江苏省徐州市2021届高三9月月考模拟测试数学试题
2021年高三上学期9月月考数学试题含答案

(第6题图)2021年高三上学期9月月考数学试题含答案参考公式样本数据x 1,x 2,…,x n 的方差s 2=1n i =1∑n (x i --x )2,其中-x =1n i =1∑nx i .锥体的体积公式:V =13Sh ,其中S 为锥体的底面积,h 为锥体的高.一、填空题(本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案写在答题纸的指定位置上)1. 已知集合,,则集合中元素的个数为 ▲ .2. 若复数z 满足z (1+i)=2i(i 为虚数单位),则|z |= ▲ .3. 命题“”的否定是 ▲ .4. 已知一组数据4,6,5,8,7,6,那么这组数据的方差为 ▲ .5. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为 ▲ .6.如图,它是一个算法的流程图,最后输出的k 值为 ▲ . 7. 如右f (x )=A sin(ωx +ϕ)(A >0,ω>0,ϕ∈[0,2π) )图象的一部分,则f (0)的值为 ▲ .8. 对于直线l,m ,平面α,m ⊂α,则“l ⊥m ”是“l ⊥α”成立的 ▲ 条件.(在“充(第7题图)注 意 事 项考生在答题前认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本试卷满分160分,考试时间为120分钟。
考试结束后,请将本试卷和答题纸一并交回。
分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个).9. 已知一个圆柱的侧面展开图是边长为2的正方形,则该圆柱的体积为 ▲ . 10. 已知函数f (x )=13x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数的取值范围为▲ .11. 已知平行四边形ABCD 中,AD =2,∠BAD =60°.若E 为DC 中点,且,则的值为 ▲ .12.设为实常数,是定义在R 上的奇函数,且当时,.若对一切成立,则的取值范围是 ▲ .13.已知函数,当时,,则实数的取值范围是 ▲ .14. 已知函数与轴相切若直线与分别交的图象于四点且四边形的面积为25则正实数的值为 ▲ .二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)已知,. (1)若,求的值;(2)若, 的三个内角对应的三条边分别为、、,且,,,求.16(本小题满分14分)如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,E 为侧棱P A 的中点. (1)求证:PC // 平面BDE ;(2)若PC ⊥P A ,PD =AD ,求证:平面BDE ⊥平面P AB .17. (本小题满分14分)设,()()2cos sin cos cos 2f x x a x x x π⎛⎫=-+-⎪⎝⎭满足, P ABCDE(第16题图)(Ⅰ)求函数的单调递增区间;(Ⅱ)设三内角所对边分别为且,求在上的值域.18. (本小题满分16分)已知二次函数满足条件,且方程有等根.(1)求得解析式;(2)是否存在实数,使得定义域和值域分别为和?如果存在,求出的值;如果不存在,请说明理由.19. (本小题满分16分)某地开发了一个旅游景点,第1年的游客约为100万人,第2年的游客约为120万人. 某数学兴趣小组综合各种因素预测:①该景点每年的游客人数会逐年增加;②该景点每年的游客都达不到130万人. 该兴趣小组想找一个函数来拟合该景点对外开放的第年与当年的游客人数(单位:万人)之间的关系.(1)根据上述两点预测,请用数学语言描述.......函数所具有的性质;(2)若=,试确定的值,并考察该函数是否符合上述两点预测;(3)若=,欲使得该函数符合上述两点预测,试确定的取值范围.20. (本小题满分16分)已知函数.(1)求函数在点处的切线方程;(2)求函数的单调区间;(3)若存在,使得(是自然对数的底数),求实数的取值范围.淮安市淮海中学xx 届高三数学周练试题数学参考答案及评分标准 xx.09说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题:本大题共14小题,每小题5分,共70分. 1. 5 2. 2 3. 4. 5. 6. 5 7.3228. 必要不充分 9. 10. (32,4) 11. 3 12. 13. [] 14.4二、解答题:本大题共6小题,共90分.15. 解:(1) …………………3分 …………………6分 (2)==…………………8分 (9)分 (10)分 …………………11分 由余弦定理可知: …………………12分7cos cos 2AB AC AB AC A bc A ∴⋅===(其它方法酌情给分) ……………14分 16.证明:(1)连结AC ,交BD 于O ,连结OE .因为ABCD 是平行四边形,所以OA =OC . ……………2分 因为 E 为侧棱PA 的中点,所以OE ∥PC . ………4分 因为PC /⊂平面BDE ,OE ⊂平面BDE ,所以PC // 平面BDE . ………6分(2)因为E 为PA 中点,PD =AD ,所以PA ⊥DE .…8分PABCDEO因为PC ⊥P A ,OE ∥PC ,所以P A ⊥OE .因为OE ⊂平面BDE ,DE ⊂平面BDE ,OE ∩DE =E , 所以P A ⊥平面BDE . …………………12分 因为P A ⊂平面P AB ,所以平面BDE ⊥平面P AB . …………………14分 17. 解:(Ⅰ)由1()(0)1,322a f f a π-=+=-=得解得 …………………3分因此()2cos 22sin(2).6f x x x x π=-=-令得故函数的单调递增区间 …………………7分(Ⅱ)由余弦定理知:c a cC b B c C ab B ac cb a bc a -===-+-+2cos cos cos 2cos 2222222,即, 又由正弦定理知:()A C B C B B C B A sin sin cos sin cos sin cos sin 2=+=+=, 即,所以 …………………10分 当时,,,故在上的值域为 …………………14分 18.解:(1)由可知,函数图像的对称轴为○1 又方程有等根,即有等根. ,代入○1可得.. ………………… ………6分 (2)221111()(1)2222f x x x x =-+=--+≤,函数存在实数,使得定义域和值域分别为和,则有即是方程的两根,且. ……… ………10分 由得存在这样的实数, …………………………16分19.解:(1)预测①:在上单调递增;预测②:对恒成立; …………………3分 (2)将(1,100)、(2,120)代入到中,得,解得. 因为所以,故在上单调递增,符合预测①; 又当时,所以此时不符合预测②. …………………8分(3)由,解得.因为要想符合预测①,则即,从而或. …………………10分 (i )当时,,此时符合预测①,但由,解得,即当时,,所以此时不符合预测②; …………………12分(ii )当,此时符合预测①,又由知,所以;从而欲也符合预测②,则,即又,解得.综上所述,的取值范围是 …………………16分 20.[解] (1)∵函数f (x )=a x +x 2-x ln a (a >0,且a ≠1),∴f ′(x )=a x ln a +2x -ln a ,∴f ′(0)=0.又f (0)=1,∴函数f (x )在点(0,f (0))处的切线方程为y =1. …………………………4分(2)由(1)知,f ′(x )=a x ln a +2x -ln a =2x +(a x -1)ln a .∵当a >0,且a ≠1时,总有f ′(x )在R 上是增函数. 又f ′(0)=0,∴不等式f ′(x )>0的解集为(0,+∞),故函数f (x )的单调增区间为(0,+∞),单调减区间为(-∞,0).………………………10分(3)∵存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1成立, 当x ∈[-1,1]时,|f (x 1)-f (x 2)|≤f (x )max -f (x )min , ∴只要f (x )max -f (x )min ≥e -1即可.又当x 变化时,f ′(x ),f (x )的变化情况如下表所示∴f (x )在[-∴当x ∈[-1,1]时,f (x )的最小值f (x )min =f (0)=1,f (x )的最大值f (x )max 为f (-1)和f (1)中的最大值. …………………………12分∵f (1)-f (-1)=(a +1-ln a )-⎝⎛⎭⎫1a +1+ln a =a -1a -2ln a , 令g (a )=a -1a -2ln a (a >0),而g ′(a )=1+1a 2-2a =⎝⎛⎭⎫1-1a 2≥0, ∴g (a )=a -1a -2ln a 在(0,+∞)上是增函数, …………………………13分又g (1)=0,∴当a >1时,g (a )>0,即f (1)>f (-1); 当0<a <1时,g (a )<0,即f (1)<f (-1).∴当a >1时,f (1)-f (0)≥e -1,即a -ln a ≥e -1,又函数y =a -ln a 在(1,+∞)上是增函数, …………………………14分 ∴解得a ≥e ;当0<a <1时,f (-1)-f (0)≥e -1,即1a +ln a ≥e -1,又函数y =1a +ln a 在(0,1)上是减函数,∴解得0<a ≤1e.综上可知,实数a 的取值范围为⎝⎛⎦⎤0,1e ∪[e ,+∞). …………………………16分23886 5D4E 嵎31838 7C5E 籞+30414 76CE 盎36388 8E24 踤+34433 8681 蚁H33540 8304 茄28266 6E6A 湪\'26480 6770 杰38536 9688 隈。
江苏省徐州市铜山区大许中学2021届高三数学上学期9月月考试题【含答案】

4
恒成立,求
m
的取值范围.(7
分)
22. (本小题满分 12 分)已知函数 f (x) 4x a 2x1 1 .
(1)若函数
f
x 在
x
0,
2 上有最大值
8
,求实数
a
的值;(6
分)
(2)若方程 f x 0 在 x 1, 2上有解,求实数 a 的取值范围.(6 分)
数学答案
1.由题意可得 M x 2 x 3, N x x 0,所以 M N x x 0,故选 A.
3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写 在本试卷上无效。 一、单项选择题:本题共 8 小题,每小题满分 5 分,共 40 分。在每小题给出的四个选项中, 只有一项符合题目要求,选对得 5 分,选错得 0 分。
1.设集合 M {x | x2 5x 6 0} ,集合 N x x 0 , 则 M N ( ).
5
2
c f ( 5), ( ) 2
A. a b c B. b a c C. c b a D. c a b
6.已知函数 f ( x) ex ex (e 为自然对数的底数),若 a 0.70.5 , b log0.5 0.7 ,
c log0.7 5 ,则 ( ) A. f (b) f (a) f (c)
1, x 0
15.已知 f (x) x2 2x 4, g(x) ax (a 0 且a 1) ,若对任意的 x1 [1, 2],都存在
x2 [1, 2] ,使得 f (x1) g(x2 ) 成立,则实数 a 的取值范围是
.
16.偶函数
f
x 满足
f
x 1
f
2021届江苏省徐州市市区部分学校高三上学期9月学情调研考试数学试题教师版

绝密★启用前2021届江苏省徐州市市区部分学校高三上学期9月学情调研考试数学试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、单选题1.已知集合{}1,2,3A =,{220B x x x =--<且}x Z ∈,则AB =()A .{}1B .{}1,2C .{}0,1,2,3,D .{}1,0,1,2,3-答案:A先求解出一元二次不等式的解集为集合B ,然后根据交集运算直接求解出A B 的结果. 解:由题意{}{}12,0,1B x x x Z =-<<∈=,所以{}1A B ⋂=, 故选:A. 点评:本题考查集合的交集运算,其中涉及到一元二次不等式的解法,难度较易.2.某大学4名大学生利用假期到3个山村参加基层扶贫工作,每名大学生只去1个山村,每个山村至少有1人去,则不同的分配方案共有() A .6种 B .24种 C .36种 D .72种答案:C由题意可知先从4名大学生中选出两名作伴,再分配到每个山村,得到结果. 解:根据题意有两个人是分到同一个地方的, 先选出两人作伴,之后再进行全排,则由分步计数原理有234336C A ⋅=(种),故选:C. 点评:该题考查的是有关排列组合的问题,涉及到的知识点有分步乘法计数原理,属于基础题目.3.甲、乙、丙、丁四位同学被问到谁去过长城时,甲说:“我没去过”,乙说:“丁去过”,丙说:“乙去过”,丁说:“我没去过”,假定四人中只有一人说的是假话,由此可判断一定去过长城的是() A .甲 B .乙C .丙D .丁答案:B由题设可得乙和丁说的话矛盾,从而可得二人中必有一个人的话为假话,从而可判断其余的人为真话,故可得正确的选项. 解:由题意可知乙与丁说的话矛盾,故说假话的人必然在他们二人之中,再由题意只有一个人说的话为假话,则丙必定说了真话,则可判断一定去过长城的是乙, 故选:B. 点评:本题考查推理与论证,注意利用矛盾律来帮助推理,本题属于容易题.4.天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus ,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(..M R Pogson )又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()1221 2.5lg lg m m E E -=-.其中星等为i m 的星的亮度为()1,2i E i =.已知“心宿二”的星等是1.00.“天津四”的星等是1.25.“心宿二”的亮度是“天津四”的r 倍,则与r 最接近的是(当x 较小时,2101 2.3 2.7x x x ≈++)A .1.24B .1.25C .1.26D .1.27答案:C根据题意,代值计算,即可得r ,再结合参考公式,即可估算出结果. 解:根据题意可得:()211 1.25 2.5lgE lgE -=-可得12110E lgE =,解得1110210E r E ==,根据参考公式可得111 2.3 2.7 1.25710100r ≈+⨯+⨯=, 故与r 最接近的是1.26. 故选:C. 点评:本题考查对数运算,以及数据的估算,属基础题.5.设,,a b c 为单位向量,且0a b ⋅=,则()()a cbc -⋅-的最小值为() A .-2 B2C .-1D .1答案:D先根据条件计算出a b +的值,然后将()()a cbc -⋅-展开计算,根据余弦函数的取值范围求解出()()a cbc -⋅-的最小值. 解:由题意可知0a b ⋅=,所以2222a b a a b b +=+⋅+=,所以()()()21cos ,a c b c a b a b c c a b c a b c -⋅-=⋅-+⋅+=-+⋅⋅<+>,所以()()12cos ,12a c b c a b c -⋅-=-⋅<+>≥-,a c b +同向,所以()()a c b c -⋅-的最小值为1故选:D. 点评:本题考查根据向量的数量积运算求解最小值,难度一般.求解和向量有关的最值问题时,可以借助向量夹角的余弦值的“有界性”去分析问题.6.我国古代数学家刘徽在《九章算术注》中提出割圆术:“割之弥细,所失弥少,割之割,以至于不可割,则与圆合体,而无所失矣”,即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率.如果用圆的内接正n 边形逼近圆,算得圆周率的近似值记为n π,那么用圆的内接正2n 边形逼近圆,算得圆周率的近似值加2n π可表示成()A .360sinnnπ︒B .360cosnnπ︒ C .180cosnnπ︒ D .90cosnnπ︒ 答案:C设圆的半径为r ,由内接正n 边形的面积无限接近圆的面积可得:180180sincosn n n nπ⨯=⨯,由内接正2n 边形的面积无限接近圆的面积可得:2180sinn n nπ⨯=,问题得解. 解:设圆的半径为r ,将内接正n 边形分成n 个小三角形, 由内接正n 边形的面积无限接近圆的面积可得:221360sin2r n r n π≈⨯⨯,整理得:1360sin 2n nπ≈⨯⨯, 此时1360sin 2n n n π⨯⨯=,即:180180sin cosn n n nπ⨯=⨯ 同理,由内接正2n 边形的面积无限接近圆的面积可得:2213602sin22r n r n π≈⨯⨯,整理得:13601802sin sin 22n n n nπ≈⨯⨯=⨯ 此时2180sinn n nπ⨯= 所以2180sin180cos nn n nnππ==⨯ 故选C 点评:本题主要考查了圆的面积公式及三角形面积公式的应用,还考查了正弦的二倍角公式,考查计算能力,属于中档题.7.用一平面截正方体,所得截面的面积最大时,截面的几何形状为() A .正六边形 B .五边形C .矩形D .三角形答案:C 1 解:由题意用一平面截正方体,所得截面可以为正六边形、五边形、矩形、三角形,而当截面为矩形时,为体对角线为长、正方体棱长为宽的矩形,可知该截面为最大面积. 故答案选C.8.定义在R 上的偶函数f (x )的导函数为f ′(x ),若∀x ∈R ,都有2f (x )+xf ′(x )<2,则使x 2f (x )-f (1)<x 2-1成立的实数x 的取值范围是() A .{x |x ≠±1} B .(-1,0)∪(0,1) C .(-1,1) D .(-∞,-1)∪(1,+∞)答案:D根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出0x <的取值范围. 解:解:当0x >时,由2()()20f x xf x +'-<可知:两边同乘以x 得:22()()20xf x x f x x +'-< 设:22()()g x x f x x =-则2()2()()20g x xf x x f x x '=+'-<,恒成立:()g x ∴在(0,)+∞单调递减,由()()21x f x f -21x <-()()2211x f x x f ∴-<-即()()1g x g < 即1x >;当0x <时,函数是偶函数,同理得:1x <-综上可知:实数x 的取值范围为(-∞,1)(1-⋃,)+∞, 故选:D . 点评:主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,属于中档题. 二、多选题9.若01,1c a b <<>>,则() A .log log a b c c > B .c c ab ba > C .log log b a a c b c>D .()()a b c b a c ->-答案:AB由对数函数的知识可判断A 、C ,由幂函数的知识可判断B ,根据不等式的性质可判断D.解:因为01,1c a b <<>>,所以由对数函数得单调性得log log 0c c a b <<, 则由换底公式有110log log c c a b>>,即0log log a b c c >>,则选项A 正确;由题意1c y x-=为减函数,所以11c c b a -->,且0ab >,则由不等式的基本性质得c c ab ba >,则选项B 正确;由题意0log log a b c c >>,又a >b >1,则log log b a a c b c <,则选项C 错误; 由题意,ac bc ac bc >-<-,所以ab ac ab bc -<-,即()()a b c b a c -<-,则选项D 错误; 故选:AB 点评:本题考查的是对数函数、幂函数和不等式的性质,考查了学生的基础知识水平,较综合. 10.下列四个命题中,真命题为() A .若复数z 满足z R ∈,则z R ∈ B .若复数z 满足1R z∈,则z R ∈ C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =答案:AB利用特值法依次判断选项即可得到答案. 解:对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z=,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误; 故答案选:AB 点评:本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.11.已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2,过点F 的直线与抛物线交于P ,Q 两点,M 为线段PQ 的中点,O 为坐标原点,则() A .C 的准线方程为y =1 B .线段PQ 长度的最小值为4 C .M 的坐标可能为(3,2) D .OP OQ =-3答案:BCD根据条件可得出2p =,易得A 、B 的正误,设P (x 1,y 1),Q (x 2,y 2),直线PQ 的方程为x =my +1,联立x =my +1,y 2=2px ,算出12121212,,,x x x x y y y y ++即可得出C 、D 的正误. 解:焦点F 到准线的距离为p =2,所以抛物线C 的焦点为(1,0),准线方程为x=-1,则选项A 错误;当PQ 垂直于x 轴时长度最小,此时P (1,2),Q (1,-2),所以|PQ|=4,则选项B 正确; 设P (x 1,y 1),Q (x 2,y 2),直线PQ 的方程为x =my +1,联立x =my +1,y 2=2px , 消去y 可得x 2-(4m 2+2)x+1=0,消去x 可得y 2-4my -4=0,所以x 1+x 2=4m 2+2,y 1+y 2=4m , 当m =1时,可得M (3,2),则选项C 正确;又x 1x 2=1,y 1y 2=-4,所以OP OQ =x 1x 2+y 1y 2=-3,则选项D 正确; 故选:BCD 点评:本题考查的是直线与抛物线的位置关系,考查了学生的分析能力,属于中档题. 12.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2(n ≥3).再将扇形面积设为b n (n ∈N),则()A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0 答案:ABD对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2(n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1,可得a n -12=a n -1a n -2-a n -1a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 解: 由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2(n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2(n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1,可得a n -12=a n -1a n -2-a n -1a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误; 由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 点评:此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 三、填空题13.某公司的广告费支出x (单位:万元)与营业额y (单位:万元)之间呈线性相关关系,收集到的数据如下表:由最小二乘法求得回归直线方程为0.67y x a =+,则a 的值为__________. 答案:54.9算出x 、y 后可求a 的值. 解:由线性回归方程的定义及表数据可得x =30,y =75,所以a =54.9. 故答案为:54.9 点评:本题考查线性回归方程的性质,注意回归直线必定经过样本中心(),x y ,本题属于基础题.14.已知α,β是两个不同的平面,m ,n 是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④m α⊥.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:______. 答案:①③④⇒②(或②③④⇒①)m α⊥,n β⊥,αβ⊥,由面面垂直的性质定理得m n ⊥;m n ⊥,m α⊥,n β⊥,由面面垂直的判定定理得αβ⊥. 解:∵α,β是两个不同的平面,m ,n 是平面α及β之外的两条不同的直线, 若①m n ⊥,③n β⊥,则m β. 又∵④m α⊥, ∴②αβ⊥. 即①③④⇒②.若②αβ⊥,③n β⊥,则n α. 又∵④m α⊥, ∴①m n ⊥.即②③④⇒①.故答案为:①③④⇒②(或②③④⇒①) 点评:本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力,属于中档题.15.已知P 是直线3x +4y -10=0上的动点,PA ,PB 是圆x 2+y 2-2x +4y +4=0的两条切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值为________. 答案:22圆的标准方程为()()22121x y -++=,则圆心为()12C -,,半径为1,则直线与圆相离,如图:PACB PACPBCS SS=+四边形,而1122PACSPA CA PA =⋅=,1122PBCS PB CB PB =⋅=,又21PA PC =-21PB PC =-PC 取最小值时,PA PB =取最小值,即PACPBC SS=取最小值,此时CP l ⊥,2232410153534CP -⨯-===+,则23122PA =-=122122PACPBCSS==⨯=PACB 面积的最小值是22故答案为22四、双空题16.在ABC 中,()sin sin sin A B C B -=-,则cos A =__________;点D 是BC 上靠近点B 的一个三等分点,记sin sin ABDBADλ∠=∠,则当λ取最大值时,tan ACD ∠=__________.答案:122 根据题意,由三角恒等变换将原式化简,即可求出1cos 2A =;设BD x =,BAD θ∠=,πθ0,3,则2DC x =,sin sin B t =θ,根据正弦定理,得到AD x =λ,sin sin23Cπλθ,求出cos cos 3B ⎛⎫=+⎪⎝⎭πλθ,得到222222sin cos sin cos 13B B ⎛⎫+=++= ⎪⎝⎭πλθλθ,表示出2221sin cos 3=⎛⎫++ ⎪⎝⎭λπθθ,求出最值,即可得出结果.解:因为()sin sin sin A B C B -=-,所以()sin sin sin B C A B =--, 即()()sin sin sin 2cos sin B A B A B A B =+--=, 又因为sin 0B ≠,所以1cos 2A =; 设BD x =,BAD θ∠=,πθ0,3, 则2DC x =,sin sin B =λθ, 由正弦定理可得AD x =λ,sin sin sin23AD DACCDCπθλ,又313sin sincos sin cos sin 222223C B B BB λθπ,由sin sin 2223B ⎛⎫+=- ⎪⎝⎭λλπθθ,得cos cos 3B ⎛⎫=+ ⎪⎝⎭πλθ.因为222222sin cos sin cos 13B B ⎛⎫+=++=⎪⎝⎭πλθλθ, 所以222122sin cos 1cos 21cos 233==⎛⎫⎛⎫++-+++ ⎪⎪⎝⎭⎝⎭λππθθθθ2226=⎛⎫-⎪⎝⎭πθ,因为πθ0,3,所以2,662πππθ⎛⎫-∈-⎪⎝⎭,所以当206πθ-=时,λ1,此时)sin1B==,所以4Bπ=,tan tan234ACD⎛⎫∠=--=+⎪⎝⎭πππ答案为:12;2.点评:本题主要考查由三角恒等变换求函数值,考查三角函数的性质,考查正弦定理的应用,属于常考题型.五、解答题17.记S n为等比数列{}n a的前n项和,已知S2=2,S3=-6.(1)求{}n a的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.答案:(1)(2)nna=-;(2)见解析.试题分析:(1)由等比数列通项公式解得2q=-,12a=-即可求解;(2)利用等差中项证明S n+1,S n,S n+2成等差数列.试题解析:(1)设{}n a的公比为q.由题设可得()()1211216a qa q q⎧+=⎪⎨++=-⎪⎩,解得2q=-,12a=-.故{}n a的通项公式为()2nna=-.(2)由(1)可得()()111221133n nnna qSq+-==-+--.由于()()321214222212123333n n nn nn n nS S S+++++⎡⎤-+=-+-=-+-=⎢⎥⎣⎦,故1nS+,n S,2n S+成等差数列.点睛:等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.18(3,4);②一条准线方程为x =4,且焦距为2.这两个条件中任选一个,补充在下面的问题中,若问题中的直线l 存在,求出l 的方程;若问题中的直线l 不存在,说明理由.问题:已知曲线C :mx 2+ny 2=1(m ,n ≠0)的焦点在x 轴上,____________,是否存在过点P (-1,1)的直线l ,与曲线C 交于A ,B 两点,且P 为线段AB 的中点? 注:若选择条件①和条件②分别解答,按第一个解答计分. 答案:答案见解析先根据所选的条件求解出曲线C 的方程,根据直线的斜率是否存在作分类讨论;当直线的斜率不存在时直接进行求解并判断,当直线的斜率存在时,联立直线方程与曲线方程,并利用根的判别式以及坐标特点判断出结果. 解:选条件①:由题设得曲线C 为焦点在x 轴上的双曲线,设21m a =,21n b =-(a >0,b >0),所以C 的方程为22221x y a b-=(a >0,b >0),由题设得229161a b =⎪-=⎪⎩,解得a 2=1,b 2=2,所以C 的方程为2212y x -=,1°当直线l 的斜率不存在时,直线l 的方程为x =-1,与曲线C 有且仅有一个交点(-1,0),不符合题意;2°当直线l 的斜率存在时,设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y -1=k (x +1),即y =k (x +1)+1,代入2212y x -=得(2-k 2)x 2-2k (k +1)x -(k 2+2k +3)=0(),若220k -=,即k =±时,方程()有且仅有一解,不符合题意;若22k -≠0,即k ≠±时,其判别式Δ=[2k (k +1)]2-4(k 2-2)(k 2+2k +3)=8(2k+3)>0,则32k >-,所以方程()有两个不同实数解时,32k >-且k≠ 于是1222(1)2(1)22k k x x k -++=-=⋅-=--,解得k =-2,与32k >-且k ±≠所以不存在直线l ,与曲线C 交于A ,B 两点,且P 为线段AB 的中点. 选条件②:由题设得曲线C 为焦点在x 轴上的椭圆,设21m a =,21n b =(a >b >0),所以C 的方程为22221x y a b+=(a >b >0),由题设得242⎧==⎩,解得a 2=4,b 2=3,所以C 的方程为22143x y+=,1°当直线l 的斜率不存在时,直线l 的方程为x =-1,代入22143x y +=得32y =±,P (-1,1)不是线段AB 的中点,不符合题意;2°当直线l 的斜率存在时,设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y -1=k (x +1),即y =k (x +1)+1,代入22143x y +=得(3+4k 2)x 2+8k (k +1)x +4(k 2+2k -2)=0,其判别式Δ=[8k (k +1)]2-4·(3+4k 2)·4(k 2+2k -2)=16(5k 2-6k +6)>0, 于是1228(1)2(1)234k k x x k ++=-=⋅-=-+,解得34k =,故337(1)1444y x x =++=+,即3x -4y +7=0,所以存在直线l :3x -4y +7=0,与曲线C 交于A ,B 两点,且P 为线段AB 的中点. 点评:本题考查圆锥曲线的综合应用,其中涉及到圆锥曲线的标准方程、几何性质、直线与圆锥曲线的位置关系,难度一般.19.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设向量m =(2sin(x -A ),sin A ),n =(cos x ,1),f (x )=m n ⋅,且对任意x ∈R ,都有f (x )≤512f π⎛⎫⎪⎝⎭. (1)求f (x )的单调递增区间; (2)若a=sin B +sin C=2△ABC 的面积. 答案:(1)π5ππ,π1212⎡⎤''-+⎢⎥⎣⎦k k (k ′∈Z);(2. (1)根据向量的数量积并借助三角恒等变换的知识化简()f x ,再根据条件求解出()f x 的具体表达式,最后利用整体代换法求解出()f x 的单调递增区间;(2)先根据正弦定理求解出b c +的值,然后再根据余弦定理求解出bc 的值,最后利用三角形的面积公式求解出三角形面积. 解:(1)由题意得f (x )=m n ⋅=2sin(x -A )·cos x +sin A =2(sin x ·cos A -cos x ·sin A )·cos x +sin A =2sin x ·cos x ·cos A -2cos 2x ·sin A +sin A =2sin x ·cos x ·cos A -(2cos 2x -1)·sin A =sin2x ·cos A -cos2x ·sin A =sin(2x -A ), 由题意知5π5π()sin()1126f A =-=,所以5ππ2π62A k -=+(k ∈Z), 因为A ∈(0,π),所以5ππ5π(,)666A -∈-,所以5ππ62A -=,即π3A =, 所以π()sin(2)3f x x =-,令πππ2π22π232k x k ''--+≤≤(k ′∈Z),解得π5πππ1212k x k ''-≤≤+(k ′∈Z), 所以f (x )的单调递增区间为π5ππ,π1212⎡⎤''-+⎢⎥⎣⎦k k (k ′∈Z). (2)在△ABC 中由正弦定理得sin sin sin a b c A B C==sin sin sin 3b cB C+==+解得b c +=22224b c bc ++=,在△ABC 中由余弦定理得2222cos b c a bc A +-=,于是2212b c bc +-=,解得bc =4,所以△ABC的面积为11sin 422bc C =⋅=点评:本题考查三角函数的图象与性质、解三角形基本应用,要求学生能熟练的掌握的公式以及利用三角恒等变换进行化简,难度较易.20.如图,在四棱锥E ABCD -中,底面ABCD 是圆内接四边形,1CB CD CE ===,AB AD AE ===,EC BD ⊥.(1)求证:平面BED ⊥平面ABCD ;(2)若点P 在平面ABE 内运动,且//DP 平面BEC ,求直线DP 与平面ABE 所成角的正弦值的最大值.答案:(1)证明见解析;(2)427(1)连接AC ,交BD 于点O ,连接EO ,先通过证明OE BD ⊥,EO AC ⊥得出EO ⊥平面ABCD ,再根据面面垂直的判定定理由EO ⊂平面BED 证明平面BED ⊥平面ABCD 即可;(2)取AE 的中点M ,AB 的中点N ,先通过平面DMN //平面EBC 得出点P 在线段MN 上,然后建立空间直角坐标系并设()01MP MN λλ=≤≤,从而求出平面ABE 的法向量n 及DP 的坐标,设直线DP 与平面ABE 所成的角为θ,则sin n DP n DPθ⋅=,最后根据01λ≤≤即可求出sin θ的最大值.解:(1)证明:如图,连接AC ,交BD 于点O ,连接EO ,因为AD AB =,CD CB =,AC AC =, 所以ADC ABC ∆≅∆,易得ADO ABO ∆≅∆, 所以90AOD AOB ∠=∠=︒, 所以AC BD ⊥.又EC BD ⊥,EC AC C ⋂=,所以BD ⊥平面AEC , 又EO ⊂平面AEC ,所以OE BD ⊥. 又底面ABCD 是圆内接四边形,因为90ADC ABC ∠=∠=︒, 在Rt ADC ∆中,由3AD =,1CD=,可得2AC =,32AO =, 所以90AEC ∠=︒,32AE AO AC AF ==, 易得AEO ∆与ACE ∆相似,所以90AOE AEC ∠=∠=︒, 即EO AC ⊥.又AC 、BD ⊂平面ABCD ,AC BD O =,所以EO ⊥平面ABCD ,又EO ⊂平面BED ,所以平面BED ⊥平面ABCD .(2)解:如图,取AE 的中点M ,AB 的中点N ,连接MN ,ND ,DM , 则//MN BE ,由(1)知,30DAC BAC ∠=∠=︒,即60DAB ∠=︒,所以ABD ∆为正三角形,所以DN AB ⊥,又BC AB ⊥, 所以平面DMN //平面EBC , 所以点P 在线段MN 上.以O 为坐标原点,建立如图所示的空间直角坐标系,则3,0,02A ⎛⎫⎪⎝⎭,3B ⎛⎫ ⎪ ⎪⎝⎭,3E ⎛ ⎝⎭,334M ⎛ ⎝⎭,30,D ⎛⎫ ⎪ ⎪⎝⎭,33,44N ⎛⎫⎪ ⎪⎝⎭, 所以33,,022AB ⎛⎫=- ⎪ ⎪⎝⎭,33,0,22⎛⎫=- ⎪ ⎪⎝⎭AE , 333,424DM ⎛= ⎝⎭,330,,44MN ⎛⎫=- ⎪ ⎪⎝⎭, 设平面ABE 的法向量(),,n x y z =,则00AB n AE n ⎧⋅=⎨⋅=⎩,即3030x y x z ⎧+=⎪⎨+=⎪⎩,令1x =,则(1,3,n =, 设()01MP MN λλ=≤≤,可得3,,42444DP DM MP λ⎛⎫=+=+- ⎪ ⎪⎝⎭,设直线DP 与平面ABE 所成的角为θ,则sin 42n DP n DPθ⋅==,因为01λ≤≤,所以当0λ=时,sin θ.故直线DP 与平面ABE 所成角的正弦值的最大值为7. 点评:本题第一问主要考查由线线垂直证明线面垂直,再由面面垂直的判定定理证明面面垂直,第二问先确定点P 在线段MN 上,然后建立空间直角坐标系并求出平面的法向量及直线的方向向量的坐标即可研究线面角的正弦值的最值问题,本题综合性强、计算量大,属中等难度题. 21.已知()ln af x x x x x=-+,其中a ∈R . (1)讨论f (x )的极值点的个数;(2)当n ∈N 时,证明:2222341ln 2lnln ln 2324n n n n ++++⋅⋅⋅++>. 答案:(1)答案见解析;(2)答案见解析.(1)f (x )的定义域为(0,+∞),求导得到22()ln 11ln a af x x x x x '=+--=-,再令2()ln a g x x x =-,x >0,用导数法研究其不等零点,求导233122()a x ag x x x x+'=+=,然后分0a =、0a >和0a <三种情况讨论求解.(2)根据(1)a =0时,f (x )≥f (1)=-1,即1ln 1x x -≥,进而有221ln (1)x x-≥,然后令1n x n+=得到22111111ln ()11212n n n n n n n +⋅=-+++++≥>求解.解:(1)f (x )的定义域为(0,+∞),则22()ln 11ln a af x x x x x '=+--=-, 令2()ln a g x x x =-,x >0,则233122()a x ag x x x x +'=+=,①当0a =时,()ln f x x '=,令()0f x '=,则1x =, 当0<x <1时,()0f x '<,f (x )单调递减, 当x >1时,()0f x '>,f (x )单调递增, 所以f (x )在(0,+∞)上有且仅有一个极值点.②当0a >时,()0g x '>,所以g (x )在(0,+∞)上单调递增,又(1)0g a =-<,221(e )(1)0e e aa aa g a a =-=-> 所以g (x )在(1,e a )上存在唯一零点,记为x 0,列表:所以f (x )在(0,+∞)上有且仅有一个极值点. ③当0a <时,令()0g x '=,得x =当0<x时,()0g x '<,g (x )单调递减,当x ()0g x '>,g (x )单调递增,所以g (x )min =g )=12, 当a ≤12e-时,g (x )min ≥0,故f′(x )≥0,f (x )在(0,+∞)上单调递增, 所以f(x )在(0,+∞)上无极值点, 当12e-<a <0时,g (x )min =g =12<0,又(1)0g a =->,021a <-<,下面证1(2)ln(2)04g a a a-=-->, 令1()ln(2)4a a a ϕ=--(12e -<a <0),222212141e ()02444a a a a a a ϕ--+'=+=>>-, 所以()a ϕ在(12e-,0)上单调递增,所以11e e(2)()()ln 102e e 22g a a ϕϕ-=>-=+=->,所以g (x )在(0,+∞)上有且仅有两个零点,记为,()αβαβ<,列表:所以f (x )在(0,+∞)上有且仅有两个极值点. 综上所述,当a ≤12e-时,f (x )无极值点; 当12e-<a <0时,f (x )有两个极值点; 当a ≥0时,f (x )有一个极值点.(2)由(1)知,当a =0时,f (x )≥f (1)=-1, 所以ln 1x x x -≥,即1ln 1x x-≥, 所以221ln (1)x x-≥,令1n x n+=得 故22111111ln ()11212n n n n n n n +⋅=-+++++≥>,所以2222341ln 2ln ln ln 23n n ++++⋅⋅⋅+>111111233412n n -+-+⋅⋅⋅+-++,112224n n n =-=++. 点评:本题主要考查函数的极值点与导数、构造不等式放缩证明,还考查了分类讨论的思想和运算求解的能力,属于较难题.22.某中学开展劳动实习,学生前往电子科技产业园,学习加工制造电子元件.已知学生加工出的每个电子元件正常工作的概率都是p (0<p <1),且各个电子元件正常工作的事件相互独立.现要检测k (k ∈N)个这样的电子元件,并将它们串联成元件组进行筛选检测,若检测出元件组正常工作,则认为这k 个电子元件均正常工作;若检测出元件组不能正常工作,则认为这k 个电子元件中必有一个或多个电子元件不能正常工作,须再对这k 个电子元件进行逐一检测.(1)记对电子元件总的检测次数为X ,求X 的概率分布和数学期望;(2)若p =0.99,利用(1-α)β(0<α<<1,β∈N)的二项展开式的特点,估算当k 为何值时,每个电子元件的检测次数最小,并估算此时总的检测次数;(3)若不对生产出的电子元件进行筛选检测,将它们随机组装入电子系统中,不考虑组装时带来的影响.已知该系统配置有2n -1(n ∈N)个电子元件,如果系统中有多于一半的电子元件正常工作,该系统就能正常工作.将系统正常工作的概率称为系统的可靠性,现为了改善该系统的性能,拟向系统中增加两个电子元件.试分析当p 满足什么条件时,增加两个电子元件能提高该系统的可靠性?答案:(1)答案见解析;(2)k =10;2;(3)p >12. (1)根据题意,分析出X 可能的取值为1,k +1,求得其概率,得到分布列,进而求得其期望;(2)根据题意,列出式子,结合基本不等式求得最值;(3)列出式子,利用作差比较法,求得结果.解:(1)X 可能的取值为1,k +1,P (X =1)=p k ,P (X =k +1)=1-p k ,X 的概率分布为:所以X 的数学期望E (X )=1·p k +(k +1)(1-p k )=k +1-kp k . (2)根据(1-α)β(0<α<<1,β∈N)的二项展开式的特点,可知(1)1βααβ--≈, 记每个电子元件的检测次数为Y ,p =0.99=1-0.01,所以()111111(10.01)110.01k k k E Xk kp Y p k k k k k k +-===+-=+--+-+≈ 10.010.2k k =+≥,当且仅当10.01k k =,即k =10时取等, 故当k =10时每个电子元件的检测次数最小,此时总的检测次数kY =10×0.2=2. (3)记当系统配置有2n -1(n ∈N)个电子元件时,系统正常工作的概率为21n P -, 当系统配置有2n +1(n ∈N)个电子元件时,系统正常工作的概率为21n P +,若前2n -1个电子元件中恰有n -1个正常工作,此时后两个元件必须同时正常工作; 若前2n -1个电子元件中恰有n 个正常工作,此时后两个元件至少须有1个正常工作; 若前2n -1个电子元件中恰有n +1个正常工作,此时系统必定正常工作;可以求得:112121121212122121[C ][C ][C (1)][C ](1)(1)(1)n n n n n n n n n n n n n n P p p P p p p p p p p p ----+----=⋅⋅+-+--+--故11121212121212C C [C (1)1](1)(1)n n n n n n n n n n P P p p pp p p p -+-+----=⋅+---+- 21C (21)(1)nn n n p p p -=--, 令21210n n P P +-- >,得2p -1>0,即p >12, 所以当p >12时,增加两个电子元件能提高该系统的可靠性.点评:该题考查的是有关随机变量的概率问题,有期望、分布列、二项式综合应用,属于较难题目.。
江苏省徐州市铜山区大许中学2021届高三数学9月联考试题2

江苏省徐州市铜山区大许中学2021届高三数学9月联考试题(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x2-4x-12≤0},B={x|4x-4>0},则A∩B=A.{x|1<x≤2}B.{x|x≥-2}C.{x|1<x≤6}D.{x|x≥-6}2.已知复数z=1ii,则z=A.12+12i B.12-12i C.-12+12i D.-12-12i3.某年1月25日至2月12日某旅游景区A及其里面的特色景点a累计参观人次的折线图如图所示,则下列判断正确的是A.1月29日景区A累计参观人次中特色景点a占比超过了1 3B.2月4日至2月10日特色景点a累计参观人次增加了9700人次C.2月6日至2月8日景区A累计参观人次的增长率大于特色景点a累计参观人次的增长率D.2月8日至2月10日景区A 累计参观人次的增长率小于2月6日到2月8日的增长率 4.“3sin 2α-sin αcos α-2=0”是“tan α=2”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.函数()22sin x 1f x x-=的部分图象是6.在平行四边形ABCD 中,E ,F 分别为CD ,BC 的中点,则AE =A.31AD AF 42+B.11AD AF 22+C.13AD AF 24+D.1AD AF 2+ 7.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”下图是在“赵爽弦图”的基础上创作出的一个“数学风车”,其中正方形ABCD 内部为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的.我们将图中阴影所在的四个三角形称为“风叶”,若从该“数学风车”的八个顶点中任取两点,则该两点取自同一片“风叶”的概率为A.37B.47C.314D.11148.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点为F ,P 为双曲线右支上一点,O 为坐标原点,若△OPF 为等边三角形,则双曲线C 的离心率为3331+3+1二、选择题:本题共4小题,每小题5分,共20分。
江苏省徐州市(市区部分学校)2021届高三9月学情调研考试数学试题(WORD版含解析)

徐州市2021届高三学情调研考试数学徐州市高考研究中心命制2020.9.29一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3},B={x|x2-x-2<0且x∈Z},则A∩B=A.{1} B.{1,2} C.{0,1,2,3} D.{-1,0,1,2,3} 2.某大学4名大学生利用假期到3个山村参加基层扶贫工作,每名大学生只去1个山村,每个山村至少有1人去,则不同的分配方案共有A.6种B.24种C.36种D.72种3.甲、乙、丙、丁四位同学被问到谁去过长城时,甲说:“我没去过”,乙说:“丁去过”,丙说:“乙去过”,丁说:“我没去过”,假定四人中只有一人说的是假话,由此可判断一定去过长城的是A.甲B.乙C.丙D.丁4.天文学中为了衡量天体的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,天体就越亮;星等的数值越大,天体就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(M.R.Pogson)又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 1-m 2=2.5(lg E 2-lg E 1),其中星等为m i 的的星的亮度为E i (i =1,2).已知“心宿二”的星等是1.00,“天津四”的星等是1.25.“心宿二”的亮度是“天津四”的r 倍,则r 的近似值为(当|x |较小时,10x ≈1+2.3x +2.7x 2) A .1.23B .1.26C .1.51D .1.575.设a ,b ,c 为单位向量,且a ·b =0,则(a -c )·(b -c )的最小值为 A .-2B .2-2C .-1D .1- 26.我国古代数学家刘徽于公元263年在《九章算术注》中提出“割圆术”:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率.如果用圆的内接正n 边形逼近圆,算得圆周率的近似值记为πn ,那么用圆的内接正2n 边形逼近圆,算得圆周率的近似值π2n 可以表示为A .π180cosnn ︒ B .π360cosnn ︒ C .π180sinnn ︒ D .π90sinnn︒ 7.用一平面截正方体,所得截面的面积最大时,截面的几何形状为A .正六边形B .五边形C .矩形D .三角形8.定义在R 上的偶函数f (x )的导函数为f ′(x ),若∀x ∈R ,都有2f (x )+xf ′(x )<2,则使x 2f (x )-f (1)<x 2-1成立的实数x 的取值范围是 A .{x |x ≠±1} B .(-1,0)∪(0,1) C .(-1,1)D .(-∞,-1)∪(1,+∞)二、选择题:本题共4小题,每小题5分,共20分。
江苏省徐州市铜山区大许中学2021届高三数学上学期9月学情调研试题【含答案】

试题
一、单项选择题(本大题共 8 小题,每小题 5 分,共计 40 分.在每小题给出的四个选项中, 只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)
1.已知集合 A= x x2 x 2 0 ,B= x 1 x 3 ,则 A B=
综上,a≤0,b=﹣1,因此 a+b( ,﹣1].
四、解答题(本大题共 6 小题,共计 70 分.请在答题卡指定区域内作答.解答时应写出文
字说明、证明过程或演算步骤)
17.(本小题满分 10 分)
已知向量 m =(2cosx,﹣1), n =( 3 sinx,2cos2x),xR,设函
数 f (x) mn 1.
C.a>c>b
3
解析:∵9>8,∴3> 22
,故 log2
3
log2
3
22
3 2
,
D.c>a>b
从而有
a
log4
9
log2
3
3 2
c
1
21.2
b
,故选
C.
7.在平面直角坐标系 xOy 中,已知圆 A: (x 1)2 y2 1,点 B(3,0),过动点 P 引圆 A 的
切线,切点为 T.若 PT= 2 PB,则动点 P 的轨迹方程为
当 a=0 时, f (x) 在( ,0)递增,(0, )递减, f (x) f (0) 符合题意,
a<0 时, f (x) 在( , 1 2a )递减,( 1 2a ,0)递增,(0, )递减
a
a
x< 1 2a , ax2 x 1 0 f (x) 0 ,故 f (x) f (0) 符合题意, a
江苏省徐州市丰县中学2021年高三数学理月考试卷含解析

江苏省徐州市丰县中学2021年高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在平面直角坐标系中,定义之间的“折线距离”,在这个定义下,给出下列命题:①到原点的“折线距离”等于1的点的集合是一个正方形;②到原点的“折线距离”等于1的点的集合是一个圆;③到两点的“折线距离”相等的点的轨迹方程是x=0;④到两点的“折线距离”差的绝对值为1的点的集合是两条平行线.其中真命题有A.1个B.2个C.3个D.4个参考答案:C2. 已知实数x,y满足约束条件且目标函数z=2x+y的最大值是6,最小值是1,则的值是( )A.1 B.2 C.3 D.4参考答案:D【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先根据约束条件画出可行域,再利用目标函数的最值,作用平面区域即可得到结论..【解答】解:由题意得:作出目标函数2x+y=6,和2x+y=1,则对应的平面区域如图:则B,C在直线ax+by+c=0上,由,解得,即C(1,﹣1),由,解得,即B(2,2),则B,C在直线在直线ax+by+c=0上,∴BC的方程为3x﹣y﹣4=0,即a=3,b=﹣1,c=﹣4,则=4,故选:D【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值的方法.3. 已知全集U为实数集R,集合N={x||x|≤1},则下图阴影部分表示的集合是().A.[-1,1] B.(-3,1] C.(-∞,-3)∪[-1,+∞) D.(-3,-1)参考答案:D略4. 已知点在直线上移动,当取最小值时,过点引圆C:的切线,则此切线长等于A. B. C. D.参考答案:D5. 如图,有一直角墙角,两边的长度足够长,在处有一棵树与两墙的距离分别是米、4米,不考虑树的粗细.现在想用米长的篱笆,借助墙角围成一个矩形的花圃.设此矩形花圃的面积为平方米,的最大值为,若将这棵树围在花圃内,则函数的图象大致是()参考答案:C6. 下列命题:①若是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,,则;②若锐角、满足则; ③在中,“”是“”成立的充要条件;④要得到的图象,只需将的图象向左平移个单位.其中真命题的个数有()A.1 B.2 C.3 D. 4参考答案:B 略7. (文)现有四个函数:①y=x?sinx;②y=x?cosx;③y=x|cosx|;④y=x?2x的图象(部分)如图:则按照从左到右图象对应的函数序号安排正确的一组是( )A.①④③②B.③④②①C.④①②③D.①④②③参考答案:D【考点】函数的图象.【专题】作图题;函数的性质及应用.【分析】函数与函数图象对应题一般用排除法,首先发现只有①是偶函数,故第一个图象对应①;从而排除B、C;注意到③y=x|cosx|,当x<0时,y≤0,当x>0时,y≥0;故③对应第四个图象.从而解得.【解答】解:四个函数:①y=x?sinx;②y=x?cosx;③y=x|cosx|;④y=x?2x中,只有①是偶函数,故第一个图象对应①;故排除B、C;故焦点在第三,四个图象与②③的对应上,注意到③y=x|cosx|,当x<0时,y≤0,当x>0时,y≥0;故③对应第四个图象,故排除A,故选D.【点评】本题考查了函数的图象的应用,函数与函数图象对应题一般用排除法比较好,属于中档题.8. 若函数,则等于()A.4 B.3C.2 D.1参考答案:B 略9. 曲线在点(1,1)处切线的斜率等于 ( ) A .B .C .2D .1参考答案:C10. 已知集合,,则集合等于( )A.B.C.D.参考答案:B二、 填空题:本大题共7小题,每小题4分,共28分11. 如图所示的程序是计算函数函数值的程序,若输出的值为4,则输入的值是.参考答案:-4,0,412. 如图,在矩形中,点为的中点,点在边上,若,则的值是 .参考答案:略13. 是虚数单位,= ▲ .参考答案:14. 已知两圆的方程分别为和,则这两圆公共弦的长等于__________.参考答案:考点:两圆的位置关系.【名师点睛】1.两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到. 2.处理直线与圆的弦长问题时多用几何法,即弦长一半、弦心距、半径构成直角三角形.15. 已知集合,,若,则实数的取值范围是 .参考答案:16. 已知正项数列的首项,前n 项和为,若以为坐标的点在曲线上,则数列的通项公式为 .参考答案:17. 右表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第行第列的数为(),则等于,.参考答案:由题意可知第一列首项为,公差,第二列的首项为,公差,所以,,所以第5行的公比为,所以。
2021届江苏省徐州市(市区部分学校)高三9月学情调研考试数学试题

4.作答选择题(第1题~第12题),必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
问题:已知曲线C:mx2+ny2=1(m,n≠0)的焦点在x轴上,____________,是否存在过点P(-1,1)的直线l,与曲线C交于A,B两点,且P为线段AB的中点?
注:若选择条件①和条件②分别解答,按第一个解答计分.
19.(本小题满分12分)
在△ABC中,角A,B,C所对的边分别为a,b,c,设向量m=(2sin(x-A),sinA),n=
由题设得 ,解得a2=4,b2=3,所以C的方程为 ,…………4分
1°当直线l的斜率不存在时,直线l的方程为x=-1,代入 得 ,P(-1,1)不是线段AB的中点,不符合题意;…………………………………………………6分
2°当直线l的斜率存在时,设A(x1,y1),B(x2,y2),直线l的方程为y-1=k(x+1),即y=k(x+1)+1,代入 得(3+4k2)x2+8k(k+1)x+4(k2+2k-2)=0,
(cosx,1),f(x)=m·n,且对任意x∈R,都有f(x)≤f( ).
(1)求f(x)的单调递增区间;
(2)若a=2 ,sinB+sinC= ,求△ABC的面积.
20.(本小题满分12分)
如图,在四棱锥E-ABCD中,底面ABCD是圆内接四边形,CB=CD=CE=1,AB=AD=AE= ,EC⊥BD.
A. B. 面的面积最大时,截面的几何形状为
A.正六边形B.五边形C.矩形D.三角形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的图像交于
P
,Q
两点,则线段 PQ 长的最小值是
.
16.已知直线 l : y kx t 与圆 x2 ( y 1)2 1相切且与抛物线 C : x2 4 y 交于不同的两
点 M , N ,则实数 t 6 小题,共 70 分。请在答.题.卡.指.定.区.域.内作答。解答时应写出文字说
21.(本小题满分 12 分)
如图,某广场中间有一块边长为 2 百米的菱形状绿化区 ABCD ,其中 BMN 是半径为 1 百 米的扇形,ABC 2 . 管理部门欲在该地从 M 到 D 修建小路:在弧 MN 上选一点 P
3 (异于 M , N 两点),过点 P 修建与 BC 平行的小路 PQ .问:点 P 选择在何处时,才能使
x2 a2
y2 b2
1 (a 0,b 0) 交于不同的两点
A, B , O 为坐标
原点.
(1)若 k 1, | OA || OB | ,求证:曲线 C 是一个圆;
(2)若曲线 C :
y2
x2
1,是否存在一定点 Q ,使得 QA QB 为定值?若存在,求
4
出定点 Q 和定值;若不存在,请说明理由.
0,则该展开式的常数项是(
)
A. 1 0
B. 7
C.10
D. 9
7.已知函数 f x 是定义域在 R 上的偶函数,且 f x 1 f x 1 ,当 x 0,1 时,f x x3 ,
则关于
x 的方程
f
x
cos πx
在
1, 2
5 2
上所有实数解之和为(
)
A.1
B.3
C.6
D.7
8.已知 A , B , C 为球 O 的球面上的三个定点, ABC 60 , AC 2 , P 为球 O 的球面
江苏省徐州市 2021 届高三月考模拟测试
数学试题
2020.9 一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只
有一项是符合题目要求的。
1.若复数 z 满足 (23i)z 13,则复平面内表示 z 的点位于( )
A.第一象限
B.第二象限
C.第三象限
2.已知集合 A {x log 2 ( x 1) 0} ,则 CR A ( )
如图,在三棱柱 ADE-BCF 中,侧面 ABCD 是为菱形, E 在平面 ABCD 内的射影 O 恰
为线段 BD 的中点. (1)求证:AC⊥CF;
E
F
(2)若∠BAD=60º,AE=AB,求二面角 E-BC-F 的平
D
C
面角的余弦值.
O
A
B
20.(本小题满分 12 分)
已知直线 l :
y
kx 1 与曲线 C :
)
A.
M
的最小值为
16 5
C. M 的最小值为
4 5
B.当 M 最小时,
x2
14 5
D.当
M
最小时
x2
12 5
12.已知符号函数
下列说法正确的是( )
A.函数 C.函数
是奇函数( ) B.对任意的
的值域为
D.对任意的
三、填空题:本题共 4 小题,每小题 5 分,共 20 分。请把答案直接填写在答.题.卡.相.应. 位.置.上.。
9.关于函数
下列结论正确的是( )
A.图像关于 轴对称
C.在
上单调递增
B.图像关于原点对称
D.
恒大于 0
10.已知下列四个条件,能推出 1 1 成立的有 ab
A.b>0>a
B.0>a>b
C.a>0>b
D.a>b>0
11.已知 ln x1 x1 y1 2 0 ,x2 2 y2 2 ln 2 6 0 ,记 M (x1 x2 )2 ( y1 y2 )2 ,则(
A. (,1] B.[2,) C. (,1) (2, )
3.函数
f
(x)
|
x | ln x4
|
x|
的图象大致为(
)
D.第四象限
D. (,1][2,)
A.
B.
C.
D.
4.在 ABC 中,内角 A , B , C 的对边分别是 a , b , c ,外接圆半径为 R ,若
b sin B a sin A 1 a sin C ,且 ABC 的面积为 2R2 sin B(1 cos 2A) ,则 cos B ( ) 2
13.已知向量 a,b 的夹角为 45º,若 a=(1,1),|b|=2,则|2a+b|=________.
14.已知函数
f
(x)
log
2
f (x
x, x 3),x
1, 则
1,
f
(2) =________.
15.在平面直角坐标系 xOy
中,过点 (1,
0) 的一条直线与函数
f (x)
x
3 1
上的动点,记三棱锥
P
ABC
的体积为V1 ,三棱锥 O
ABC
的体积为 V2
,若
V1 V2
的最大值为
3,则球 O 的表面积为( )
A. 16π 9
B. 64π 9
C. 3π 2
D. 6π
二、多项选择题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的选项中,有多项 符合题目要求。全部选对的得 5 分,部分选对的得 3 分,有选错的得 0 分。
(1)求证:数列an 是等比数列,并求其通项公式;
(2)设直线 x an 与函数 f x x2 的图象交于点 An ,与函数 g(x) log2 x 的图象交
于点 Bn ,记 bn OAn OBn (其中 O 为坐标原点),求数列 bn 的前 n 项和 Tn.
19.(本小题满分 12 分)
得修建的小路 MP 与 PQ 及 QD 的总长最小?并说明理由.
22.(本小题满分 12 分)
已知函数 f (x) sin x . x
(1)求曲线 y f (x) 在 ( π , f ( π )) 处的切线方程; 22
(2)求证: f (x) 1 x2 ; 6
(3)求证:当 0 x 1.1时, f (x) ln(1 x) . x
1
1
1
3
A.
B.
C.
D.
4
3
2
4
5.在 ABC 中, AB 4 , AC 2 , BAC 60 ,点 D 为 BC 边上一点,且 D 为 BC
uuur uuur 边上靠近 C 的三等分点,则 AB AD ( )
A. 8
B. 6
C. 4
D. 2
6.已知 (2 x2
3
x
1)(
a x2
1)5
的展开式中各项系数之和为
明、证明过程或演算步骤。
17.(本小题满分 10 分)
已知△ABC 中, C 为钝角,而且 AB 8 , BC 3,AB 边上的高为 3 3 . 2
(1)求 B 的大小; (2)求 AC cos A 3cos B 的值.
18.(本小题满分 12 分)
设数列an 的前 n 项和为 Sn ,点 an , Sn n N * 在直线 2x y 1 0 上.