二级减速器课程设计完整版
二级减速器课程设计(详细完整样版)

二级减速器课程设计(样版)一、课程简介●介绍二级减速器的基本概念、原理和应用领域。
强调其在机械传动系统中的重要性和作用。
二、原理与结构●详细介绍二级减速器的工作原理,并讲解其内部结构和组成部件。
包括齿轮的种类、齿轮传动的工作原理等。
三、齿轮计算与设计●介绍齿轮传动的计算方法,包括模数、齿轮比、啮合角等概念,并讲解如何进行齿轮的选型和设计。
四、二级减速器的优缺点●分析二级减速器的优势和限制,探讨其适用范围和特点。
同时介绍其他类型减速器的比较。
五、二级减速器的应用案例●展示二级减速器在各种机械传动系统中的实际应用案例,包括工业生产、交通运输、航空航天等领域。
六、选材与制造工艺●介绍二级减速器的常用材料选择原则,以及制造工艺和加工方法。
包括热处理、表面处理等关键技术。
七、维护与故障排除●详细讲解二级减速器的维护方法和注意事项,以及常见故障的排除方式。
强调定期检查和润滑的重要性。
八、创新发展趋势●探讨当前二级减速器领域的创新发展趋势,包括数字化技术的应用、轻量化设计和绿色制造的趋势等。
九、实践操作与实验●提供实际的二级减速器实验环节,让学生能够亲自操作和观察,加深对课程内容的理解和应用能力。
十、课程评估与学习成果●设计课程评估方式,包括考试、实验报告、项目作业等形式,以评估学生对二级减速器知识的掌握和应用能力。
十一、参考资料和资源●提供相关的参考书籍、学术论文和网上资源,供学生进一步学习和深入了解二级减速器的相关知识。
十二、学习支持与辅导●提供学生在学习过程中的支持和辅导,包括答疑时间、学习小组、实验室指导等形式,以促进学生的学习效果。
以上是关于二级减速器课程设计的详细完整版内容。
通过学习这门课程,学生将掌握二级减速器的原理与结构、齿轮计算与设计、应用案例、制造工艺等相关知识,培养他们在机械传动领域中的专业能力和实践技能。
同时,通过实践操作和实验环节,能够加深对所学知识的理解并培养解决问题的能力。
希望以上内容对您有所帮助。
二级减速器课程设计完整版

二级减速器课程设计完整版Company number:【0089WT-8898YT-W8CCB-BUUT-202108】目录1. 设计任务设计任务设计带式输送机的传动系统,工作时有轻微冲击,输送带允许速度误差±4%,二班制,使用期限12年(每年工作日300天),连续单向运转,大修期三年,小批量生产。
原始数据滚筒圆周力:900FN =输送带带速:%2.4(4)/v m s =±滚筒直径: 450mm工作条件二班制,空载起动,有轻微冲击,连续单向运转,大修期三年;三相交流电源,电压为380/220V 。
2. 传动系统方案的拟定带式输送机传动系统方案如下图所示:带式输送机由电动机驱动。
电动机1通过联轴器2将动力传入两级齿轮减速计算及说明结果器3,再经联轴器4将动力传至输送机滚筒5带动输送带6工作。
传动系统中采用两级展开式圆柱齿轮减速器,高速级为斜齿圆柱齿轮传动,低速级为直齿圆柱齿轮传动,高速级齿轮布置在远离转矩输入端,以减轻载荷沿齿宽分布的不均匀。
展开式减速器结构简单,但齿轮相对于轴承位置不对称,因此要求轴有较大的刚度。
P w = 传动总效率 η=Pr=结果14112.75=、1.6Ymm ,齿宽2,34mm b mm =(调质),大齿轮选用质)。
齿轮按照72,55mm b =钢(调质)。
齿轮按照7级精度设计。
齿顶cos12.839=tan12.839轴段5:此段为齿轮轴段,此段的长5140L b mm==。
轴段6:此段为过渡轴段,同轴段4,取6428d d mm==,取齿轮距箱体右内壁的距离mm 11a =,考虑到箱体的铸造误差,在确定滚动轴承位置时应距箱体内壁一定距离s,取mm 10s =,在轴承左侧有一套筒mm 21d =,则此段轴的长 轴段7:此段为轴承及套筒轴段,已知滚动轴承宽度为mm 15B =,7d 151227L B mm =+=+=,取其直径7325d d mm==。
二级减速器课程设计完整版

二级减速器课程设计完整版1. 引言减速器是机械传动系统中常见的关键部件之一,用于降低传动装置的转速并提高扭矩输出。
二级减速器作为一种常见的减速器类型,具有广泛的应用范围。
本文旨在通过设计一个完整的二级减速器课程,介绍二级减速器的原理、设计和应用。
2. 二级减速器原理介绍2.1 主要结构组成二级减速器通常由输入轴、输出轴、两级齿轮传动系统和壳体组成。
其中,输入轴将动力源的旋转运动传递给第一级齿轮组,第一级齿轮组再将运动传递给第二级齿轮组,最终通过输出轴输出。
2.2 工作原理当输入轴旋转时,第一级齿轮组将动力传递给第二级齿轮组,通过齿轮的啮合关系实现速度的减速和输出转矩的增大。
第一级齿轮组的齿比用于实现初级减速,第二级齿轮组的齿比则用于实现次级减速。
3. 二级减速器设计步骤3.1 确定设计参数根据具体的应用需求和要求,确定二级减速器的输入转速、输出转矩、减速比等设计参数。
3.2 齿轮选择和设计根据确定的设计参数,选择适当的齿轮材料和规格,并进行齿轮的设计计算。
考虑到齿轮的强度和耐久性,要确保齿轮的模数和齿数满足设计要求,并进行齿形的优化设计。
3.3 轴的设计根据齿轮的参数和要求,设计输入轴和输出轴,并选择适当的材料和尺寸。
在轴的设计过程中,要考虑到扭矩传递和轴的刚度等因素,确保轴能够稳定运行并传递足够的扭矩。
3.4 壳体设计根据齿轮和轴的尺寸,设计适当的壳体结构和外形,并考虑到装配、润滑和散热等因素。
壳体的设计需要保证齿轮和轴可以正确安装和定位,同时提供良好的密封性和机械强度。
4. 二级减速器应用案例以工业搅拌机为例,介绍二级减速器在实际应用中的情况。
工业搅拌机通常需要较大的转矩和较低的转速,因此二级减速器是一种理想的传动选择。
通过连接电动机和搅拌机装置,二级减速器能够将高速低扭矩的电动机输出转换为低速高扭矩的搅拌机运动。
5. 总结通过对二级减速器的课程设计,我们全面了解了二级减速器的原理、设计和应用。
(完整版)二级减速器课程设计说明书

1 设计任务书1。
1设计数据及要求表1-1设计数据1.2传动装置简图图1—1 传动方案简图1.3设计需完成的工作量(1) 减速器装配图1张(A1)(2) 零件工作图1张(减速器箱盖、减速器箱座—A2);2张(输出轴-A3;输出轴齿轮-A3) (3) 设计说明书1份(A4纸)2 传动方案的分析一个好的传动方案,除了首先应满足机器的功能要求外,还应当工作可靠、结构简单、尺寸紧凑、传动效率高、成本低廉以及使用维护方便。
要完全满足这些要求是困难的。
在拟定传动方案和对多种方案进行比较时,应根据机器的具体情况综合考虑,选择能保证主要要求的较合理的传动方案。
现以《课程设计》P3的图2-1所示带式输送机的四种传动方案为例进行分析。
方案a 制造成本低,但宽度尺寸大,带的寿命短,而且不宜在恶劣环境中工作。
方案b 结构紧凑,环境适应性好,但传动效率低,不适于连续长期工作,且制造成本高.方案c 工作可靠、传动效率高、维护方便、环境适应性好,但宽度较大。
方案d 具有方案c 的优点,而且尺寸较小,但制造成本较高。
上诉四种方案各有特点,应当根据带式输送机具体工作条件和要求选定。
若该设备是在一般环境中连续工作,对结构尺寸也无特别要求,则方案c a 、均为可选方案。
对于方案c 若将电动机布置在减速器另一侧,其宽度尺寸得以缩小。
故选c 方案,并将其电动机布置在减速器另一侧。
3 电动机的选择3.1电动机类型和结构型式工业上一般用三相交流电动机,无特殊要求一般选用三相交流异步电动机.最常用的电动机是Y 系列笼型三相异步交流电动机。
其效率高、工作可靠、结构简单、维护方便、价格低,适用于不易燃、不易爆,无腐蚀性气体和无特殊要求的场合.此处根据用途选用Y 系列三相异步电动机3.2选择电动机容量3.2.1工作机所需功率w P 卷筒3轴所需功率:1000Fv P W ==100082.01920⨯=574.1 kw 卷筒轴转速:min /13.5914.326582.0100060100060r D v n w =⨯⨯⨯=⨯=π3。
二级减速器课程设计完整版

目录1. 设计任务...............................................2. 传动系统方案的拟定.....................................3. 电动机的选择...........................................3.1选择电动机的结构和类型....................................3.2传动比的分配.............................................3.3传动系统的运动和动力参数计算...............................4. 减速器齿轮传动的设计计算...............................4.1高速级斜齿圆柱齿轮传动的设计计算............................4.2低速级直齿圆柱齿轮传动的设计计算............................5. 减速器轴及轴承装置的设计...............................5.1轴的设计................................................5.2键的选择与校核...........................................5.3轴承的的选择与寿命校核....................................6. 箱体的设计.............................................6.1箱体附件................................................6.2铸件减速器机体结构尺寸计算表...............................7. 润滑和密封.............................................7.1润滑方式选择.............................................7.2密封方式选择............................................. 参考资料目录..............................................1. 设计任务1.1设计任务设计带式输送机的传动系统,工作时有轻微冲击,输送带允许速度误差±4%,二班制,使用期限12年(每年工作日300天),连续单向运转,大修期三年,小批量生产。
二级减速器课程设计完整版

输送机滚筒直径:D=275;
输送带有效拉力:F=4000N;
输送机滚筒速度:V=
输送机滚筒直径:D=400;
输送带有效拉力:F=4600N;
输送机滚筒速度:V=
输送机滚筒直径:D=400;
输送带有效拉力:F=5400N;
输送机滚筒速度:V=
输送机滚筒直径:D=65400;
输送带有效拉力:F=5900N;
输送机滚筒直径:D=400;
输送带有效拉力:F=8000N;
输送机滚筒速度:V=
输送机滚筒直径:D=400;
输送带有效拉力:F=7300N;
输送机滚筒速度:V=
输送机滚筒直径:D=500;
输送带有效拉力:F=4500N;
输送机滚筒速度:V=
输送机滚筒直径:D=600;
输送带有效拉力:F=7000N;
全套请联系
输送机滚筒速度:V=
输送机滚筒直径:D=400;
输送带有效拉力:F=4800N;
输送机滚筒速度:V=
输送机滚筒直径:D=600;
输送带有效拉力:F=8200N;
输送机滚筒速度:V=
输送机滚筒直径:D=400;
输送带有效拉力:F=6500N;
输送机滚筒速度:V=
输送机滚筒直径:D=400;
输送带有效拉力:F=5000N;
输送机滚筒速度:V=
输送机滚筒直径:D=600;
输送带有效拉力:F=9000N;
输送机滚筒速度:V=
输送机滚筒直径:D=400;
输送带有效拉力:F=9500N;
输送机滚筒速度:V=
输送机滚筒直径:D=450;
输送带有效拉力:F=6500N;
输送机滚筒速度:V=1
二级减速器课程设计完整版

目录1. 设计任务 (3)2. 传动系统方案的拟定 (3)3. 电动机的选择 (4)3.1选择电动机的结构和类型 (4)3.2传动比的分配 (8)3.3传动系统的运动和动力参数计算 (8)4. 减速器齿轮传动的设计计算 (13)4.1高速级斜齿圆柱齿轮传动的设计计算 (13)4.2低速级直齿圆柱齿轮传动的设计计算 (26)5. 减速器轴及轴承装置的设计 (40)5.1轴的设计 (41)5.2键的选择与校核 (55)5.3轴承的的选择与寿命校核 ................... 错误!未定义书签。
6. 箱体的设计 (60)6.1箱体附件 (60)6.2铸件减速器机体结构尺寸计算表 (63)7. 润滑和密封 (66)7.1润滑方式选择 (66)7.2密封方式选择 (66)参考资料目录 (67)带式输送机由电动机驱动。
电动机1通过联轴器2将动力传入两级齿轮减速计算及说明器3,再经联轴器4将动力传至输送机滚筒5带动输送带6工作。
传动系统中采用两级展开式圆柱齿轮减速器,高速级为斜齿圆柱齿轮传动,低速级为直齿圆柱齿轮传动,高速级齿轮布置在远离转矩输入端,以减轻载荷沿齿宽分布的不均匀。
展开式减速器结构简单,但齿轮相对于轴承位置不对称,因此要求轴有较大的刚度。
3.电动机的选择3.1选择电动机的结构和类型Pw=2.16kW传动总效率η=0.8680 Pr=2.488(1)画轴的受力简图在确轴承的支点位置时,从手册中查得7205AC型角接触球轴承轴承25d=,16.4mmα=。
因此,作为简支架的轴的支承距由图可知作为支梁的轴的支承跨距:108.639.6148.2L mm mm mm=+=。
根据轴的计算简图做出轴的弯矩图和扭矩图如下所示。
计算及说明结果(1)计算支反力(2)计算弯矩M(3)计算总弯矩(4)计算扭矩T116340T T N mm==•。
二级减速器课程设计完整版

目录1. 设计任务 (2)2. 传动系统方案的拟定 (2)3. 电动机的选择 (3)3.1选择电动机的结构和类型 (3)3.2传动比的分配 (5)3.3传动系统的运动和动力参数计算 (5)4. 减速器齿轮传动的设计计算 (7)4.1高速级斜齿圆柱齿轮传动的设计计算 (7)4.2低速级直齿圆柱齿轮传动的设计计算 (11)5. 减速器轴及轴承装置的设计 (16)5.1轴的设计 (16)5.2键的选择与校核 (23)5.3轴承的的选择与寿命校核 (25)6. 箱体的设计 (28)6.1箱体附件 (28)6.2铸件减速器机体结构尺寸计算表 (29)7. 润滑和密封 (30)7.1润滑方式选择 (30)7.2密封方式选择 (30)参考资料目录 (30)1. 设计任务1.1设计任务设计带式输送机的传动系统,工作时有轻微冲击,输送带允许速度误差±4%,二班制,使用期限12年(每年工作日300天),连续单向运转,大修期三年,小批量生产。
1.2原始数据滚筒圆周力:900F N =输送带带速:%2.4(4)/v m s =±滚筒直径: 450mm1.3工作条件二班制,空载起动,有轻微冲击,连续单向运转,大修期三年;三相交流电源,电压为380/220V 。
2. 传动系统方案的拟定带式输送机传动系统方案如下图所示:带式输送机由电动机驱动。
电动机1通过联轴器2将动力传入两级齿轮减速选择电动机容量时应保证电动机的额定功率Pm 等于或大于工作机所需的电动机动率Pr 。
因工作时存在轻微冲击,电动机额定功率Pm 要大于Pr 。
由《机械设计课程设计(西安交通大学出版社)》表3—2所列Y 系列三相异步电动机技术数据中可以确定,满足选P m ≥P r 条件的电动机额定功率P m 应取为3kW 。
3.1.2确定电动机转速由已知条件计算滚筒工作转速 32.460101.91/min 3.1445010w v n r d π-⨯===⨯⨯ 传动系统总传动比mwn i n =由《机械设计(高等教育出版社)》表18—1查得,展开式两级圆柱齿轮减速器推荐传动比范围为 i=8~60,故电动机转速的可选范围为 (8~60)101.91815.28~6114.6/min m w n in r ==⨯=由《机械设计课程设计(西安交通大学出版社)》表3—2可以查得电动机数据如下表: 方案 电动机型号 额定功率(kw ) 满载转速(r/min) 总传动比1 Y100L-23 2880 28.262 Y100L2-43 1440 14.133 Y132S-6 3 960 9.42通过对以上方案比较可以看出:方案1选用的电动机转速最高、尺寸最小、重量最低、价格最低,总传动比为28.26。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
目录 1. 设计任务 .............................. 错误!未指定书签。
2. 传动系统方案的拟定 .................... 错误!未指定书签。
3. 电动机的选择 .......................... 错误!未指定书签。
3.13.23.3
4. 4.14.2
5. 5.15.25.3
6. 6.16.2
7. 润滑和密封 ............................ 错误!未指定书签。
7.1润滑方式选择 ........................... 错误!未指定书签。
7.2密封方式选择 ........................... 错误!未指定书签。
参考资料目录 ............................. 错误!未指定书签。
1.设计任务
1.1设计任务
设计带式输送机的传动系统,工作时有轻微冲击,输送带允许速度误差±4%,二班制,使用期限12年(每年工作日300天),连续单向运转,大修期三年,小批量生产。
1.2原始数据
滚筒圆周力:
900 F N =
输送带带速:
%
2.4(4)/ v m s =±
滚筒直径:450mm
1.3工作条件
二班制,空载起动,有轻微冲击,连续单向运转,大修期三年;三相交流电源,
电压为380/220V。
2.传动系统方案的拟定
带式输送机传动系统方案如下图所示:
带式输送机由电动机驱动。
电动机1通过联轴器2将动力传入两级齿轮减速
计算及说明
结果
器3,再经联轴器4将动力传至输送机滚筒5带动输送带6工作。
传动系统中采用两级展开式圆柱齿轮减速器,高速级为斜齿圆柱齿轮传动,低速级为直齿圆柱齿轮传动,高速级齿轮布置在远离转矩输入端,以减轻载荷沿齿宽分布的不均匀。
P w=2.16k
W
传动总效
调整小齿轮分度圆直径
1)计算实际载荷系数前段数据准备。
圆周速度v 。
齿宽b 。
2)计算实际载荷系数。
①查得使用系数
=1。
②根据v=0.877m/s 、7级精度,查得动载荷系数=1.0。
③齿轮的圆周力
查得齿间载荷分配系数=1.2。
④用表10-4插值法查得7级精度、小齿轮相对支承非对称分布时,得齿向载荷分布系数 1.420H K β=。
其载荷系数为
3)可得按实际载荷系数算得的分度圆直径 及相应的齿轮模数
3.按齿根弯曲疲劳强度设计 (1)试算齿轮模数,即 1)确定公式中的各参数值。
①试选 1.3Ft K =。
②由式(10-5)计算弯曲疲劳强度的重合度系数Y ε。
计算[]
Fa sa
F Y Y σ
由图10-17查得齿形系数1 2.62Fa Y =2 2.18Fa Y =
由图10-18查得应力修正系数sa1sa 21.55 1.76Y Y ==、
由图10-24c 查得小齿轮的弯曲疲劳强度极限lim1500MPa
F σ=;大齿轮的弯曲强度极限MPa 3802lim =F σ
由图10-22查得弯曲疲劳寿命系数10.85FN K =、20.88FN K =。
取弯曲疲劳安全系数S=1.4,得
计算及说明 结果
因为大齿轮的[]a sa
F F Y Y σ
大于小齿轮,所以取 2)试算模数 (2)调整齿轮模数
1)计算实际载荷系数前的数据准备。
①圆周速度 ②齿宽b
③宽高比/b h 。
2)计算实际载荷系数F K
①根据0.641/v m s =,7级精度,由图10-8查得动载系数 1.07v K =。
②由234212/2 6.79310/36.456 3.72710t F T d N N ⨯==⨯⨯= 查表10-3得齿间载荷分配系数 1.0F K α=。
③由表10-4用插值法查得 1.417H K β=,结合/10.67b h =查图10-13可得
1.34F K β=。
则载荷系数为1 1.07 1.0 1.34 1.434F A V F F K K K K K αβ==⨯⨯⨯=
3)由式(10-13),可得按实际载荷系数算得的齿轮模数
对比计算结果,由齿面接触疲劳强度计算的模数m 大于由齿根弯曲疲劳强度计算的模数。
由于齿轮模数m 的大小主要取决与于弯曲疲劳强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力,仅与齿轮直径有关,可取由弯曲疲劳强度算得的模数1.569mm 并近
计算及说明 结果
圆取整为标准值m=2mm ,按接触疲劳强度算得的分度圆直径1=49.873d mm ,算出小齿轮齿数11=/=49.873/2=24.937z d m 。
取125z =则大齿轮的齿数21 3.2972582.4z uz ==⨯=,取282z =,两齿轮齿数互为质数。
和互为质数。
这样设计出的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,并做到结构紧凑,避免浪费。
4.几何尺寸计算
(1)计算分度圆直径 (2)计算中心距 (3)计算齿轮宽度
考虑不可避免的安装误差,为了保证设计齿宽b 的节省材料,一般将小齿轮略为加宽(5~10)mm ,即
取258b mm =,而使大齿轮的齿宽等于设计齿宽,即250b mm = 5.圆整中心距后的强度校核
上述齿轮副的中心距不便于相关零件的设计和制造。
为此,可以通过调整传动比、改变齿数或变位法进行圆整。
将中心距圆整为110a mm =。
在圆整之后,齿轮副几何尺寸发生变化,应重新校核齿轮强度,以明确齿轮的工作能力。
(1) 计算变位系数和
1) 计算啮合角、齿数和、变位系数和、中心距变动系数和齿顶高降低系数。
从图10-21b 可知,当前的变位系数和提高了齿轮强度,但重合度有所下降。
2)分配变位系数1,2x x 由图10-21b 可知,坐标点(/2,/2)(53.5,0.825)z x ∑∑=位于L17和L16之间。
按这两条线做射线,再从横坐标的12,z z 处做垂直线,与射线交点的纵坐标分别是120.724,0.850x x ==。
3)齿面接触疲劳强度校核 满足齿面接触疲劳强度条件。
4)齿根弯曲强度校核
m=2mm
计算及说明 结果
轴段5:此段为齿轮轴段,此段的长5140L b mm
==。
轴段6:此段为过渡轴段,同轴段4,取6428d d mm
==,取齿轮距箱体右内壁的距离mm 11a =,考虑到箱体的铸造误差,在确定滚动轴承位置时应距箱体内壁一定距离s,取mm 10s =,在轴承左侧有一套筒mm 21d =,则此段轴的长
轴段7:此段为轴承及套筒轴段,已知滚动轴承宽度为mm 15B =,
7d 151227L B mm
=+=+=,取其直径
7325d d mm
==。
(3)轴上零件的轴向定位
半联轴器与轴的周向定位采用平键连接。
按118d mm =由表6-1查得平键截面b ×h=6mm ×6mm ,键槽用键槽铣刀加工,长为30mm ,同时为了保证半联轴器与轴配合有良好的对中性,故选择半联轴器轮毂与轴的配合为H7/k6。
滚动轴承与轴的周向定位是由过盈配合来保证的,此处选轴的直径尺寸公差为m6。
4)确定轴上圆角与倒角尺寸
参考表15-2,取轴端倒角为C1,各轴肩处圆角半径为R1.0。
五、求轴上载荷
(1)画轴的受力简图
在确轴承的支点位置时,从手册中查得7205AC 型角接触球轴承轴承25d =,16.4mm α=。
因此,作为简支架的轴的支承距由图可知作为支梁的轴的支承跨距:108.639.6148.2L mm mm mm =+=。
根据轴的计算简图做出轴的弯矩图和扭矩图如下所示。
半联轴器
轮毂与轴
的配合为H7/k6
轴端倒角为C1
各轴肩处圆角半径为R1
计算及说明
结果
(1)计算支反力 (2)计算弯矩M (3)计算总弯矩 (4)计算扭矩T
116340T T N mm
==•。