高考数学二轮复习 专题六第二讲概 率(B) 理

合集下载

高三数学二轮复习建议——专题二:概率统计 PPT课件 图文

高三数学二轮复习建议——专题二:概率统计 PPT课件 图文
概率与统计
目目 录录
CCOONNTTEENNTTSS
1 历年高考分析 22 重点、热点分析 3 复习目标、方案专题 4 命题预测、优题展示
一 高考试题分析
1.1 2012——2017年高考考查内容分析
2 道 小 题
1 道 大 题
年份 题号
理科 考查 内容
题号
文科 考查 内容
2017 年
2016 年 2015 年 2014 年 2013 年 2012 年
T1 9
相关系数、统计、均值、方差、3 σ原则、概率的意义
T14 二项式定理
2016 年
T4 几何概型
T3 古典概型
从文科高考试题看,解答题一般以工农业生产和生活中的实 频数分布、频率与概率、事件的
频数分布、频率与概率、事件的
T19 独立性、互斥事件、分布列、概 T19 独立性、互斥事件、分布列、概
√√

古典概型
几何概型 率 随机模拟
√√√ √ √
随机变量间的函数关系


二 重点、热点分析
重点、热点、规律方法(一)二项式定理

1.(1)(2017▪全国卷Ⅰ理科▪T6)
(1
1 x2
)(1
x)6
展开式中
x2
的系数为
A.15
B.20
C.30
D.35
(2)(2016▪全国卷Ⅰ理科▪T14) (2x x )5 的展开式中,x3 的系数是
T1 8
分步乘法计数原理、组合
正态分布、对立事件
T3
函数、频率与概率、分布列、期 望、方差、概率的意义
T 18
数字特征及其意义 几何概型
相关系数、统计、均值、方差、3 σ原则、概率的意义

2014届(浙江)高考数学(理)二轮专题训练:第1部分专题六第2讲排列、组合与二项式定理(选择、填空

2014届(浙江)高考数学(理)二轮专题训练:第1部分专题六第2讲排列、组合与二项式定理(选择、填空

2014届(浙江)高考数学(理)二轮专题训练:第1部分专题六第2讲排列、组合与二项式定理(选择、填空题型)错误!考 点考 情 两个计数原理 1.对两个计数原理及排列、组合的考查主要有两种形式:一是直接利用计数原理、排列、组合知识进行计数,如2013年福建T 5,2013年北京T 12;二是与概率问题结合起来综合考查.2.对二项式定理的考查主要是求展开式中的某一项,某一项的二项式系数,各项系数和等,考查赋值技巧,难度不大,如2013年江排列、组合问题 二项式定理西T5,2013年新课标全国卷ⅡT5,2013年安徽T11.1.(2013·福建高考)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.10解析:选B因为a,b∈{-1,0,1,2},可分为两类:①当a=0时,b可能为-1或1或0或2,即b有4种不同的选法;②当a≠0时,依题意得Δ=4-4ab≥0,所以ab≤1.当a=-1时,b有4种不同的选法;当a=1时,b可能为-1或0或1,即b有3种不同的选法;当a=2时,b可能为-1或0,即b有2种不同的选法.根据分类加法计数原理,(a,b)的个数为4+4+3+2=13.解析:二项式⎝⎛⎭⎪⎪⎫x+a 3x 8展开式的通项为T r +1=C r 8a r x 48r 3-,令8-43r =4,可得r =3,故C 38a 3=7,易得a =12. 答案:125.(2013·北京高考)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.解析:按照要求要把序号分别为1,2,3,4,5的5张参观券分成4组,然后再分配给4人,连号的情况是1和2,2和3,3和4,4和5,故其方法数是4A 44=96.答案:961.两个重要公式(1)排列数公式A m n ==n (n -1)(n -2)…(n -m +1)(n ,m ∈N *,且m ≤n ).(2)组合数公式C m n == (n ,m ∈N *,且m ≤n ).2.三个重要性质和定理(1)组合数性质①C m n =C n -m n (n ,m ∈N *,且m ≤n );②C m n +1=C m n +C m -1n (n ,m ∈N *,且m ≤n ); ③C 0n =1.(2)二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+C 2n a n -2b 2+…+C k n a n -k ·b k +…+C n n b n ,其中通项T r +1=C r n a n -r b r . (3)二项式系数的性质①C 0n =C n n ,C 1n =C n -1n ,…,C r n =C n -r n ;②C0n+C1n+C2n+…+C n n=2n;③C1n+C3n+C5n+...=C0n+C2n+C4n+ (2)-1.热点一用[例1](1)某人设计了一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有() A.22种B.24种C.25种D.36种(2)方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有() A.60条B.62条C.71条D.80条[自主解答](1)设抛掷三次骰子的点数分别为a,b,c,根据分析,若a=1,则b+c=11,只能是(5,6),(6,5),2种情况;若a=2,则b+c =10,只能是(4,6),(5,5),(6,4),3种情况;若a =3,则b+c=9,只能是(3,6),(4,5),(5,4),(6,3),4种情况;若a=4,则b+c=8,只能是(2,6),(3,5),(4,4),(5,3),(6,2),5种情况;若a=5,则b+c=7,只能是(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),6种情况;若a=6,则b+c=6,只能是(1,5),(2,4),(3,3),(4,2),(5,1),5种情况.故总计2+3+4+5+6+5=25种可能.(2)当a=1时,若c=0,则b2有4,9两个取值,共2条抛物线,若c≠0,则c有4种取值,b2有两种,共有2×4=8条抛物线;当a=2时,若c=0,b2取1,4,9三种取值,共有3条抛物线,若c≠0,c取1时,b2有2个取值,共有2条抛物线,c取-2时,b2有2个取值,共有2条抛物线,c取3时,b2有3个取值,共有3条抛物线,c取-3时,b2有3个取值,共有3条抛物线.所以共有3+2+2+3+3=13条抛物线.同理,a=-2,-3,3时,共有抛物线3×13=39条.由分类加法计数原理知,共有抛物线39+13+8+2=62条.[答案](1)C(2)B——————————规律·总结————————————————应用两个计数原理解题的方法(1)在应用分类计数原理和分步计数原理时,一般先分类再分步,每一步当中又可能用到分类计数原理.(2)对于复杂的两个原理综合使用的问题,可恰当列出示意图或表格,使问题形象化、直观化.1.如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间电路不通,则焊接点脱落的不同情况有()A.9种B.11种C.13种D.15种解析:选C按照焊接点脱落的个数进行分类.若脱落1个,有(1),(4),共2种;若脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;若脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;若脱落4个,有(1,2,3,4),共1种.综上,共有2+6+4+1=13种焊接点脱落的情况.2.某次活动中,有30个人排成6行5列,现要从中选出3人进行礼仪表演,要求这3人任意2人不同行也不同列,则不同的选法种数为________(用数字作答).解析:其中最先选出的一个有30种方法,此时这个人所在的行和列共10个位置不能再选人,还剩一个5行4列的队形,选第二个人有20种方法,此时该人所在的行和列不能再选人,还剩一个4行3列的队形,此时第三个人的选法有12种,根据分步乘法计数原理,总的选法种数是30×20×12=1 200.6答案:1 200[例2](1)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为() A.232B.252C.472 D.484(2)(2013·重庆高考)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________(用数字作答).[自主解答](1)法一:从16张不同的卡片=560种,中任取3张,共有C316=16×15×143×2×1其中有两张红色的有C24×C112种,其中三张卡片颜色相同的有C34×4种,所以3张卡片不能是同一种颜色,且红色卡片至多1张的不同取法的种数为C316-C24×C112-C34×4=472.法二:若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色,则有C14×C14×C14=64种,若2张颜色相同,则有C23C12C24C14=144种;若红色卡片有1张,则剩余2张若不同色,有C14×C23×C14×C14=192种,若同色,则有C14C13C24=72种,所以共有64+144+192+72=472(种).(2)直接法分类,3名骨科,内科、脑外科各1名;3名脑外科,骨科、内科各1名;3名内科,骨科、脑外科各1名;内科、脑外科各2名,骨科1名;骨科、内科各2名,脑外科1名;骨科、脑外科各2名,内科1名.所以选派种数为C33·C14·C15+C34·C13·C15+C35·C13·C14+C24·C25·C13+C23·C25·C14+C23·C24·C15=590.[答案](1)C(2)590——————————规律·总结————————————————1.解决排列组合问题应遵循的原则先特殊后一般,先选后排,先分类后分步.2.解决排列组合问题的11个策略(1)相邻问题捆绑法;(2)不相邻问题插空法;(3)多排问题单排法;(4)定序问题倍缩法;(5)多元问题分类法;(6)有序分配问题分步法;(7)交叉问题集合法;(8)至少或至多问题间接法;(9)选排问题先选后排法;(10)局部与整体问题排除法;(11)复杂问题转化法.3.解决排列组合问题的四个角度解答排列组合应用题要从“分析”“分辨”“分类”“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有无限制等;(3)“分类”就是对于较复杂的应用题中的元素往往分成互斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列组合问题,然后逐步解决.3.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻先后着舰,而丙、丁不能相邻先后着舰,那么不同的着舰方法有()A.12种B.18种C.24种D.48种解析:选C将甲、乙捆绑,与除丙、丁外的另外一架飞机进行全排列,有A22·A22种方法,而后将丙、丁进行插空,有3个空,则有A23种排法,故共有A22·A22·A23=24种方法.4.某班班会准备从含甲、乙的7名学生中选取4人发言,要求甲、乙2人至少有一人参加,若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序种数为()A.720B.520C.600D.360解析:选C根据题意,分2种情况讨论:若甲、乙其中一人参加,有C12·C35·A44=480种;若甲、乙2人都参加,共有C22·C25·A44=240种发言顺序,其中甲、乙相邻的情况有C22·C25·A22·A33=120种,故有240-120=120种.则不同的发言顺序种数为480+120=600.[例3] (1)(2013·新课标全国卷Ⅰ)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =( )A .5B .6C .7D .8(2)(2013·陕西高考)设函数f (x )=⎩⎨⎧ ⎝ ⎛⎭⎪⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f (f (x ))表达式的展开式中常数项为( )A .-20B .20C .-15D .15(3)若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.[自主解答] (1)根据二项式系数的性质知:(x +y )2m 的二项式系数最大有一项,C m 2m =a ,(x +y )2m +1的二项式系数最大有两项,C m 2m +1=C m +12m +1=b .又13a =7b ,所以13C m 2m =7C m 2m +1,即13·(2m )!m !m !=7·(2m +1)!(m +1)!m !,解得m =6. (2)依据分段函数的解析式,得f (f (x ))=f (-x )=⎝ ⎛⎭⎪⎫1x -x 6,∴T r +1=C r 6(-1)r x r -3.令r -3=0,则r =3,故常数项为C 36(-1)3=-20.(3)f (x )=x 5=(1+x -1)5,它的通项为T r +1=C r 5(1+x )5-r ·(-1)r , T 3=C 25(1+x )3(-1)2=10(1+x )3,所以a 3=10.[答案] (1)B (2)A (3)10——————————规律·总结————————————————应用通项公式要注意五点(1)它表示二项展开式的任意项,只要n与r 确定,该项就随之确定;(2)T r+1是展开式中的第r+1项,而不是第r项;(3)公式中a,b的指数和为n,且a,b不能随便颠倒位置;(4)要将通项中的系数和字母分离开,以便于解决问题;(5)对二项式(a-b)n展开式的通项公式要特别注意符号问题.5.若(1-2x )2 013=a 0+a 1x +…+a 2 013x 2 013(x∈R),则a 12+a 222+…+a 2 01322 013的值为( ) A .2B .0C .-1D .-2解析:选C ∵(1-2x )2 013=a 0+a 1x +…+a 2 013x2 013(x ∈R),∴令x =0,则a 0=1.令x =12,则⎝ ⎛⎭⎪⎪⎫1-2×122 013=a 0+a 12+a 222+…+a 2 01322 013=0, 其中a 0=1,所以a 12+a 222+…+a 2 01322 013=-1. 6.若⎝⎛⎭⎪⎪⎫x -a 2x 8的展开式中常数项为1 120,则展开式中各项系数之和为________.解析:⎝⎛⎭⎪⎪⎫x -a 2x 8的展开式的通项为T r +1=C r 8x 8-r (-a 2)r x -r =C r 8(-a 2)r x 8-2r ,令8-2r =0,解得r =4,所以C 48(-a 2)4=1 120,所以a 2=2,故⎝ ⎛⎭⎪⎪⎫x -a 2x 8=⎝ ⎛⎭⎪⎪⎫x -2x 8.令x =1,得展开式中各项系数之和为(1-2)8=1.答案:1。

文科数学专题概率与统计(学案)高考二轮复习资料含答案

文科数学专题概率与统计(学案)高考二轮复习资料含答案

文科数学专题概率与统计(学案)高考二轮复习资料含答案1.以客观题形式考查抽样方法,样本的数字特征和回归分析,独立性检验的基本思路、方法及相关计算与推断.2.本部分较少命制大题,若在大题中考查多在概率与统计、算法框图等知识交汇处命题,重点考查抽样方法,频率分布直方图和回归分析或独立性检验,注意加强抽样后绘制频率分布直方图,然后作统计分析或求概率的综合练习.3.以客观题形式考查古典概型与几何概型、互斥事件与对立事件的概率计算.4.与统计结合在大题中考查古典概型与几何概型.(1)在频率分布直方图中:频率①各小矩形的面积表示相应各组的频率,各小矩形的高=;②各小矩形面积之和等于1;③中位数组距左右两侧的直方图面积相等,因此可以估计其近似值.(2)茎叶图当数据有两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,从总体中逐个抽取少在起始部分抽样时采按事先确定的规则在各用简单随机抽样总体中的个体数较多分层抽样时采用简单总体由差异明显的随机抽样或系统抽样几部分组成即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.当数据有三位有效数字,前两位相对比较集中时,常以前两位为茎,第三位(个位)为叶(其余类推).3.样本的数字特征(1)众数在样本数据中,频率分布最大值所对应的样本数据(或出现次数最多的那个数据).(2)中位数样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取当中两个数据的平均数作为中位数.(3)平均数与方差-1样本数据的平均数某=(某1+某2++某n).n1-2-2-22方差=[(某1-某)+(某2-某)++(某n-某)].n注意:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定.4.变量间的相关关系(1)利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中的点从整体上看大致分布在一条直线的附近,我们说变量某和y具有线性相关关系.(2)用最小二乘法求回归直线的方程^^^设线性回归方程为y=b某+a,则^b=-某-某^-^-a=y-b某ni=1nii=1--某i-某yi-y=--某iyi-n某yi=1nn22i-n某某2-i=1.--注意:回归直线一定经过样本的中心点(某,y),据此性质可以解决有关的计算问题.5.回归分析n某i-某yi-yi=1--r=n,叫做相关系数.某i-某2yi-y2i=1i=1-n-相关系数用来衡量变量某与y之间的线性相关程度;|r|≤1,且|r|越接近于1,相关程度越高,|r|越接近于0,相关程度越低.6.独立性检验假设有两个分类变量某和Y,它们的取值分别为{某1,某2}和{y1,y2},其样本频数列联表(称为2某2列联表)为某1某2总计2y1aca+c2y2bdb+d总计a+bc+da+b+c+da+b+c+dad-bc则K=,a+bc+da+cb+d若K>3.841,则有95%的把握说两个事件有关;若K>6.635,则有99%的把握说两个事件有关;若K<2.706,则没有充分理由认为两个事件有关.7.随机事件的概率随机事件的概率范围:0≤P(A)≤1;必然事件的概率为1,不可能事件的概率为0.8.古典概型①计算一次试验中基本事件的总数n;②求事件A包含的基本事件的个数m;③利用公式P(A)=计算.9.一般地,如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率的和,即P(A+B)=P(A)+P(B).-10.对立事件:在每一次试验中,相互对立的事件A和A不会同时发生,但一定有一个发生,因此有222mnP(A)=1-P(A).11.互斥事件与对立事件的关系-对立必互斥,互斥未必对立.12.几何概型一般地,在几何区域D内随机地取一点,记事件“该点落在其内部区域d内”为事件A,则事件A发生的概率P(A)=考点一几何概型例1.【2022课标1,】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是d的测度.D的测度141C.2A.【答案】Bπ8πD.4B.【变式探究】(2022·江苏卷)记函数f(某)=6+某-某的定义域为D.在区间[-4,5]上随机取一个数某,则某∈D的概率是________.5【答案】93--252【解析】由6+某-某≥0,解得-2≤某≤3,则D=[-2,3],则所求概率为=.5--49【变式探究】从区间[0,1]随机抽取2n个数某1,某2,,某n,y1,y2,,yn,构成n个数对(某1,y1),(某2,y2),,(某n,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4n2m2nB.mC.4mn2mD.n【答案】Cmπ4m4m【解析】由题意知,=,故π=,即圆周率π的近似值为.n4nn考点二古典概型例2.(2022·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.【答案】D3102511015【2022山东】从分别标有1,2,,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A)5475(B)(C)(D)18999【答案】C【解析】标有1,2,,9的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到的2张卡112C5C45,选C.片上的数奇偶性不同的概率是989【变式探究】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.51011B.C.D.1212121【变式探究】(2022·天津卷)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.【答案】C【解析】从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共424种,所以所求概率P==.105故选C.考点三概率与其他知识的交汇例3、(2022·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数[10,15)2[15,20)16[20,25)36[25,30)25[30,35)7[35,40)44 5352515以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率.(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.【变式探究】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下表:消费次数收费比例第1次1第2次0.95第3次0.90第4次0.85第5次及以上0.80该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如下表:消费次数频数第1次60第2次20第3次10第4次5第5次及以上5假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.40【解析】(1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为100=0.4.(2)该会员第1次消费时,公司获得的利润为200-150=50(元).50+40第2次消费时,公司获得的利润为200某0.95-150=40(元),所以,公司获得的平均利润为=245(元)。

高考数学二轮复习计数原理与概率

高考数学二轮复习计数原理与概率

6
x
3 2
k
,k≤6,k∈N,
由 6-32k=0,解得k=4,
则 T5=(-1)4×32×C46=135,
√A.144种
C.672种
B.336种 D.1 008种
选取的 3 个名称中含有祝融的共有 C29种不同的情况. 分析选取的 3 个名称的不同情况有 A33种, 其中祝融是第 3 个被分析的情况有 A22种, 故祝融不是第 3 个被分析的情况有 C29(A33-A22)=144(种).
(2)(2022·广东联考)现要安排甲、乙、丙、丁四名志愿者去国家高山滑雪
√D.P(A|C)=P(B|C)
由题知,从 10 个数中随机地抽取 3 个数,共有 C310=120(种)可能情况, 对于A选项,“恰好抽的是2,4,6”和“恰好抽取的是6,7,8”为互斥事 件,则P(AB)=0,而P(A)P(B)≠0,故A选项错误; 对于 B 选项,P(C)=CC31290=13260=130,故 B 选项错误; 对于 C 选项,P(AB)=0,P(C)=130,故 C 选项错误; 对于 D 选项,由于 P(AC)=P(BC)=C129=316,故由条件概率公式得 P(A|C) =P(B|C),故 D 选项正确.
跟踪演练2 (1)(2022·淄博模拟)若(1-x)8=a0+a1(1+x)+a2(1+x)2+…+
a8(1+x)8,则a6等于
A.-448
B.-112
√C.112
D.448
(1-x)8=(x-1)8=[(1+x)-2]8 =a0+a1(1+x)+a2(1+x)2+…+a8(1+x)8, a6=C28×(-2)2=112.
③P(B)=12;④B 与 A1 相互独立.
A1,A2,A3中任何两个事件都不可能同时发生,因此它们两两互斥,

高考数学理二轮专题复习课件专题六概率与统计第二讲概率【精选】

高考数学理二轮专题复习课件专题六概率与统计第二讲概率【精选】
栏目 导引
专题六 概率与统计
强 化 训 练 2 (2013·成 都 市 诊 断 性 检 测 ) 已 知 集 合 {(x ,
2x+y-4≤0 y)|x+y≥0 }表示的平面区域为 Ω,若在区域 Ω 内任取一
x-y≥0
点 P(x,y),则点 P 的坐标满足不等式 x2+y2≤2 的概率为( A )
栏目 导引
专题六 概率与统计
【解】因玩具是均匀的,所以玩具各面朝下的可能性相等, 出现的可能情况有(1,1),(1,2),(1,3),(1,5),(2,1), (2,2),(2,3),(2,5),(3,1),(3,2),(3,3),(3,5), (5,1),(5,2),(5,3),(5,5)共 16 种. (1)事件“m 不小于 6”包含其中(1,5),(2,5),(3,5),(3, 3),(5,1),(5,2),(5,3),(5,5)共 8 个基本事件,所以 P(m≥6)=186=12.
3π A. 32
3π B. 16
π
π
C.32
D.16
栏目 导引
专题六 概率与统计
【解析】 作出不等式组
2x+y-4≤0 x+y≥0 表示的平面区域,如图三角形 x-y≥0
ABO,且有
A(43,
43),B(4,-4),所以 S△ABO=12×4 3 2×4 2=136,点 P 的坐
标满足不等式 x2+y2≤2 的面积 S 扇形=14×π ( 2)2=π2 ,
3.(2013·高考辽宁卷)现有6道题,其中4道甲类题,2道 乙类题,张同学从中任取2道题解答.试求: (1)所取的2道题都是甲类题的概率; (2)所取的2道题不是同一类题的概率.
栏目 导引
专题六 概率与统计
【解】(1)将 4 道甲类题依次编号为 1,2,3,4;2 道乙类 题依次编号为 5,6.任取 2 道题,基本事件为:{1,2},{1, 3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2, 6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共 15 个,而且这些基本事件的出现是等可能的.用 A 表示“都 是甲类题”这一事件,则 A 包含的基本事件有{1,2},{1, 3},{1,4},{2,3},{2,4},{3,4},共 6 个,所以 P(A) =165=25. (2)基本事件同(1),用 B 表示“不是同一类题”这一事件, 则 B 包含的基本事件有{1,5},{1,6},{2,5},{2,6}, {3,5},{3,6},{4,5},{4,6},共 8 个,所以 P(B)=185.

2023年高考数学一轮复习(新高考地区专用)6-2 古典概型及条件概率(精练)(解析版)(1)

2023年高考数学一轮复习(新高考地区专用)6-2 古典概型及条件概率(精练)(解析版)(1)

6.2 古典概型及条件概率(精练)(基础版)题组一古典概型1.(2022·山东滨州)法国著名的数学家笛卡尔曾经说过:“阅读优秀的书籍,就是和过去时代中最杰出的人们(书籍的作者)一一进行交谈,也就是和他们传播的优秀思想进行交流,阅读会让精神世界闪光”.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示:(1)求a;(2)根据频率分布直方图,估计该地年轻人每天阅读时间的中位数(精确到0.1)(单位:分钟);(3)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅读时间位于分组[50,60),[60,70)和[80,90)的年轻人中抽取5人,再从中任选3人进行调查,求其中恰好有2人每天阅读时间位于[80,90)的概率.2.(2022·青海西宁)新冠肺炎疫情期间,为确保“停课不停学”,各校精心组织了线上教学活动,开学后,某校采用分层抽样的方法从三个年级的学生中抽取一个容量为150的样本进行关于线上教学实施情况的问卷调查.已知该校高一年级共有学生660人,抽取的样本中高二年级有50人,高三年级有45人.下表是根据抽样调查情况得到的高二学生日睡眠时间(单位:h)的频率分布表.分组频数频率[)6,6.550.10[)6.5,780.16[)7,7.5x0.14[)7.5,812y(1)求该校学生总数及频率分布表中实数,,x y z 的值;(2)已知日睡眠时间在区间[)6,6.5的5名高二学生中,有2名女生,3名男生,若从中任选2人进行面谈,求选中的2人恰好为一男一女的概率.3.(2022·河北张家口)英才中学为普及法律知识,组织高一学生学习法律常识小册子,并随机抽出100名学生进行法律常识考试,并将其成绩制成如图所示的频率分布直方图.(1)估计这100人的平均成绩;(2)若成绩在[]90,100的学生中恰有两位是男生,现从成绩在[]90,100的学生中抽取3人去校外参加社会法律知识竞赛,求其中恰有一位男生的概率.4.(2022·河南·商丘市)蹦床是一项将运动和美学完美结合的运动,随着全民健身时代的到来,蹦床越来越受到人们的喜爱,某大型蹦床主题公园为吸引顾客,推出优惠活动对首次消费的顾客,先注册成为会员,首次按60元收费,对会员逐次消费给予相应优惠,标准如下:该蹦床主题公园从注册的会员中,随机抽取了100位统计他们的消费次数,得到数据如下:假设每消费一次,蹦床主题公园的成本为30元,根据所给数据,解答下列问题: (1)以频率估计概率,估计该蹦床主题公园一位会员至少消费2次的概率; (2)某会员消费6次,求这6次消费中,该蹦床主题公园获得的平均利润;(3)以样本估计总体,假设从消费次数为3次和4次的会员中采用分层抽样的方法共抽取6人进行满意度调查,再从这6人中随机选取3人进一步了解情况,求抽取的3人中恰有一人的消费次数为4次的概率. 5.(2022·广西柳州)某政府部门为促进党风建设,拟对政府部门的服务质量进行量化考核,每个群众办完业务后可以对服务质量进行打分,最高分为100分.上个月该部门对100名群众进行了回访调查,将他们按所打分数分成以下几组:第一组[)0,20,第二组[)20,40,第三组[)40,60,第四组[)60,80,第五组[]80,100,得到频率分布直方图如图所示.(1)估计所打分数的众数,平均数;(同一组中的数据用该组区间的中点值作为代表)(2)该部门在第一、二组群众中按比例分配的分层抽样的方法抽取6名群众进行深入调查,之后将从这6人中随机抽取2人聘为监督员,求监督员来自不同组的概率. 1.(2022·吉林)先后抛掷一颗质地均匀的骰子两次,观察向上的点数.在第一次向上的点数为奇数的条件下,两次点数和不大于7的概率为( ) A .1318B .712C .310D .232(2022·江西·高三阶段练习(理))从1,2,…,6这六个数字中随机抽取2个不同的数字,记事件A =“恰好抽取的是2,4”,B =“恰好抽取的是4,5”,C =“抽取的数字里含有4”.则下列说法正确的是( ) A .()()()P AB P A P B =B .1()6P C =C .()()P C P AB = D .(|)(|)P A C P B C =3.(2022·福建·莆田华侨中学模拟预测)甲罐中有3个红球、2个黑球,乙罐中有2个红球、2个黑球,先从甲罐中随机取出一球放入乙罐,以A 表示事件“由甲罐取出的球是黑球”,再从乙罐中随机取出一球,以B 表示事件“由乙罐取出的球是黑球”,则下列说法错误的是( ) A .()25P A =B .()3|5P B A =C .()1325P B =D .()1|2P A B =题组二 条件概型4.(2022·山东济宁)在8件同一型号的产品中,有3件次品,5件合格品,现不放回的从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是( ) A .128B .110 C .19D .275.(2022·黑龙江)已知()12P AB =,()35P A =,则()P B A 等于( ).A .56B .910C .310D .1106.(2022·湖南·长沙一中高三开学考试)每年的6月6日是全国爱眼日,某位志愿者跟踪调查电子产品对视力的影响,据调查,某高校大约有45%的学生近视,而该校大约有20%的学生每天操作电子产品超过1h ,这些人的近视率约为50%.现从每天操作电子产品不超过1h 的学生中任意调查一名学生,则他近视的概率为( ) A .716B .38C .516 D .147.(2022·河北张家口·高二期末)某个闯关游戏规定:闯过前一关才能去闯后一关,若某一关没有通过,则游戏结束.小明闯过第一关的概率为34,连续闯过前两关的概率为12,连续闯过前三关的概率为13,且各关相互独立.事件A 表示小明第一关闯关成功,事件C 表示小明第三关闯关成功,则()|P C A =( )A .18B .23C .13D .498.(2022·山东济宁)(多选)设M 、N 是两个随机事件,则下列等式一定成立的是( )A .()()()P M N P M P N ⋃=+ B .()()1P MN P MN =- C .()()()|P MN P M P N M =D .()()()()||P N M P M P M N P N =9.(2022·福建福州)(多选)甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱,分别以12,A A 和3A 表示由甲箱取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱取出的球是红球的事件,则( ) A .事件B 与事件3A 相互独立 B .()159P A B =C .()2655P A B =D .()922P B =题组三 古典与条件综合运用1.(2022·河南)从标有1,2,3,4的卡片中不放回地先后抽出两张卡片,则4号卡片“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到的概率”分别是()A.14,14,12B.14,14,14C.13,13,12D.14,13,122.(2023·全国·高三专题练习(理))一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.(|)(|)P B AP B A与(|)(|)P B AP B A的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:(|)(|)(|)(|)P A B P A BRP A B P A B=⋅;(ⅰ)利用该调查数据,给出(|),(|)P A B P A B的估计值,并利用(ⅰ)的结果给出R的估计值.附22()()()()()n ad bcKa b c d a c b d-=++++,3.(2022·全国·高三专题练习)现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.6.2 古典概型及条件概率(精练)(基础版)1.(2022·山东滨州)法国著名的数学家笛卡尔曾经说过:“阅读优秀的书籍,就是和过去时代中最杰出的人们(书籍的作者)一一进行交谈,也就是和他们传播的优秀思想进行交流,阅读会让精神世界闪光”.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示:(1)求a ;(2)根据频率分布直方图,估计该地年轻人每天阅读时间的中位数(精确到0.1)(单位:分钟); (3)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅读时间位于分组[50,60),[60,70)和[80,90)的年轻人中抽取5人,再从中任选3人进行调查,求其中恰好有2人每天阅读时间位于[80,90)的概率.【答案】(1)0.020a =(2)74.4分钟(3)310【解析】(1)因为频率分布直方图的所有矩形面积之和为1,所以(0.0100.0450.005)101a a ++++⨯=,解得0.020a =.(2)因为(0.0100.020)100.30.5+⨯=<,(0.0100.0200.045)100.750.5++⨯=>.则中位数位于区间[70,80)内,设中位数为x ,则0.3(70)0.0450.5x +-⨯=,解得74.4x ≈,所以估计该地年轻人阅读时间的中位数约为74.4分钟.(3)由题意,阅读时间位于[50,60)的人数为1000.110⨯=,阅读时间位于[60,70)的人数为1000.220⨯=,阅读时间位于[80,90)的人数为1000.220⨯=,所以在这三组中按照分层抽样抽取5人的抽样比例为515010=,则抽取的5人中位于区间[50,60)有1人,设为a ,位于区间[60,70)有2人,设为1b ,2b ,位于区间[80,90)有2人,设为1c ,2c .则从5人中任取3人,样本空间()()()(){12111221Ω,,,,,,,,,,,,a b b a b c a b c a b c =()()()()()()}2212121122112212,,,,,,,,,,,,,,,,,a b c a c c b b c b b c b c c b c c .含有10个样本点.设事件A 为“恰有2人每天阅题组一 古典概型读时间在[80,90)”,()()(){}12112212,,,,,,,,A a c c b c c b c c =,含有3个样本点.所以3()10P A =,所以恰好有2人每天阅读时间位于[80,90)的概率为310. 2.(2022·青海西宁)新冠肺炎疫情期间,为确保“停课不停学”,各校精心组织了线上教学活动,开学后,某校采用分层抽样的方法从三个年级的学生中抽取一个容量为150的样本进行关于线上教学实施情况的问卷调查.已知该校高一年级共有学生660人,抽取的样本中高二年级有50人,高三年级有45人.下表是根据抽样调查情况得到的高二学生日睡眠时间(单位:h )的频率分布表.(1)求该校学生总数及频率分布表中实数,,x y z 的值;(2)已知日睡眠时间在区间[)6,6.5的5名高二学生中,有2名女生,3名男生,若从中任选2人进行面谈,求选中的2人恰好为一男一女的概率.【答案】(1)1800人,7,0.24,8x y z ===(2)35【解析】(1)设该校学生总数为n ,由题意1501505045660n --=,解得1800n =, ∴该校学生总数为1800人.由题意0.1450x=,解得127,0.2450x y ===,()505812108.z x =-----= (2)记“选中的2人恰好为一男一女”为事件A ,记5名高二学生中女生为12,F F ,男生为123,,M M M , 从中任选2人有以下情况:()()()()()()()12111213212223,,,,,,,,,,,,,F F F M F M F M F M F M F M ,()()()121323,,,,,M M M M M M ,基本事件共有10个,其中事件A 包含的基本事件有6个,故()63105P A ==, 所以选中的2人恰好为一男一女的概率为35.3.(2022·河北张家口)英才中学为普及法律知识,组织高一学生学习法律常识小册子,并随机抽出100名学生进行法律常识考试,并将其成绩制成如图所示的频率分布直方图.(1)估计这100人的平均成绩;(2)若成绩在[]90,100的学生中恰有两位是男生,现从成绩在[]90,100的学生中抽取3人去校外参加社会法律知识竞赛,求其中恰有一位男生的概率.【答案】(1)73分(2)35【解析】(1)由频率分布直方图可知()0.0050.040.030.005101a ++++⨯=,解得0.02a =, 所以这100人的平均成绩为:()550.005650.04750.03850.02950.0051073⨯+⨯+⨯+⨯+⨯⨯=, 即这100人的平均成绩为73分.(2)依题意可知成绩在[]90,100的有1000.005105⨯⨯=人,其中2位男生、3位女生,设3位女生分别为a 、b 、c ,2位男生为A 、B ,从中任取3人的取法有(),,a b c 、(),,a b A 、(),,a b B 、(),,a c A 、(),,a c B ,(),,a A B ,(),,b c A ,(),,b c B ,(),,b A B ,(),,c A B 共10种取法,其中恰有一个男生的有(),,a b A 、(),,a b B 、(),,a c A 、(),,a c B ,(),,b c A ,(),,b c B 共6种, 所以恰有一位男生的概率63105P ==. 4.(2022·河南·商丘市)蹦床是一项将运动和美学完美结合的运动,随着全民健身时代的到来,蹦床越来越受到人们的喜爱,某大型蹦床主题公园为吸引顾客,推出优惠活动对首次消费的顾客,先注册成为会员,首次按60元收费,对会员逐次消费给予相应优惠,标准如下:该蹦床主题公园从注册的会员中,随机抽取了100位统计他们的消费次数,得到数据如下:假设每消费一次,蹦床主题公园的成本为30元,根据所给数据,解答下列问题: (1)以频率估计概率,估计该蹦床主题公园一位会员至少消费2次的概率; (2)某会员消费6次,求这6次消费中,该蹦床主题公园获得的平均利润;(3)以样本估计总体,假设从消费次数为3次和4次的会员中采用分层抽样的方法共抽取6人进行满意度调查,再从这6人中随机选取3人进一步了解情况,求抽取的3人中恰有一人的消费次数为4次的概率.【答案】(1)25(2)23(元)(3)35【解析】(1)随机抽取的100位会员中,至少消费2次的会员有20105540+++=(位), 所以该蹦床主题公园一位会员至少消费2次的概率4021005P == (2)第1次消费时,蹦床主题公园获取的利润为603030-=(元), 第2次消费时,蹦床主题公园获取的利润为600.953027⨯-=(元), 第3次消费时,蹦床主题公园获取的利润为600.903024⨯-=(元), 第4次消费时,蹦床主题公园获取的利润为600.853021⨯-=(元), 第5次或第6次消费时,蹦床主题公园获取的利润为600.803018⨯-=(元) 所以这6次消费中,该蹦床主题公园获得的平均利润为302724211818236+++++=(元)(3)由题意知,从消费次数为3次和4次的会员中抽取的人数分别为4人,2人, 这6人中,将消费3次的会员分别记为a ,b ,c ,d ,消费4次的会员分别记为e ,f 从6人中随机抽取3人的情况有(,,),(,,),(,,),(,,)a b c a b d a b e a b f ;(,,),(,,),(,,)a c d a c e a c f ;(,,),(,,)a d e a d f ;(,,)a e f ;(,,),(,,),(,,)b c d b c e b c f ;(,,),(,,)b d e b d f ;(,,)b e f ;(,,),(,,)(,,)c d e c d f c e f ;(,,)d e f ,共20种设“抽取的3人中恰有一人的消费次数为4次”为事件A ,则事件A 包含的情况有(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,)a b e a b f a c e a c f a d e a d f b c e b c f b d e b d f c d e c d f ,共12种.根据古典概型的概率计算公式可得,()123205P A ==5.(2022·广西柳州)某政府部门为促进党风建设,拟对政府部门的服务质量进行量化考核,每个群众办完业务后可以对服务质量进行打分,最高分为100分.上个月该部门对100名群众进行了回访调查,将他们按所打分数分成以下几组:第一组[)0,20,第二组[)20,40,第三组[)40,60,第四组[)60,80,第五组[]80,100,得到频率分布直方图如图所示.(1)估计所打分数的众数,平均数;(同一组中的数据用该组区间的中点值作为代表)(2)该部门在第一、二组群众中按比例分配的分层抽样的方法抽取6名群众进行深入调查,之后将从这6人中随机抽取2人聘为监督员,求监督员来自不同组的概率. 【答案】(1)众数为70,平均数为65;(2)815【解析】(1)由频率分布直方图可知,众数为6080=702+; 5个组的频率分别为0.05,0.1,0.2,0.35,0.3,所以平均数为 100.05300.1500.2700.35900.365⨯+⨯+⨯+⨯+⨯=;(2)由频率分布直方图可知第一组的频率为0.05,第二组的频率为0.1, 则第一组的人数为5人,第二组的人数为10人, 所以按分层抽样的方法抽到的6人中,第一组抽2人,记为12、a a ;第二组抽4人,记为1234b b b b 、、、,则121112131421222324121314232434{,,,,,,,,,,,,,,}a a a b a b a b a b a b a b a b a b b b b b b b b b b b b b Ω=, 设事件A 为抽到的2人来着不同的组,则1112131421222324{,,,,,,,}A a b a b a b a b a b a b a b a b =,所以8()15P A =. 1.(2022·吉林)先后抛掷一颗质地均匀的骰子两次,观察向上的点数.在第一次向上的点数为奇数的条件下,两次点数和不大于7的概率为( ) A .1318B .712C .310D .23【答案】D【解析】设事件A 表示“先后抛掷一颗质地均匀的骰子两次,第一次向上的点数为奇数”,题组二 条件概型事件B 表示“先后抛掷一颗质地均匀的骰子两次,两次点数和不大于7”, 则1()2P A =,121()363P AB ==,所以1()23()1()32P AB P B A P A ===.故选:D. 2(2022·江西·高三阶段练习(理))从1,2,…,6这六个数字中随机抽取2个不同的数字,记事件A =“恰好抽取的是2,4”,B =“恰好抽取的是4,5”,C =“抽取的数字里含有4”.则下列说法正确的是( ) A .()()()P AB P A P B = B .1()6P C =C .()()P C P AB =D .(|)(|)P A C P B C =【答案】D【解析】由题知,从6个数中随机抽取2个数,共有2615C =种可能情况,则1()15P A =,1()15P B =.对于A 选项,“恰好抽取的是2,4”和“恰好抽取的是4,5”为互斥事件,()0P AB =,()()0≠P A P B ,故A 错误;对于B 选项,1526C 1()C 3P C ==,故B 错误; 对于C 选项,()0P AB =,故C 错误;对于D 选项,由于1()()15P AC P BC ==,故由条件概率公式得()()()()(|)(|)P AC P BC P A C P B C P C P C ===,故D正确. 故选:D .3.(2022·福建·莆田华侨中学模拟预测)甲罐中有3个红球、2个黑球,乙罐中有2个红球、2个黑球,先从甲罐中随机取出一球放入乙罐,以A 表示事件“由甲罐取出的球是黑球”,再从乙罐中随机取出一球,以B 表示事件“由乙罐取出的球是黑球”,则下列说法错误的是( ) A .()25P A =B .()3|5P B A =C .()1325P B = D .()1|2P A B =【答案】C 【解析】因为甲罐中有3个红球、2个黑球,所以()25P A =,故选项A 正确; 因为236()5525P AB =⨯=,所以()()()6325|255P AB P B A P A ===,故选项B 正确; 因为()233212555525P B =⨯+⨯=,故选项C 错误;因为()2365525P AB =⨯=,所以()()()6125|12225P AB P A B P B ===,故选项D 正确. 故选:C .4.(2022·山东济宁)在8件同一型号的产品中,有3件次品,5件合格品,现不放回的从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是( ) A .128B .110 C .19D .27【答案】D【解析】当第一次抽到次品后,还剩余2件次品,5件合格品,所以第二次抽到次品的概率为27.故选:D 5.(2022·黑龙江)已知()12P AB =,()35P A =,则()P B A 等于( ).A .56B .910C .310D .110【答案】A【解析】()()()152365P AB P B A P A ===.故选:A. 6.(2022·湖南·长沙一中高三开学考试)每年的6月6日是全国爱眼日,某位志愿者跟踪调查电子产品对视力的影响,据调查,某高校大约有45%的学生近视,而该校大约有20%的学生每天操作电子产品超过1h ,这些人的近视率约为50%.现从每天操作电子产品不超过1h 的学生中任意调查一名学生,则他近视的概率为( ) A .716B .38C .516 D .14【答案】A【解析】令事件1A =“玩手机时间超过1h 的学生”,2A =“玩手机时间不超过1h 的学生”,B =“任意调查一人,此人近视”,则样本空间12ΩA A =⋃,且12,A A 互斥,()()()()1210.2,0.8,0.5,0.45P A P A P B A P B ====∣, 依题意,()()()()()()112220.20.50.80.45P B P A P B A P A P B A P B A =+=⨯+⨯=∣∣∣, 解得()2716P BA =∣,所以所求近视的概率为716. 故选:A .7.(2022·河北张家口·高二期末)某个闯关游戏规定:闯过前一关才能去闯后一关,若某一关没有通过,则游戏结束.小明闯过第一关的概率为34,连续闯过前两关的概率为12,连续闯过前三关的概率为13,且各关相互独立.事件A 表示小明第一关闯关成功,事件C 表示小明第三关闯关成功,则()|P C A =( )A .18B .23C .13D .49【答案】D【解析】设事件B 表示小明第二关闯关成功,可得()()P AC P ABC =, 由条件概率的计算公式,可得()()()143394P ABC P CA P A ===∣.故选:D. 8.(2022·山东济宁)(多选)设M 、N 是两个随机事件,则下列等式一定成立的是( ) A .()()()P M N P M P N ⋃=+B .()()1P MN P MN =-C .()()()|P MN P M P N M =D .()()()()||P N M P M P M N P N =【答案】CD【解析】对A ,当,M N 不互斥时,()()()P M N P M P N ⋃=+不成立,故A 错误;对B ,当,M N 为对立事件时,()()0P MN P MN ==,则()()1P MN P MN =-不成立,故B 错误; 对C ,当()0P M =时,()()()|0P MN P M P N M ==成立,当()0P M ≠时,根据条件概率的公式()()()|P MN P N M P M =可得()()()|P MN P M P N M =成立,故C 正确;对D ,根据条件概率的公式,结合C 选项可得()()()()()()||P MN P N M P M P M N P N P N ==成立,故D 正确;故选:CD 9.(2022·福建福州)(多选)甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱,分别以12,A A 和3A 表示由甲箱取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱取出的球是红球的事件,则( ) A .事件B 与事件3A 相互独立 B .()159P A B =C .()2655P A B = D .()922P B =【答案】BD【解析】由题意知:()151102P A ==,()221105P A ==,()3310P A =,()1511P B A =,()2411P B A =,()3411P B A =, ()()()()()()()112233P B P A P B A P A P B A P A P B A ∴=++1514349211511101122=⨯+⨯+⨯=,D 正确;()()()()()()11111552119922P A P B A P A B P A B P B P B ⨯====,B 正确;()()()22214451155P A B P A P B A ==⨯=,C 错误;()()()333346101155P A B P A P B A ==⨯=,()()339271022220P A P B =⨯=, ()()()33P A B P A P B ∴≠,∴事件B 与事件3A 不相互独立,A 错误.故选:BD. 1.(2022·河南)从标有1,2,3,4的卡片中不放回地先后抽出两张卡片,则4号卡片“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到的概率”分别是( )A .14,14,12B .14,14,14C .13,13,12D .14,13,12【答案】A【解析】4号卡片“第一次被抽到的概率”114P =, “第二次被抽到的概率”2311434P =⨯=,“在整个抽样过程中被抽到的概率”313114432P =+⨯=. 故选:A.2.(2023·全国·高三专题练习(理))一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据: 不够良好 良好 病例组 40 60 对照组 1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?题组三 古典与条件综合运用(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:(|)(|)(|)(|)P A B P A B R P A B P A B =⋅;(ⅰ)利用该调查数据,给出(|),(|)P A B P A B 的估计值,并利用(ⅰ)的结果给出R 的估计值.附22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)答案见解析 (2)(i )证明见解析;(ii)6R =;【解析】(1)由已知222()200(40906010)=24()()()()50150100100n ad bc K a b c d a c b d -⨯-⨯==++++⨯⨯⨯,又2( 6.635)=0.01P K ≥,24 6.635>,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为(|)(|)()()()()=(|)(|)()()()()P B A P B A P AB P A P AB P A R P B A P B A P A P AB P A P AB =⋅⋅⋅⋅,所以()()()()()()()()P AB P B P AB P B R P B P AB P B P AB =⋅⋅⋅所以(|)(|)(|)(|)P A B P A B R P A B P A B =⋅,(ii) 由已知40(|)100P A B =,10(|)100P A B =,又60(|)100P A B =,90(|)100P A B =,所以(|)(|)=6(|)(|)P A B P A B R P A B P A B =⋅3.(2022·全国·高三专题练习)现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求: (1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.【答案】(1)23(2)25(3)35【解析】(1)设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB ,从6个节目中不放回地依次抽取2个的基本事件总数为()26A 30n Ω==,根据分步计数原理有()1145A A 20n A ==,所以()()()202303n A P A n Ω===.(2)由(1)知,()24A 12n AB ==,所以()()()122305n AB P AB n Ω===. (3)由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为 ()()()235253P AB P B A P A ===.。

高考数学第二轮专题复习----概论统计专题

高考数学第二轮专题复习----概论统计专题

《计数原理与概率》高考复习指导一、考试说明:1.考试内容(1)分类计数原理与分步计数原理,排列与组合.(2)等可能性事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率.2.考试要求(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列与组合的意义,掌握排列数与组合数的计算公式,掌握组合数的两个性质,并能用它们解决一些简单的应用问题.(3)了解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.(4)了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.(5)了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n次独立重复试验中恰好发生k次的概率.二、高考试题分析排列与组合、概率与统计是高中数学的重要内容.一方面,这部分内容占用教学时数多达36课时,另一方面,这部分内容是进一步学习高等数学的基础知识,因此,它是高考数学命题的重要内容.从近三年全国高考数学(新材)试题来看,主要是考查排列与组合、概率与统计的基本概念、公式及基本技能、方法,以及分析问题和解决问题的能力.试题特点是基础和全面.题目类型有选择题、填空题、解答题,一般是两小(9分~10分)一大(12分),解答题通常是概率问题.试题难度多为低中档.为了支持高中数学课程的改革,高考数学命题对这部分将进一步重视,但题目数量、难度、题型将会保持稳定.例1.(1999年全国)在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄,为有利于作物生长,要求A、B两种作物间的间隔不小于6垄,则不同的选垄方法共有_______种(用数字作答).[解析]A种植在左边第一垄时,B有3种不同的种植方法;A种植在左边第二垄时,B有两种不同的种植方法;A种植在左边第三垄时,B只有一种种植方法.B在左边种植的情形与上述情形相同.故共有2(3+2+1)=12种不同的选垄方法.∴应填12.例2.(2003年新教材)将3种作物种植在如图所示的5块试验田里,每一块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有______种(以数字作答).[解析]将5块试验田从左到右依次看作甲、乙、丙、丁、戊,3种作物依次看作A、B、C,则3种作物都可以种植在甲试验田里,由于相邻的试验田不能种植同一种作物,从而可知在乙试验田里只能有两种作物.同理,在丙、丁、戊试验田里也只能有两种作物可以种植.由分步计数原理,不同的种植方法共有3×2×2×2=48种.∴应填:48例3.(2003年全国高考题)某城市中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种1种且相邻部分不能栽种同样颜色的花,不同的栽法有_______种.[解析]由于第1、2、3块两两相邻,我们先安排这三块,给第1、2、3块种花时分别有4、3、2种种法,所以共有4×3×2=24种不同种法.下面给第4块种花,若第4块与第6块同色,只有一种种植方法,则第5块只有2种种法,若第4块与第2块同色时,共有2×1=2种种法.若第4块与第6块不同色,但第4块与第2块同色,则第6块有2种种植的方案,而第5块只有1种种法,共有2种不同的种植方法.若第4块与第6块不同色,但第4块与第2块不同色,则第6块有1种种法,则第5块也有一种不同种法,所以第4块与第6块不同色时,有1种种法.综上共有24×(2+2+1)=120种不同的种植方法.例4.(2003年春季考试题)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为A 、42B 、30C 、20D 、12[解析]将两个新节目插入5个固定顺序节目单有两种情况:(1)两个新节目相邻的插法种数为226A ;(2)两个节目不相邻的插法种数为26A ;由分类计数原理共有2226642A A +=种方法,选A.例5.(2004重庆)(本小题满分12分)设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5。

2015高考总复习数学(文)课件:专题6 概率与统计

2015高考总复习数学(文)课件:专题6 概率与统计

疫苗有效 疫苗无效
A组 673 77
B组 x 90
C组 y z
已知在全体样本中随机抽取 1 个,抽到 B 组疫苗有效的概
率是 0.33.
(1)求 x 的值; (2)现用分层抽样的方法在全体样本中抽取 360 个测试结 果,问应在 C 组抽取多少个? (3)已知 y≥465,z≥30,求不能通过测试的概率.
)
C.13 人
D.14 人
解析:(1)总体中男生与女生的比例为 4∶3,样本中男生人
4 数为 280×7=160(人).
(2) 使用系统抽样方法,从 840 人中抽取 42 人,即从 20 人抽取 1 人.
480 所以从编号 1~480 的人中,恰好抽取 20 =24(人),接着 240 从编号 481~720 共 240 人中抽取 20 =12(人).
4 1 B2),(A4,B2),故所求概率为P(C)= = . 16 4 【方法与技巧】高考中经常以统计图的形式显示相关的数
据信息,通过统计图来解决相关问题.
【互动探究】 4.(2012 年广东东莞模拟)某高校在 2012 年的自主招生考 试成绩中随机抽取 100 名学生的笔试成绩,按成绩分组,得到 的频率分布表如图 6-5. (1)请先求出频率分布表中①,②位置相应的数据,再在答 题纸上完成下列频率分布直方图; (2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的 第 3,4,5 组中用分层抽样抽取 6 名学生进入第二轮面试,求第 3,4,5 组每组各抽取多少名学生进入第二轮面试?
解:由 f(x)=x2+bx+c 知,事件 A“f(1)≤5,且 f(0)≤3”,
b+c≤4, 即 c≤3.
(1)因为随机数 b,c∈{1,2,3,4},所以共等可能地产生 16 个数对(b,c),列举如下: (1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1), (3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4). 事件 A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲概率(B)
1.(2012·高考福建卷)在等差数列{a n}和等比数列{b n}中,a1=b1=1,b4=8,{a n}的前10项和S10=55.
(1)求a n和b n;
(2)现分别从{a n}和{b n}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.
2.从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155 cm和195 cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165)、…、第八组[190,195),下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.
(1)估计这所学校高三年级全体男生身高180 cm以上(含180 cm)的人数;
(2)求第六组、第七组的频率并补充完整频率分布直方图;
(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x-y|≤5的事件频率.
3.(2013·福建省高中毕业班质检)某工厂生产A ,B 两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5
,B 两种元件的检测数据的平均值相等,方差也相等.
(1)求表格中x 与y 的值;
(2)若从被检测的5件B 种元件中任取2件,求2件都为正品的概率.
4.(2013·江西宜春质检)设f (x )和g (x )都是定义在同一区间上的两个函数,若对任意x ∈[1,2],都有|f (x )+g (x )|≤8,则称f (x )和g (x )是“友好函数”,设f (x )=ax ,g (x )=b x
.
(1)若a ∈{1,4},b ∈{-1,1,4},求f (x )和g (x )是“友好函数”的概率;
(2)若a ∈[1,4],b ∈[1,4],求f (x )和g (x )是“友好函数”的概率.
答案:
1.【解】(1)设数列{a n }的公差为d ,数列{b n }的公比为q .依题意得
S 10=10+10×92
d =55,b 4=q 3=8, 解得d =1,q =2,
所以a n =n ,b n =2n -1.
(2)分别从{a n }和{b n }的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,
2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).
符合题意的基本事件有2个:(1,1),(2,2).
故所求的概率P =29
. 2.【解】(1)由频率分布直方图知,前五组频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,后三组频率为1-0.82=0.18,人数为0.18×50=9人,
这所学校高三男生身高在180 cm 以上(含180 cm)的人数为800×0.18=144人.
(2)由频率分布直方图得第八组频率为0.008×5=0.04,人数为0.04×50=2人, 设第六组人数为m ,则第七组人数为9-2-m =7-m ,
又m +2=2(7-m ),所以m =4,
即第六组人数为4人,第七组人数为3人,频率分别为0.08,0.06.
频率除以组距分别等于0.016,0.012,如图.
(3)由(2)知身高在[180,185]内的人数为4人,设为a ,b ,c ,d ,身高在[190,195]的人数为2人,设为A ,B .
若x 、y ∈[180,185]时,有ab ,ac ,ad ,bc ,bd ,cd 共六种情况.
若x 、y ∈[190,195]时,有AB 共一种情况.若x 、y 分别在[180,185][190,195]内时,有aA ,bA ,cA ,dA ,aB ,bB ,cB ,dB 共8种情况.
所以基本事件的总数为6+8+1=15种.
事件|x -y |≤5所包含的基本事件个数有6+1=7种,故P (|x -y |≤5)=715
. 3.【解】(1)x A =15
(7+7+7.5+9+9.5)=8, x B =15
(6+x +8.5+8.5+y ), 由x A =x B ,得x +y =17.①
s 2
A =15
(1+1+0.25+1+2.25)=1.1, s 2
B =15
[4+(x -8)2+0.25+0.25+(y -8)2], 由s 2A =s 2B ,得(x -8)2+(y -8)2=1.②
由①②解得⎩⎪⎨⎪⎧x =8y =9,或⎩
⎪⎨⎪⎧x =9y =8.因为x <y ,所以x =8,y =9. (2)记被检测的5件B 种元件分别为B 1,B 2,B 3,B 4,B 5,其中B 2,B 3,B 4,B 5为正品,从中任取2件,共有10个基本事件,列举如下:(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 1,B 5),(B 2,
B 3),(B 2,B 4),(B 2,B 5
),(B 3,B 4),(B 3,B 5),(B 4,B 5).
记“2件都为正品”为事件C ,则事件C 包含以下6个基本事件:(B 2,B 3),(B 2,B 4),(B 2,B 5),(B 3,B 4),(B 3,B 5),(B 4,B 5). 所以P (C )=6
10=3
5,即2件都为正品的概率为35.
4.【解】(1)设事件A 表示f (x )和g (x )是“友好函数”, 则|f (x )+g (x )|(x ∈[1,2])所有的情况有:
x -1x ,x +1x ,x +4x ,4x -1
x ,4x +1
x ,4x +4
x ,
共6种且每种情况被取到的可能性相同.
又当a >0,b >0时,ax +b x 在⎝ ⎛⎭⎪⎫
0,b a 上递减,
在⎝ ⎛⎭⎪⎫b
a ,+∞上递增;
x -1
x 和4x -1
x 在(0,+∞)上递增,
∴对x ∈[1,2]可使|f (x )+g (x )|≤8恒成立的有x -1x ,x +1x ,x +4x ,4x -1
x ,
故事件A 包含的基本事件有4种,
∴P (A )=46=23,故所求概率是2
3.
(2)设事件B 表示f (x )和g (x )是“友好函数”,
∵a 是从区间[1,4]中任取的数,b 是从区间[1,4]中任取的数, ∴点(a ,b )所在区域是长为3,宽为3的正方形区域.
要使x ∈[1,2]时,|f (x )+g (x )|≤8恒成立,
需f (1)+g (1)=a +b ≤8且f (2)+g (2)=2a +b
2≤8,
∴事件B 表示的点的区域是如图所示的阴影部分.
∴P (B )=12×⎝ ⎛⎭⎪⎫2+11
4×3
3×3=19
24,
故所求概率是19
24.。

相关文档
最新文档