACE 的周长.【答案】(1(2)6【解析】【分析】本题考查了线段垂直平分线的性质:线段垂直平分线的点到线段两个端点的距离相等,斜中半定理:直角三角形中,斜边上的中线等于斜边的一半,以及勾股定理等知识点,熟记相关结论是解题关键. (1)由题意得MN 是线段AB 的垂直平分线,故点D 是斜边AB 的中点.据此即可求解;(2)根据EA EB =、ACE 的周长AC CE EA AC CE EB AC BC =++=++=+即可求解;【小问1详解】解:由作图可知,MN 是线段AB 的垂直平分线,∴在Rt ABC △中,点D 是斜边AB 的中点.∴1122CD AB ==×. 【小问2详解】解:在Rt ABC △中,4BC =.∵MN 是线段AB 的垂直平分线,∴EA EB =.∴ACE 的周长246AC CE EA AC CE EB AC BC =++=++=+=+=.20. 中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势,2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图 类型人数 百分比 纯电m 54% 混动 n %a氢燃料 3%b 油车 5 %c请根据以上信息,解答下列问题:(1)本次调查活动随机抽取了_____人;表中=a ______,b =______;(2)请补全条形统计图;(3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;(4)若此次汽车展览会的参展人员共有4000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人?【答案】(1)50;30,6(2)见解析 (3)108°(4)3600人【解析】【分析】本题考查统计表、条形统计图和扇形统计图的综合,理解题意,能从统计图中获取有用信息是解答的关键.(1)用喜欢油车人数除以其所占的百分比可求得调查人数,用喜欢氢燃料人数除以调查人数可求得b ,进而用1减去喜欢其他车型所占的百分比可求解a ;(2)先求得n ,进而可补全条形统计图;(3)用360度乘以喜欢混动所占的百分比即可求解;(4)用总人数乘以样本中喜欢新能源汽车所占的百分比即可求解.【小问1详解】解:本次调查活动随机抽取人数为510%50÷=(人), %350100%6%b =÷×=,则6b =,%154%6%10%30%a =−−−=,则30a =,故答案为:50;30,6;【小问2详解】解:∵5030%15n =×=,∴补全条形统计图如图所示:【小问3详解】解:扇形统计图中“混动”36030%108°×=°;【小问4详解】解:()400054%30%6%3600×++=(人). 答:估计喜欢新能源(纯电、混动、氢燃料)汽车的有3600人.21. 如图,点C 在线段AD 上,AB AD =,B D ∠=∠,BC DE =.(1)求证:ABC ADE △≌△;(2)若60BAC ∠=°,求ACE ∠的度数. 【答案】(1)见解析 (2)60ACE ∠=°【解析】【分析】本题考查全等三角形的判定与性质、等边三角形的判定与性质,证明ACE △是等边三角形是解答的关键.(1)直接根据全等三角形的判定证明结论即可;(2)根据全等三角形的性质得到AC AE =,60CAE BAC ∠=∠=°,再证明ACE △是等边三角形,利用等边三角形的性质求解即可.【小问1详解】证明:在ABC 与ADE 中,AB AD B D BC DE = ∠=∠ =, 所以()SAS ABC ADE ≌;【小问2详解】解:因为ABC ADE △≌△,60BAC ∠=°, 所以AC AE =,60CAE BAC ∠=∠=°,所以ACE △是等边三角形.所以60ACE ∠=°.22. 刺绣是我国民间传统手工艺.湘绣作为中国四大刺绣之一,闻名中外,在巴黎奥运会倒计时50天之际,某国际旅游公司计划购买A 、B 两种奥运主题的湘绣作品作为纪念品.已知购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元. (1)求A 种湘绣作品和B 种湘绣作品的单价分别为多少元?(2)该国际旅游公司计划购买A 种湘绣作品和B 种湘绣作品共200件,总费用不超过50000元,那么最多能购买A 种湘绣作品多少件?【答案】(1)A 种湘绣作品的单价为300元,B 种湘绣作品的单价为200元(2)最多能购买100件A 种湘绣作品【解析】【分析】本题考查了二元一次方程组的应用以及一元一次不等式的应用.(1)设A 种湘绣作品的单价为x 元,B 种湘绣作品的单价为y 元,根据“购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元”,即可得出关于x ,y 的二元一次方程组,解之即可解题;(2)设购买A 种湘绣作品a 件,则购买B 种湘绣作品()200a −件,总费用=单价×数量,结合总费用不超过50000元,即可得出关于a 的一元一次不等式,解之即可得出a 的值,再取其中的最大整数值即可得出该校最大可以购买湘绣的数量.【小问1详解】设A 种湘绣作品的单价为x 元,B 种湘绣作品的单价为y 元.根据题意,得2700231200x y x y += +=, 解得300,200x y = = .答:A 种湘绣作品的单价为300元,B 种湘绣作品的单价为200元.【小问2详解】设购买A 种湘绣作品a 件,则购买B 种湘绣作品()200a −件.根据题意,得()30020020050000a a +−≤,解得100a ≤.答:最多能购买100件A 种湘绣作品.23. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,90ABC ∠=°.(1)求证:AC BD =;(2)点E 在BC 边上,满足CEO COE ∠=∠.若6AB =,8BC =,求CE 的长及tan CEO ∠的值.【答案】(1)见解析 (2)5CE =,tan 3CEO ∠=【解析】【分析】本题考查矩形的判定与性质、勾股定理、等腰三角形的判定与性质、锐角三角函数等知识,熟练掌握矩形的判定与性质是解答的关键.(1)直接根据矩形的判定证明即可;(2)先利用勾股定理结合矩形的性质求得10AC =,OB OC =.进而可得152CO AC ==,再根据等腰三角形的判定得到5CE CO ==,过点O 作OF BC ⊥于点F ,根据等腰三角形的性质,结合勾股定理分别求得4CF =,1EF =,3OF =,然后利用正切定义求解即可.【小问1详解】证明:因为四边形ABCD 是平行四边形,且90ABC ∠=°,所以四边形ABCD 是矩形.所以AC BD =;【小问2详解】解:在Rt ABC △中,6AB =,8BC =,所以10AC =,因为四边形ABCD 是矩形, 所以152CO AC ==,OB OC =. 因为CEO COE ∠=∠,所以5CE CO ==.过点O 作OF BC ⊥于点F ,则142==CF BC ,所以541EF CE CF =−=−=,在Rt COF △中,3OF, 所以tan 3OF CEO EF∠==. 24. 对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),可分为四种类型,我们不妨约定:既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形;只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;只有内接圆,而无外接圆的四边形称为“内切型单圆”四边形;既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.请你根据该约定,解答下列问题:(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”,①平行四边形一定不是“平凡型无圆”四边形; ( )②内角不等于90°的菱形一定是“内切型单圆”四边形; ( )③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R ,内切圆半径为r ,则有=R .( ) (2)如图1,已知四边形ABCD 内接于O ,四条边长满足:AB CD BC AD +≠+.①该四边形ABCD 是“______”四边形(从约定的四种类型中选一种填入); ②若BAD ∠的平分线AE 交O 于点E ,BCD ∠的平分线CF 交O 于点F ,连接EF .求证:EF 是O 的直径.(3)已知四边形ABCD 是“完美型双圆”四边形,它的内切圆O 与AB BC CD AD ,,,分别相切于点E ,F ,G ,H .①如图2.连接EG FH ,交于点P .求证:EG FH ⊥.②如图3,连接OA OB OC ,,,,若2OA =,6OB =,3OC =,求内切圆O 的半径r 及OD 的长.【答案】(1)①×;②√;③√(2)①外接型单圆;②见解析(3)r =OD = 【解析】【分析】(1)根据圆内接四边形和切线长定理可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,结合题中定义,根据对角不互补,对边之和也不相等的平行四边形无外接圆,也无内切圆,进而可判断①;根据菱形的性质可判断②;根据正方形的性质可判断③;(2)①根据已知结合题中定义可得结论; ②根据角平分线的定义和圆周角定理证明 EBF EDF=即可证得结论; (3)①连接OE 、OF 、OG 、OH 、HG ,根据四边形ABCD 是“完美型双圆”四边形,结合四边形的内角和定理可推导出180A EOH ∠+∠=°,180FOG C ∠+∠=°,180A C∠+∠=°,进而可得EOH C ∠=∠,180FOG EOH∠+∠=°,然后利用圆周角定理可推导出90HPG ∠=°,即可证得结论;②连接OE 、OF 、OG 、OH ,根据已知条件证明OAH COG ∠=∠,进而证明AOH OCG ∽得到32CG r =,再利用勾股定理求得r =,BE =BEO OHD ∽求解OD 即可. 【小问1详解】解:由题干条件可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,所以 ①当平行四边形对角不互补,对边之和也不相等时,该平行四边形无外接圆,也无内切圆, ∴该平行四边形是 “平凡型无圆”四边形,故①错误;②∵内角不等于90°的菱形的对角不互补,∴该菱形无外接圆,∵菱形的四条边都相等,∴该菱形的对边之和相等,∴该菱形有内切圆,∴内角不等于90°的菱形一定是“内切型单圆”四边形,故②正确;③由题意,外接圆圆心与内切圆圆心重合的“完美型双圆”四边形是正方形,如图,则OM r =,ON R =,OM MN ⊥,45ONM ∠=°,∴Rt OMN △为等腰直角三角形,∴ON =,即=R ;故③正确,故答案为:①×;②√;③√;【小问2详解】解:①∵四边形ABCD 中,AB CD BC AD +≠+,∴四边形ABCD 无内切圆,又该四边形有外接圆,∴该四边形ABCD 是“外接型单圆”四边形,故答案为:外接型单圆;的②∵BAD ∠的平分线AE 交O 于点E ,BCD ∠的平分线CF 交O 于点F ,∴BAE DAE ∠=∠,BCF DCF ∠=∠, ∴ BEDE =, BF DF =, ∴ BEBF DE DF +=+, ∴ EBF EDF=,即 EBF 和 EDF 均为半圆, ∴EF 是O 的直径.【小问3详解】①证明:如图,连接OE 、OF 、OG 、OH 、HG ,∵O 是四边形ABCD 的内切圆,∴OE AB ⊥,OF BC ⊥,OG CD ⊥,OH AD ⊥,∴90OEA OHA ∠=∠=°,在四边形AEOH 中,3609090180A ∠+∠°−°−°=°,同理可证,180FOG C ∠+∠=°,∵四边形ABCD 是“完美型双圆”四边形,∴该四边形有外接圆,则180A C ∠+∠=°,∴EOH C ∠=∠,则180FOG EOH∠+∠=°, ∵12FHG FOG ∠=∠,12EGH EOH ∠=∠, ∴()1902FHG EGH FOG EOH ∠+∠=∠+∠=°, ∴()18090HPGFHG EGH ∠=°−∠+∠=°, ∴EG FH ⊥;②如图,连接OE 、OF 、OG 、OH ,∵四边形ABCD 是“完美型双圆”四边形,它的内切圆O 与AB BC CD AD ,,,分别相切于点E ,F ,G ,H ,∴∴OE AB ⊥,OF BC ⊥,OG CD ⊥,OH AD ⊥,OE OF OG OH ===,∴180EAH FCG ∠+∠=°,OAH OAE ∠=∠,OCG OCF ∠=∠, ∴90OAH OCG ∠+∠=°,∵90COG OCG ∠+∠=°,∴OAH COG ∠=∠,又90AHO OGC ∠=∠=°,∴AOH OCG ∽, ∴OA OH OC CG=, ∵2OA =,3OC =, ∴23r CG =,则32CG r =, 在Rt OGC △中,由222OG CG OC +=得222332r r +=,解得r = 在Rt OBE 中,6OB =,∴BE 同理可证BEO OHD ∽, ∴BE OB OH OD=,6OD=,∴OD =【点睛】本题主要考查平行四边形的性质、正方形的性质、菱形的性质、圆周角定理、内切圆的定义与性质、外接圆的定义与性质、相似三角形的判定与性质、四边形的内角和定理、勾股定理、角平分线的判定等知识,理解题中定义,熟练掌握这些知识和灵活运用性质和判定是解题的关键.另外还要求学生具备扎实的数学基础和逻辑思维能力,备考时,重视四边形知识的学习,提高解题技巧和速度,以应对中考挑战.25. 已知四个不同的点11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y 都在关于x 的函数2y ax bx c ++(a ,b ,c 是常数,0a ≠)的图象上.(1)当A ,B 两点的坐标分别为()1,4−−,()3,4时,求代数式3202410127a b ++的值; (2)当A ,B 两点的坐标满足212122()40a y y a y y +++=时,请你判断此函数图象与x 轴的公共点的个数,并说明理由;(3)当0a >时,该函数图象与x 轴交于E ,F 两点,且A ,B ,C ,D 四点的坐标满足:222121222()0a y y a y y ++++=,222343422()0a y y a y y −+++=.请问是否存在实数(1)m m >,使得AB ,CD ,m EF ⋅这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3?若存在,求出m 的值和此时函数的最小值;若不存在,请说明理由(注:m EF ⋅表示一条长度等于EP 的m 倍的线段).【答案】(1)3320241012202477a b ++= (2)此函数图象与x 轴的公共点个数为两个,理由见解析(3)存在两个m 的值符合题意;当m =时,此时该函数的最小值为53a −;当m =此时该函数的最小值为2a −【解析】【分析】本题主要考查了二次函数的性质、二次函数与一元二次方程的关系、二次函数与x 轴交点问题、直角三角形存在性问题等,熟练掌握相关知识和分类讨论是解题关键.(1)将A B 、代入得到关于a 、b 的关系式,再整体代入求解即可;(2)解方程212122()40a y y a y y +++=求解,再根据a 的正负分类讨论即可; (3)由内角之比可得出这是一个3060°°、的直角三角形,再将线段表示出来,利用特殊角的边角关系建立方程即可.【小问1详解】将()1,4A −−,()3,4B 代入2y ax bx c ++得4934a b c a b c −+=− ++=①②, ②-①得848a b +=,即22a b +=. 所以333202*********(2)2024777a ba b ++=++=. 【小问2详解】此函数图象与x 轴的公共点个数为两个. 方法1:由212122()40a y y a y y +++=,得12(2)(2)0a y a y ++=. 可得12a y =−或22a y =−. 当0a >时,<02a −,此抛物线开口向上,而A ,B 两点之中至少有一个点在x 轴的下方,此时该函数图象与x 轴有两个公共点;当0a <时,>02a −,此抛物线开口下,而A ,B 两点之中至少有一个点在x 轴的上方,此时该函数图象与x 轴也有两个公共点.综上所述,此函数图象与x 轴必有两个公共点.方法2:由212122()40a y y a y y +++=,得12(2)(2)0a y a y ++=. 可得12a y =−或22a y =−. 所以抛物线上存在纵坐标为2a −的点,即一元二次方程22a ax bx c ++=−有解. 所以该方程根的判别式24()02ab ac ∆=−+≥,即2242b ac a −≥. 因为0a ≠,所以240b ac −>.所以原函数图象与x 轴必有两个公共点.方法3:由()21212240a y y a y y +++=,可得12a y =−或22a y =−. 当12a y =−时,有2112a ax bx c ++=−,即2112a ax bx c ++=−, 所以2222211144()2(2)02ab ac b a ax bx a ax b ∆=−=+++=++>. 此时该函数图象与x 轴有两个公共点. 当22a y =−时,同理可得0∆>,此时该函数图象与x 轴也有两个公共点.综上所述,该函数图象与x 轴必有两个公共点.【小问3详解】因为0a >,所以该函数图象开口向上.由222121222()0a y y a y y ++++=,得()()22120a y a y +++=,可得12y y a ==−.由222343422()0a y y a y y −+++=,得2234()()0a y a y −+−=,可得34y y a ==. 所以直线AB CD ,均与x 轴平行.由(2)可知该函数图象与x 轴必有两个公共点,设()5,0E x ,()6,0F x . 由图象可知244ac b a a−−>,即2244b ac a −>. 所以2ax bx c a ++=−的两根为1x ,2x,可得12AB x x =−= 同理2ax bx c a ++=的两根为3x ,4x,可得34CD x x =−= 同理20ax bx c ++=的两根为5x ,6x,可得56m EF m x x m ⋅=⋅−= 由于1m >,结合图象与计算可得AB EF m EF <<⋅,<AB CD .若存在实数()1m m >,使得AB CD ,,m EF ⋅这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3,则此三角形必定为两锐角分别为30°,60°的直角三角形,所以线段AB 不可能是该直角三角形的斜边.①当以线段CD 为斜边,且两锐角分别为30°,60°时,因为m EF AB ⋅>,所以必须同时满足:222()AB m EF CD +⋅=,m EF ⋅. 将上述各式代入化简可得2222288244a a m b ac a =<=−,且22223(44)4b ac a m b ac −−=−, 联立解之得222043a b ac −=,22286245a m b ac ==<−,解得1m =>符合要求.所以m =,此时该函数最小值为2220453443a acb a a a −−==−. ②当以线段m EF ⋅为斜边时,必有222()AB CD m EF +=⋅,同理代入化简可得的2222(4)(4)b ac m b ac −−,解得m =为斜边,且有一个内角为60°,而CD AB >,所以tan 60CD AB =⋅°, 化简得222484b ac a a −=>符合要求.所以m =2824a a a −==−. 综上所述,存在两个m 的值符合题意;当m =时,此时该函数的最小值为53a −;当m =2a −.。
2022年长沙市中考数学试卷含参考解析

2022年长沙市中考数学试卷含参考解析参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.(3.00分)﹣2的相反数是()A.﹣2B.﹣C.2D.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2的相反数是2,故选:C.2.(3.00分)据统计,2022年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102某105B.10.2某103C.1.02某104D.1.02某103【分析】科学记数法的表示形式为a某10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:10200=1.02某104,故选:C.3.(3.00分)下列计算正确的是()A.a2+a3=a5B.3C.(某2)3=某5D.m5÷m3=m2【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、3﹣2=,故此选项错误;C、(某2)3=某6,故此选项错误;D、m5÷m3=m2,正确.故选:D.4.(3.00分)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cmB.8cm,8cm,15cmC.5cm,5cm,10cmD.6cm,7cm,14cm【分析】结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.5.(3.00分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.6.(3.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出各不等式的解集,再求出其公共解集即可.【解答】解:解不等式某+2>0,得:某>﹣2,解不等式2某﹣4≤0,得:某≤2,则不等式组的解集为﹣2<某≤2,将解集表示在数轴上如下:故选:C.7.(3.00分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.【分析】根据面动成体以及圆台的特点进行逐一分析,能求出结果.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.8.(3.00分)下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【解答】解:A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选:C.9.(3.00分)估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵32=9,42=16,∴∴,+1在4到5之间.故选:C.10.(3.00分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间某之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.11.(3.00分)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米【分析】直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.【解答】解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:某5某500某12某500=7500000(平方米)=7.5(平方千米).故选:A.12.(3.00分)若对于任意非零实数a,抛物线y=a某2+a某﹣2a总不经过点P(某0﹣3,某02﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个【分析】根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=a某2+a某﹣2a总不经过点P(某0﹣3,某02﹣16),即可求得点P的坐标,从而可以解答本题.【解答】解:∵对于任意非零实数a,抛物线y=a某2+a某﹣2a总不经过点P(某0﹣3,某02﹣16),∴某02﹣16≠a(某0﹣3)2+a(某0﹣3)﹣2a∴(某0﹣4)(某0+4)≠a(某0﹣1)(某0﹣4)∴(某0+4)≠a(某0﹣1)∴某0=﹣4或某0=1,∴点P的坐标为(﹣7,0)或(﹣2,﹣15)故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3.00分)化简:=1.【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减,分母不变,把分子相加减计算即可.【解答】解:原式=故答案为:1.14.(3.00分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为90度.=1.【分析】根据圆心角=360°某百分比计算即可;【解答】解:“世界之窗”对应扇形的圆心角=360°某(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.15.(3.00分)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(1,1).【分析】直接利用平移的性质分别得出平移后点的坐标得出答案.【解答】解:∵将点A′(﹣2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1).16.(3.00分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.【分析】先统计出偶数点的个数,再根据概率公式解答.13.(3.00分)化简:=1.【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减,分母不变,把分子相加减计算即可.【解答】解:原式=故答案为:1.14.(3.00分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为90度.=1.【分析】根据圆心角=360°某百分比计算即可;【解答】解:“世界之窗”对应扇形的圆心角=360°某(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.15.(3.00分)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(1,1).【分析】直接利用平移的性质分别得出平移后点的坐标得出答案.【解答】解:∵将点A′(﹣2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1).16.(3.00分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.【分析】先统计出偶数点的个数,再根据概率公式解答.。
2023年湖南省长沙市中考数学试卷(含答案)163742

2023年湖南省长沙市中考数学试卷试卷考试总分:120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 下列各数中,为无理数的是 A. B. C. D.2. 下列四个图案是四届冬奥会会徽图案上的一部分,其中为轴对称图形的是 A. B. C. D.3. 下列计算正确的是( )A.=B.=C.=D.=4. 下列各组数据能作为一个等腰三角形各边长的是( )A.,,B.,,C.,,D.,,5. 年某市固定资产总投资计划为亿元,将亿用科学记数法表示为( )()()+m 4m 3m 7(m 4)3m 7m(m−1)−mm 22÷m 5m 3m 22242344243372020268026805. 年某市固定资产总投资计划为亿元,将亿用科学记数法表示为( )A.B.C.D.6. 如图,直线,且, ,则的度数为( )A.B.C.D.7. 在演讲比赛中,位选手的成绩统计图如图所示,则这位选手成绩的众数是( )A.B. C.D.8. 不等式组的解集在数轴上表示正确的是( )A.B.C.D.9. 下列关于一次函数的说法,其中正确的是( )2020268026802.68×10112.68×10122.68×10132.68×1014AB//CD AC ⊥AD ∠ACD =58∘∠BAD 29∘42∘32∘58∘101080859095−2x+5≥3,<x−12x 3y =−2x+1A.图象经过第一、二、三象限B.图象经过点C.当时,D.随的增大而增大10. 育才学校积极开展志愿者服务活动,来自初三的名同学(男女)组成了“关爱老人”志愿小分队.若从该小分队中任选名同学参加周末的志愿活动,则恰好是男女的概率是( )A.B.C.D.二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11. 因式分解:=________.12. 一组数据的平均数为________.13. 如图,四边形中,,点是对角线上一点,是等边三角形,,则的度数为 ________.14. 如图,过反比例函数的图象上一点作轴于点,连接,若,则的值为________.15. 如图,在 中,直径垂直于弦,若 ,则 的度数是_________.16. 已知线段,则经过,两点的最小的圆的半径为________.三、 解答题 (本题共计 9 小题 ,每题 8 分 ,共计72分 )(−2,1)x >1y <0y x 3122111323123425−20xy+4x 2y 2−2,−1,5,1,2,1ABCD ∠ABC =,BC =BD 50∘E BD △AED AE =BE ∠ADC y =(x >0)k x A AB ⊥x B OA =2S △AOB k ⊙O CD AB ∠C =25∘∠BOD AB =6cm A B sin ⋅++|1−|−217. 计算:. 18. 先化简,再求值:,其中,=. 19. 年月日时分,中国空间站天和核心舱在海南文昌航天发射场发射升空,准确进入预定轨道,任务取得成功.建造空间站、建成国家太空实验室,是实现我国载人航天工程“三步走”战略的重要目标,是建设科技强国、航天强国的重要引领性工程.天和核心舱发射成功,标志着我国空间站建造进入全面实施阶段,为后续任务展开奠定了坚实基础.某校航天爱好者的同学们构建数学模型,使用卷尺和测角仪测量天和核心舱的高度.如图所示,核心舱架设在米的稳固支架上,他们先在水平地面点处测得天和核心舱最高点的仰角为,然后沿水平方向前进米,到达点处,测得点的仰角为.测角仪的高度为米.求天和核心舱的高度.(结果精确到米,参考数据: ,,, 20. 月日是“世界读书日”,某校团委发起了“让阅读成为习惯”的读书活动,鼓励学生利用周末积极阅读课外书籍.为了解该校学生周末两天的读书时间,校团委随机调查了八年级部分学生的读书时间(单位:分钟),把读书时间分为四组:,,,. 部分数据信息如下:.组和组的所有数据:.根据调查结果绘制了如下尚不完整的统计图:请根据以上信息,回答下列问题:被调查的学生共有________人,并补全频数分布直方图;在扇形统计图中,组所对应的扇形圆心角是________:若该校八年级共有名学生,请估计八年级学生中周末两天读书时间不少于分钟的人数.21. 如图,,,,,垂足分别为,.如图,猜想,,之间的数量关系,并证明;如图,若,,当点在内部时,则的长为________.(直接用含,的式子表示).22. 某学校为奖励学生分两次购买,两种品牌的圆珠笔,两次的购买情况如下表:第一次第二次2sin ⋅++|1−|60∘(π−2)0()13−23–√(a −b +a(2b −3a))2a =−12b 4202142911231B A 22∘MN 24C A 45∘MB 1.60.1sin ≈0.3722∘cos ≈0.9322∘tan ≈0.4022∘≈1.41)2–√423x A(30≤x <60)B(60≤x <90)C(90≤x <120)D(120≤x <150)a B C 859060701107565781008090809590b (1)(2)C ∘(3)40090∠ACB =90∘AC =BC AD ⊥CE BE ⊥CE D E (1)1BE DE AD (2)2AD =m DE =n D △ABC BE m n A B品牌圆珠笔支品牌圆珠笔支总计采购款元问,两种品牌圆珠笔的购买单价各是多少元?由于奖励人数增加,学校决定第三次购买,且购买品牌圆珠笔支数比品牌圆珠笔支数的倍多支,在采购总价不超过元的情况下,最多能购进多少支品牌圆珠笔?23. 如图,在中, ,点在边上,且若直线经过点,将该平行四边形的面积平分,并与平行四边形的另一边交于点,用无刻度的直尺画出点连接,,判断四边形的形状,并说明理由.24. 如图,的直径为,弦为,的平分线交于点.(1)求的长;(2)试探究、、之间的等量关系,并证明你的结论;(3)连接,为半圆上任意一点,过点作于点,设的内心为,当点在半圆上从点运动到点时,求内心所经过的路径长. 25. 如图,在平面直角坐标系中,抛物线,经过点、,过点作轴的平行线交抛物线于另一点.(1)求抛物线的表达式及其顶点坐标;(2)如图,点是第一象限中上方抛物线上的一个动点,过点作于点,作轴于点,交于点,在点运动的过程中,的周长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图,连接,在轴上取一点,使和相似,请求出符合要求的点坐标.A /2030B /3040/102144(1)A B (2)B A 1.55213A 加ABCD AD =6E AD AE =2(1)1E F F;(2)AF CE AFCE ⊙O AB 10cm AC 6cm ∠ACB ⊙O D AD CA CB CD OD P ADB P PE ⊥OD E △OPE M P B A M y =−+bx+c 12x 2A(1,3)B(0,1)A x C 1M BC MH ⊥BC H ME ⊥x E BC F M △MFH 2AB y P △ABP △ABC P参考答案与试题解析2023年湖南省长沙市中考数学试卷试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】D【考点】无理数的识别【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.据此解答即可.【解答】解:、,是整数,属于有理数,故此选项不符合题意;、,是整数,属于有理数,故此选项不符合题意;、是分数,属于有理数,故此选项不符合题意;、属于无理数,故此选项符合题意.故选:.2.【答案】D【考点】轴对称图形【解析】此题暂无解析【解答】解:只有沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,其它三个不是轴对称图形.故选.3.【答案】C【考点】整式的混合运算【解析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】A =28–√32B =24–√2c 14D 10−−√D D D (4)313−m 22÷5322=,故选项错误(1)=,故选项正确(2)=,故选项错误(3)故选:.4.【答案】C【考点】三角形三边关系【解析】此题暂无解析【解答】此题暂无解答5.【答案】A【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正整数;当原数的绝对值时,是负整数.【解答】亿==.6.【答案】C【考点】平行线的性质垂线【解析】先根据平行线的性质得出的度数,再由得出,进而可得出结论.【解答】解:直线,,.,,.故选.7.【答案】C(m 4)3m 13B m(m−1)−m m 2C 2÷m 5m 32m 2D C a ×10n 1≤|a |<10n n a n ≥10n <1n 2680268000000000 2.68×1011∠BAC AC ⊥AD ∠CAD =90∘∵AB//CD ∠ACD =58∘∴∠BAC =−∠ACD =−=180∘180∘58∘122∘∵AC ⊥AD ∴∠CAD =90∘∴∠BAD =∠BAC −∠CAD =−=122∘90∘32∘C折线统计图【解析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据统计图可得:分的人数有个,人数最多,则众数是.故选.8.【答案】B【考点】在数轴上表示不等式的解集解一元一次不等式组【解析】,解不等式①得:,解不等式②得:,则不等式组的解集为.【解答】解:解不等式①得:,解不等式②得:,则不等式组的解集为.故选.9.【答案】C【考点】一次函数的性质【解析】根据一次函数的图象与系数的关系即可得出结论.【解答】解:、∵函数中,,,∴该函数的图象经过一、二、四象限,故本选项错误;、时,,故本选项错误;、∵函数中,,则随的增大而减小,直线与轴的交点为,∴当时,,故本选项正确;、∵函数中,,,∴当值增大时,函数值减小,故本选项错误;故选.10.90590C −2x+5≥3①<②x−12x 3x ≤1x <3x ≤1 −2x+5≥3①,<②,x−12x 3x ≤1x <3x ≤1B A y =−2x+1k =−2<0b =1>0B x =−2y =−2×(−2)+1=5C y =−2x+1k =−2<0y x x (,0)12x >1y <0D y =−2x+3k =−2<0b =1>0x y C列表法与树状图法概率公式【解析】此题暂无解析【解答】解:根据列举法可得:(男,女1)(男,女2)(女1,女2)一共有种情况,恰好是一男一女的有种情况,所以,(恰好是一男一女)故选.二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11.【答案】【考点】因式分解-运用公式法【解析】直接利用完全平方公式分解因式得出答案.【解答】原式=.12.【答案】【考点】算术平均数【解析】此题暂无解析【解答】解:由题意得,这组数据的平均数为:.故答案为:.13.32P =.23B (5x−2y)2(5x−2y)21=1−2−1+5+1+2+161等边三角形的性质等腰三角形的性质三角形的外角性质三角形内角和定理【解析】由等边三角形的性质可得,再由等边对等角可得,利用三角形的外角性质可得的度数,再结合,可得的度数,利用,可得的度数,进而得到答案.【解答】解:是等边三角形,.,.,,.,.,,.故答案为:.14.【答案】【考点】反比例函数系数k 的几何意义【解析】根据=利用反比例函数系数的几何意义即可求出值,再根据函数在第一象限有图象即可确定的符号,此题得解.【解答】解:∵轴于点,且,∴,∴.∵反比例函数在经过第一象限,∴.故答案为:15.【答案】【考点】∠AED =∠ADE =60∘∠BAE =∠ABE ∠ABE ∠ABC =50∘∠CBD BC =BD ∠CDB ∵△AED ∴∠AED =∠ADE =60∘∵AE =BE ∴∠BAE =∠ABE ∵∠AED =∠ABE+∠BAE ∴2∠ABE =60∘∴∠ABE =30∘∵∠ABC =50∘∴∠CBD =∠ABC −∠ABE =−=50∘30∘20∘∵BC =BD ∴∠C =∠BDC ===−∠CBD 180∘2−180∘20∘280∘∴∠ADC =∠ADE+∠BDC =+=60∘80∘140∘140∘4S △AOB 2k k k AB ⊥x B =2S △AOB =|k |=2S △AOB 12k =±4k =4 4.50∘圆周角定理垂径定理【解析】由垂径定理和“等弧所对的圆周角是所对的圆心角的一半”推知,得到答案.【解答】解:∵在中,直径垂直于弦,∴,∴.故答案为.16.【答案】【考点】圆的有关概念【解析】经过线段最小的圆即为以为直径的圆,求出半径即可.【解答】解:每个圆周上点就可以有一个内部交点,所以当这些交点不重合的时候,圆内交点最多,所以,本题等价于将个点个分组共有多少组,显然应该是:.三、 解答题 (本题共计 9 小题 ,每题 8 分 ,共计72分 )17.【答案】解:原式.【考点】特殊角的三角函数值负整数指数幂零指数幂实数的运算【解析】此题暂无解析【解答】解:原式.18.【答案】∠DOB =2∠C ⊙O CD AB =ADˆBD ˆ∠DOB =2∠C =50∘50∘3cmAB AB 464=156×5×4×34×3×2×1=2×−1×9+−1=2+73–√23–√3–√=2×−1×9+−1=2+73–√23–√3–√−2ab ++2ab −3222−2+22原式==,当,=时,原式=.【考点】整式的混合运算——化简求值【解析】原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把与的值代入计算即可求出值.【解答】原式==,当,=时,原式=.19.【答案】解:如图,过点作,垂足为点,交的延长线于点.由题意知,四边形和四边形均为矩形.设.在中,,∴,在中,,,∵,∴,∵,∴,解得,∵,∴,∴ .答:天和核心舱的高度为.【考点】解直角三角形的应用-仰角俯角问题【解析】此题暂无解析【解答】解:如图,过点作,垂足为点,交的延长线于点.由题意知,四边形和四边形均为矩形.设.−2ab ++2ab −3a 2b 2a 2−2+a 2b 2a =−12b 4−2×+16=14312a b −2ab ++2ab −3a 2b 2a 2−2+a 2b 2a =−12b 4−2×+16=14312A AF ⊥MN F BC E MBCN NCEF AE =xm Rt △AEC ∠AEC =90∘CE =AE =x Rt △ABE ∠AEB =90∘∠ABE =22∘tan =22∘AE BE BE =≈=x AE tan22∘x 0.4052BE−CE =BC x−x =2452x =16EF =BM =1.6AF =AE+EF =16+1.6=17.617.6−1=16.616.6m A AF ⊥MN F BC E MBCN NCEF AE =xm在中,,∴,在中,,,∵,∴,∵,∴,解得,∵,∴,∴ .答:天和核心舱的高度为.20.【答案】解:被调查的学生共有(人).故答案为:.由数据信息可得,组有人,则组有人.补全频数分布直方图如图所示.(人).答:八年级学生中周末两天读书时间不少于分钟的约有人.【考点】频数(率)分布直方图扇形统计图用样本估计总体【解析】此题暂无解析【解答】解:被调查的学生共有(人).故答案为:.由数据信息可得,组有人,则组有人.补全频数分布直方图如图所示.Rt △AEC ∠AEC =90∘CE =AE =x Rt △ABE ∠AEB =90∘∠ABE =22∘tan =22∘AE BE BE =≈=x AE tan22∘x 0.4052BE−CE =BC x−x =2452x =16EF =BM =1.6AF =AE+EF =16+1.6=17.617.6−1=16.616.6m (1)4÷20%=2020B 8D 2108(3)400×=1606+22090160(1)4÷20%=2020B 8D 2组所对应的扇形圆心角是.故答案为:.(人).答:八年级学生中周末两天读书时间不少于分钟的约有人.21.【答案】解:.证明:∵,∴.∵,,∴,∴,∴.在和中,∴,∴,,∴,即.【考点】全等三角形的性质与判定【解析】无无【解答】解:.证明:∵,∴.∵,,∴,∴,∴.在和中,∴,∴,,∴,即.同理可证,∴,,∴,∴.故答案为:.(2)C ×=620360∘108∘108(3)400×=1606+22090160(1)BE =DE+AD ∠ACB =90∘∠ACD+∠BCD =90∘AD ⊥CE BE ⊥CE ∠D =∠BEC =90∘∠CBE+∠BCD =90∘∠ACD =∠CBE △ACD △CBE ∠ACD =∠CBE,∠D =∠BEC,AC =BC,△ACD ≅△CBE(AAS)CE =AD BE =CD CD =CE+DE =AD+DEBE =DE+AD m−n(1)BE =DE+AD ∠ACB =90∘∠ACD+∠BCD =90∘AD ⊥CE BE ⊥CE ∠D =∠BEC =90∘∠CBE+∠BCD =90∘∠ACD =∠CBE △ACD △CBE ∠ACD =∠CBE,∠D =∠BEC,AC =BC,△ACD ≅△CBE(AAS)CE =AD BE =CD CD =CE+DE =AD+DE BE =DE+AD (2)△ACD ≅△CBE CE =AD BE =CD CE =CD+DE =BE+DE BE =AD−DE =m−n m−n22.【答案】解:设品牌圆珠笔的进货单价是元,品牌圆珠笔的进货单价是元,根据题意可得解得答:品牌圆珠笔的进货单价是元,品牌圆珠笔的进货价是元.设购进品牌圆珠笔支,购进品牌圆珠笔支,则,解得.经检验,不等式的解符合题意.答:最多能购进支品牌圆珠笔.【考点】二元一次方程组的应用——其他问题一元一次不等式的实际应用【解析】此题暂无解析【解答】解:设品牌圆珠笔的进货单价是元,品牌圆珠笔的进货单价是元,根据题意可得解得答:品牌圆珠笔的进货单价是元,品牌圆珠笔的进货价是元.设购进品牌圆珠笔支,购进品牌圆珠笔支,则,解得.经检验,不等式的解符合题意.答:最多能购进支品牌圆珠笔.23.【答案】【考点】平行四边形的性质勾股定理列表法与树状图法反比例函数综合题二次函数的应用【解析】此题暂无解析【解答】此题暂无解答24.【答案】(1)A x B y {20x+30y =102,30x+40y =144,{x =2.4,y =1.8.A 2.4B 1.8(2)A n B (1.5n+5)2.4n+1.8(1.5n+5)≤213n ≤4040A (1)A x B y {20x+30y =102,30x+40y =144,{x =2.4,y =1.8.A 2.4B 1.8(2)A n B (1.5n+5)2.4n+1.8(1.5n+5)≤213n ≤4040A∵是的直径,∴==,∵的平分线交于,∴==,∴=,∴=,∴=,∴===;=.证明如下:延长到,使=,∵=,=,∴=,在和中,,∴,∴=,=,∴==,为等腰直角三角形,∴==.连接,,∵,∴=,∵点为的内心,∴=,在和中,,∴,∴==,∴点在以为弦,并且所对的圆周角为的两段劣弧上(分左右两种情况):设弧所在圆的圆心为,∵=,∴=,∴==,∴的长为=,∴点的路径长为.【考点】圆的综合题【解析】AB ⊙O ∠ACB ∠ADB 90∘∠ACB ⊙O D ∠ACD ∠BCD 45∘AD BD A +B D 2D 2AB 4AD BD AB CA+CB CD CA F AF CB ∠CBD+∠CAD 180∘∠FAD+∠CAD 180∘∠CBD ∠FAD △ADF △BDC △ADF ≅△BDC(SAS)CD FD ∠CDB ∠FDA ∠CDF ∠ADB 90∘△CDF CA+CB CF CD OM PM PE ⊥OD ∠PEO 90∘M △OPE ∠OMP 135∘△OMD △OMP △OMD ≅△OMP(SAS)∠OMD ∠OMP 135∘M OD 135∘OD OMD O ′∠OMD 135∘∠OO D ′90∘O O ′OD πM π此题暂无解析【解答】此题暂无解答25.【答案】将,,代入,,解得,,∴抛物线的解析式为,∴顶点坐标为;延长交轴于点,由对称性得.则=,=,设直线的解析式为=,则有,解得,∴直线的解析式为,设,则,∴=,∵于点,轴,∴=,=,∴=,∴在和中,,∴,∴=,∴,,∴的周长=,当=时,的周长最大,最大值为 ,此时点的坐标为.∵,为公共角,∴.∴=.当=时,,∵,,=,∴,∴.当=时,,A(1,3)B(0,1)y =−+bx+c12x 2 −+b +c =312c =1 b =52c =1y =−+x+112x 252(,)52338CA y D C(4,3)CD 4BD 2BC y kx+m { 4k +m=3m=1 k =12m=1BC y =x+112M(a,−+a +1)12a 252F(a,a +1)12MF ME−EF =−+2a 12a 2MH ⊥BC H ME ⊥x ∠M +∠MFH 90∘∠C +∠MFH 90∘∠M ∠C Rt △MFH Rt △BDC tan ∠C ====tan ∠M BD CD 2412=FH MH 12FH :MH :MF 1:2:5–√FH =MF 5–√5MH =MF 25–√5△FMH FH+MH+MF =MF +MF +MF =(+1)MF =(+1)(−+2a)5–√525–√535–√535–√512a 2=(−)(a −2+3+55–√10)26+105–√5a 2△FMH 6+105–√5M (2,4)==AD BD DB CD 12∠CDB △ABD ∽△BCD ∠ABD ∠BCD 1∘∠PAB ∠ABC =PB AC AB BC BC ==2(0−4+(1−3)2)2−−−−−−−−−−−−−−−√5–√AB ==(0−1+(1−3)2)2−−−−−−−−−−−−−−−√5–√AC 3PB =32(0,)P 1522∘∠PAB ∠BAC =PB BC AB AC–√∴,∴,∴,综上所述满足条件的点有,.【考点】二次函数综合题【解析】(1)将,,代入抛物线,即可得出答案;(2)延长交轴于点,由点可求得,由=,设,求得,则,由勾股定理得,,所以的周长可用表示,最后利用二次函数的性质解决问题;(3)由,为公共角,可得.从而=.分当=时,当=时两种情况讨论即可得出答案.【解答】将,,代入,,解得,,∴抛物线的解析式为,∴顶点坐标为;延长交轴于点,由对称性得.则=,=,设直线的解析式为=,则有,解得,∴直线的解析式为,设,则,∴=,∵于点,轴,∴=,=,∴=,∴在和中,,∴,∴=,∴,,∴的周长=,=PB 25–√5–√3PB =103(0,)P 2133P (0,)52(0,)133A(1,3)B(0,1)y =−+bx+c12x 2CA y D C(4,3)=BD CD 12tan ∠C tan ∠M ==FH MH 12M(a,−+a +1)12a 252F(a,a +1)12MF =−+2a 12a 2FH =MF,MH =MF 5–√525–√5△MFH MF ==AD BD BD CD 12∠CDB △ABD ∽△BCD ∠ABD ∠BCD 1∘∠PAB ∠ABC 2∘∠PAB ∠BAC A(1,3)B(0,1)y =−+bx+c12x 2 −+b +c =312c =1 b =52c =1y =−+x+112x 252(,)52338CA y D C(4,3)CD 4BD 2BC y kx+m { 4k +m=3m=1 k =12m=1BC y =x+112M(a,−+a +1)12a 252F(a,a +1)12MF ME−EF =−+2a 12a 2MH ⊥BC H ME ⊥x ∠M +∠MFH 90∘∠C +∠MFH 90∘∠M ∠C Rt △MFH Rt △BDC tan ∠C ====tan ∠M BD CD 2412=FH MH 12FH :MH :MF 1:2:5–√FH =MF 5–√5MH =MF 25–√5△FMH FH+MH+MF =MF +MF +MF =(+1)MF =(+1)(−+2a)5–√525–√535–√535–√512a 2=(−)(a −2+3+55–√10)26+105–√56+10–√当=时,的周长最大,最大值为 ,此时点的坐标为.∵,为公共角,∴.∴=.当=时,,∵,,=,∴,∴.当=时,,∴,∴,∴,综上所述满足条件的点有,.a 2△FMH 6+105–√5M (2,4)==AD BD DB CD 12∠CDB △ABD ∽△BCD ∠ABD ∠BCD 1∘∠PAB ∠ABC =PB AC AB BC BC ==2(0−4+(1−3)2)2−−−−−−−−−−−−−−−√5–√AB ==(0−1+(1−3)2)2−−−−−−−−−−−−−−−√5–√AC 3PB =32(0,)P 1522∘∠PAB ∠BAC =PB BC AB AC =PB 25–√5–√3PB =103(0,)P 2133P (0,)52(0,)133。
2020年湖南省长沙市中考数学试卷【初中数学,中考数学试卷,含答案word可编辑】

202X 年湖南省长沙市中考数学试卷一、选择题(在以下各题的四个选项中,只有一项为哪一项符合题意的.请在答题卡中填涂 符合题意的选项.本大题共12个小题,每题3分,共36分))1. (一2)3的值等于()A-6 B.6 C.8 D.-82, 以下图形中,是轴对称图形但不是中心对称图形的是()3, 为了将〃新冠〃疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳开展.据国家统计局相关数据显示, 202X 年1月至5月,全国累计办理出口退税632400000000元,其中数字632400000000 用科学记数法表示为( )A.6.324 x 1011 B.6.324 x IO 10 C.632.4 x 109 D.0.6324 x10124. 以下运算正确的选项是() A.A^3+A^2= B.X 8 4- X 2=X 6 C.V^xV^= D.(Q S )2=Q 75. 20XX 年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水, 杜鹃花开"为设计理念,塑造出"杜鹃花开''的美丽姿态.该高铁站建设初期需要运送大 量土石方.某运输公司承当了运送总量为1。
6皿3土石方的任务,该运输公司平均运送 土石方的速度u (单位:部/天)与完成运送任务所需时|'承(单位:天)之间的函数 关系式是() io 6 -L- A.v= t B.v = 106t C.u=10 t 2 D.v = 106t 26. 从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30。
时,船离灯塔的水平距离 是()x+l 》T—— A.-2 -1 0C.-2 -10 1^ 8. 一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差异.从中随机摸出一D.A.42旧米B.14V3 米C.21 米D.42 米7.不等式组与<1 2 的解集在数轴上表示正确的选项是B. -2 -1 0 1 2D. -2 -1 0 1 2个球,然后放回摇匀,再随机摸出一个.以下说法中,错误的选项是()A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的不一定是红球1c.第一次摸出的球是红球的概率是31D.两次摸出的球都是红球的概率是99. 202X 年3月14H,是人类第一个〃国际数学日〃.这个节日的昵称是"7r (Day )〃・国际 数学日之所以定在3月14H,是因为"3.14〃是与圆周率数值最接近的数字.在古代,一 个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技开展水平 的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数 点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述: ① 圆周率是一个有理数;② 圆周率是一个无理数;③ 圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④ 圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比. 其中表述正确的序号是()A.②③B.①③C.①④D.②④10. 如图,一块直角三角板的60。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档2016年长沙市初中毕业学业水平考试试卷数 学注意事项:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效; 3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁; 5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本学科试卷共26个小题,考试时量120分钟,满分120分.一、选择题(在下列各题的四个选项中,只有一项是符合题意的. 请在答题卡中填涂符合题意的选项. 本大题共12个小题,每小题3分,共36分) 1.下列四个数中,最大的数是A .2-B .13C .0D .62.大家翘首以盼的长株潭城际铁路将于2016年年底通车. 通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条铁路线全长95500米,则数据95500用科学记数法表示为 A .50.95510⨯ B .59.5510⨯ C .49.5510⨯D .49.510⨯ 3.下列计算正确的是A .2510⨯=B .824x x x ÷= C .33(2)6a a = D .326326a a a =g 4.六边形的内角和是A .540︒B .720︒C .900︒D .360︒5.不等式组215840x x -≥⎧⎨-<⎩的解集在数轴上表示为A B C D6.下图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是姓名 准考证号精品文档7.若一个三角形的两边长分别为3和7,则第三边长可能是 A .6 B .3 C .2D .11 8.若将点(1,3)A 向左平移2个单位,再向下平移4个单位得到点B ,则点B 的坐标为A .(2,1)--B .(1,0)-C .(1,1)--D .(2,0)-9.下列各图中,∠1与∠2互为余角的是A B C D10.已知一组数据75,80,80,85,90,则它的众数和中位数分别为 A .75,80 B .80,85 C .80,90 D .80,80 11.如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30︒,看这栋楼底部C 处的俯角为60︒,热气球A 处与楼的水平距离为120m ,则这栋楼的高度为 A.1603mB.1203mC .300mD .1602m12.已知抛物线2(0)y ax bx c b a =++>>与x 轴最多有一个交点. 现有以下四个结论:① 该抛物线的对称轴在y 轴左侧; ② 关于x 的方程2+2=0ax bx c ++无实数根;③ 0a b c -+≥; ④ a b c b a++-的最小值为3.其中,正确结论的个数为 A .1个 B .2个C .3个D .4个二、填空题(本大题共6个小题,每小题3分,共18分) 13.分解因式:24x y y -= .14.若关于x 的一元二次方程240x x m --=有两个不相等的实数根,则实数m 的取值范围是 .15.如图,扇形OAB 的圆心角为120︒,半径为3,则该扇形的弧长为 . (结果保留π) 16.如图,在⊙O 中,弦6AB =,圆心O 到AB 的距离2OC =,则⊙O 的半径长为 . 17.如图,ABC ∆中,8AC =,5BC =,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则BCE ∆的周长为 .18.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是 .三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26题每小题10分,共66分. 解答应写出必要的文字说明、证明过程或演算步骤)19.计算:4sin60212︒---2016+(-1).20.先化简,再求值:111()a aa b b a b--+-, 其中12,3a b==.21.为积极响应市委市政府“加快建设天蓝·水碧·地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种. 为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成下面两个不完整的统计图:请根据所给信息解答以下问题:(1)这次参与调查的居民人数为;(2)请将条形统计图补充完整;(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?22.如图,AC是□ABCD的对角线,BAC DAC∠=∠.(1)求证:AB BC=;(2)若2,23AB AC==□ABCD的面积.23.2016年5月6日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该线路连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受. 星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不少于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?精品文档精品文档24.如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O 的直径,过点C 作AC 的垂线交AD的延长线于点E ,点F 为CE 的中点,连接DB ,DC ,DF . (1)求CDE ∠的度数; (2)求证:DF 是⊙O 的切线;(3)若25AC DE =,求tan ABD ∠的值.25.若抛物线L :2y ax bx c =++(,,a b c 是常数,0abc ≠)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系. 此时,直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线1y mx =+与抛物线22y x x n =-+具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数6y x=的图象上,它的“带线”l 的解析式为24y x =-,求此“路线”L 的解析式;(3)当常数k 满足122k ≤≤时,求抛物线L :22(321)y ax k k x k =+-++的“带线”l 与x轴,y 轴所围成的三角形面积的取值范围.26.如图,直线l :1y x =-+与x 轴,y 轴分别交于A , B 两点,点P , Q 是直线l 上的两个动点,且点P 在第二象限,点Q 在第四象限,135POQ ∠=︒. (1)求AOB ∆的周长;(2)设0AQ t =>,试用含t 的代数式表示点P 的坐标;(3)当动点P , Q 在直线l 上运动到使得AOQ ∆与BPO ∆的周长相等时,记tan AOQ m ∠=.若过点A 的二次函数2y ax bx c =++同时满足以下两个条件: ① 6320a b c ++=;② 当2m x m ≤≤+时,函数y 的最大值等于2m. 求二次项系数a 的值.精品文档2016年长沙市初中毕业学业水平考试试卷数学参考答案及评分标准题号1 2 3 4 5 6 7 8 910 11 12 答案 DC A B C B A C BDAD13.(2)(2)y x x +- 14.4m >-15.2π 16.1317. 1318.56三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26题每小题10分,共66分. 解答应写出必要的文字说明、证明过程或演算步骤)19.解:原式3=4223112⨯--+=- ……………………………………(6分)20.解:原式111==+=a a b a a aa b ba b b b b---⨯+- ……………………………………(4分)故当 12,3a b ==时,原式=236ba=⨯= ……………………………………(6分)21. 解(1)1000 ……………………………………(2分)(2)见图……………………………………(4分)(3)100360=361000O O ⨯ ……………………………………(6分)(4)25080000=200001000⨯(人) ……………………………………(8分) 22.(1)证:Q 四边形ABCD 是平行四边形 AD ∴∥BCBCA DAC ∴∠=∠,又BAC DAC ∠=∠BCA BAC ∴∠=∠AB BC ∴= ····························· (4分) (2)Q AB BC =精品文档∴□ABCD 是菱形连接BD 交AC 于点O ,则90AOB ∠=︒132AO AC ∴== 222(3)1BO -1232232ABCD S ∴=⨯=Y ·················································· (8分)23.解:(1)设一辆大型渣土运输车一次运输土方x 吨,一辆小型渣土运输车一次运输土方y 吨 由题意可得23315670x y x y +=⎧⎨+=⎩,解得85x y =⎧⎨=⎩答:一辆大型渣土运输车一次运输土方8吨,一辆小型渣土运输车一次运输土方5吨. ····························································································· (4分) (2)解:设渣土运输公司决定派出大型渣土运输车m 辆,则派出小型渣土运输车20m -()辆, 由题意可得85(20)148m m +-≥ 348m ≥解得16m ≥,又因为202m -≥且m 为整数 所以m 可取16或17或18 因此有如下三种派车方案:方案一:派出大型渣土运输车16辆,小型渣土运输车4辆; 方案二:派出大型渣土运输车17辆,小型渣土运输车3辆;方案三:派出大型渣土运输车18辆,小型渣土运输车2辆. ········ (9分)24. 解(1)Q 对角线AC 为⊙O 的直径90ADC ∴∠=︒ 90CDE ∴∠=︒ …………………(2分) (2)(方法一)连接,OF OD ,在Rt CDE ∆中,点F 为斜边CE 的中点 DF FC ∴=在DOF ∆和COF ∆中DF CF OF OF OD OC =⎧⎪=⎨⎪=⎩∴DOF ∆≌COF ∆∴90ODF OCF ∠=∠=︒ ∴DF OD ⊥ ∴DF 是⊙O 的切线 ……………(5分)(方法二)证明:连接OD ,Q AC 为⊙O 的直径,CE AC ⊥ 90ADC CDE O ∴∠=∠=, 90ACF O ∠=又在Rt CDE ∆中,点F 为斜边CE 的中点 ,DF FC CDF DCF ∴=∠=∠ 又Q OD OC = ODC OCD ∴∠=∠90ODF ODC CDF OCD DCF ∴∠=∠+∠=∠+∠=︒∴DF 是⊙O 的切线 …………………(5分)精品文档(方法三) 证明:连接OD ,Q CE AC ⊥,AC 为⊙O 的直径90ADC ADO ODC ∴∠=∠+∠=︒ 90DAO ACD ∠+∠=︒90ACD DCF ∠+∠=︒DAO DCF ∴∠=∠又Q OA OD = DAO ADO ∴∠=∠ ADO DCF ∴∠=∠又在Rt CDE ∆中,点F 为斜边CE 的中点 ,DF FC CDF DCF ∴=∠=∠ADO CDF ∴∠=∠90ODF ODC CDF ODC ADO ∴∠=∠+∠=∠+∠=︒∴DF 是⊙O 的切线 …………………(5分) (3) (方法一)由圆周角定理可得 ABD ACD ∠=∠由题中条件可得 90,ADC CDE CAD ECD ∠=∠=︒∠=∠,ADC ∴∆∽CDE ∆ ∴AD DCCD DE= ∴2CD AD DE =⋅ ………………(6分)由于AC = 所以可令 ,,DE a AD b ==则有,AC CD ==在Rt ACD ∆中,由勾股定理可得222)b += 上式两边同时除以2a 并整理后得到2()200bb aa +-= 解之可得 4b a =或5ba=-(舍去) …………………(8分)tan tan 2AD ABD ACD DC ∴∠=∠==== …………………(9分)(方法二)设DE x =,AD y =,AC =易证ACD ∆∽AED ∆ ∴2AC AD AE =•2)()y x y =•+( 即2220x y yx =+2()200y y x x +-= 解得4y x =或5yx=-(舍去)∴2CD x = ∴4tan tan 22xABD ACD x∠=∠==精品文档(方法三)设DE a =,tan ABD m ∠=,则AC =,AC m EC =,CDm DE=∴AC EC m =,CD mDE ma == 在Rt CDE ∆中222CD DE CE +=∴222()ma a += ∴22201m m+= ∴222()200m m +-= ∴22(5)(4)0m m +-= ∴24m =或25m =-(舍去) ∴tan 2ABD ∠=25.解 (1)由题意可知:1y mx =+与y 轴的交点0,1P ()在抛物线22y x x n =-+上所以=1n 从而222221(1)y x x n x x x =-+=-+=-的顶点(1,0)Q 又 在直线1y mx =+上,故1m =-所以1,n = 1m =- …………………(3分) (2)由题意可知:抛物线L 的“带线”l 就是直线PQ ,点P 是抛物线L 与y 轴的交点,点Q 是抛物线L 的顶点, (方法一)顶点Q 就是“带线”l :24y x =-与反比例函数6y x= 的图象的交点, 联立246y x y x =-⎧⎪⎨=⎪⎩解得32x y =⎧⎨=⎩ 或者16x y =-⎧⎨=-⎩ 从而所求的“路线”L 的解析式为 2(3)2y a x =-+ 或者2(1)6y a x =+-又由题意可得点(0,4)P -在它的图象上,代入可分别求得 223a =-或故所求的“路线”L 的解析式为 2222(3)24433y x x x =--+=-+-或者222(1)6244y x x x =+-=+- …………(6分)(方法二)设“路线”L 的表达式为 2(0y ax bx c abc =++≠)易求得点2(,)24b b Q c a a--,点(0,)P c ,设它的“带线”l 的解析式为(0)y kx m k =+≠ 将点P ,点Q 的坐标依次代入可得2()42m c b bc k m a a =⎧⎪⎨-=⋅-+⎪⎩从而=2m cb k =⎧⎪⎨⎪⎩ 所以“带线”l 的解析式为2by x c =+ 比较题中所给l 的解析式可得精品文档4,4b c ==- 从而由点24(,4)Q a a ---在反比例函数6y x=的图象上 可得24()(4)6a a ---= 解之得 223a =-或故此二次函数的解析式为 2244y x x =+-或22443y x x =-+- …………(6分)(3)(方法一)由(2)的方法二可知 二次函数2(0)y ax bx c abc =++≠ 的“带线”l 的解析式为2by x c =+,设它与x 轴的交点为点M ,易求得点2(,0)cM b-,点(0,)P c 所以“带线”l 与x 轴,y 轴所围成的三角形MOP ∆面积2122MOP c c S c b b∆=⋅= …………………(7分)从而由题意可知 函数22(321)y ax k k x k =+-++的“带线”l 与x 轴,y 轴所围成的三角形面积222=321MOP c k S b k k ∆=-+ ,显然23210k k -+> …………………(8分) 所以2222112113213(1)2MOPk S k k k k k∆===-+-+-+令21(1)2t k=-+ 由于122k ≤≤ 所以1122k≤≤结合二次函数的图象可得 23t ≤≤故1132MOP S ∆≤≤ 为所求 …………………(10分) (方法二)抛物线L 的顶点2223214(321)(,)24k k ak k k a a -+--+-设“带线”l :y tx k =+,∴2224(321)321=42ak k k k k t k a a--+-+-⨯+解得23212k k t -+= ∴2321y 2k k x k -+=+ …………………(7分)精品文档当0x =时,y k =;当0y =时,22321kx k k -=-+;2222112113213(1)2MOPk S k k k k k∆∴===-+-+-+ …………………(8分)令21(1)2t k=-+ 由于122k ≤≤ 所以1122k≤≤结合二次函数的图象可得 23t ≤≤故1132MOP S ∆≤≤ 为所求 …………………(10分) 26.解: (1)易求得1,2OA OB AB === 所以AOB ∆的周长为22 …………………(3分) (2)由题意可得 45BAO ABO ∠=∠=︒ 135PBO OAQ ∠=∠=︒135,9045POQ AOB BOP AOQ ∠=︒∠=︒∴∠+∠=︒Q 又45AOQ AQO ∠+∠=︒QAQO BOP ∴∠=∠ AQO ∴∆∽BOP ∆AQ BOAO BP∴=1AQ BP AO BO ∴⋅=⋅= 因为0QA t =>,所以1BP t= 过点P 分别作x 轴,y轴的垂线,利用等腰直角三角形的性质,容易求得点P 的坐标为22(+ …………………(6分)(3)首先由第(2)问可知必有AQO ∆∽BOP ∆ 得到 1AQ BP =g当动点,P Q 在直线l 上运动到使得AOQ ∆与BPO ∆的周长相等时, 从而必有AOQ ∆ 与BPO ∆全等,则有,AQ BO =从而1AQ BP ==此时易求得 22tan 21,22121m AOQ m =∠==+=+2m x m ≤≤+ 2121x ≤≤ 由于该二次函数经过点(1,0)A , 所以0a b c ++= 又因为 6320a b c ++=, 从而40a b +=所以二次函数2y ax bx c =++的对称轴为直线 22bx a=-= 设二次函数2y ax bx c =++与x 轴相交得到的另一个交点为2(,0)D x ,精品文档精品文档 由抛物线的对称性可得点(3,0)D所以可设抛物线为 2(1)(3)43y a x x ax ax a =--=-+ ①当0a <时11x ≤,由图象可得:当2x =时,函数值y 取得最大值2m由(21)(23)1)a --=解得1)a =- ②当0a >时11x ≤,由图象可得:当1x =时,函数值y 取得最大值2m由113)1)a --=解得a = 综上所述1)a =-或a = ································ (10分)。