数学史与数学文化期末复习资料讲解学习
数学史概论复习资料

数学史概论复习资料第0章数学史—人类文明的重要篇章一、数学史研究哪些内容?(P1)数学史研究数学概念、数学方法和数学思想的起源及发展,及其及社会、经济和一般文化的联系。
数学是研究现实世界的空间形式及数量关系的科学二、数学史通常采用哪些线索进行分期?(P9)1、按时代顺序2、按数学对象、方法等本身的质变过程3、按数学发展的社会背景三、本书对数学史如何分期?(P9)1、数学的起源及早期发展(公元前6世纪);2、初等数学时期(公元前6世纪-16世纪);A.古代希腊数学(公元前6世纪—6世纪)B.中世纪东方数学(3世纪—15世纪)C.欧洲文艺复兴时期(15世纪—16世纪)3、近代数学时期(17世纪-18世纪);4、现代数学时期(1820年至今)。
A.现代数学酝酿时期(1820’—1870)B.现代数学形成时期(1870—1940)C.现代数学繁荣时期(或称当代数学时期,1950—现在)四、近几年新编的中小学数学教材中,增加了不少数学史知识.请对这种变化的积极意义谈谈你的认识及体会.这些数学史有效的补充了教材内容,使教材内容更丰富、充实,让学生对数学的历史有了进一步的了解,激发了学生的学习兴趣,培养了学生的数学素养。
将数学史融入数学实践活动,例如以七巧板系列活动为主题,以提高学生创新思维为抓手,由浅入深,循序渐进地开展了面向全体学生的智力七巧板实践活动。
七巧板实践活动的开展,充实了数学史应用的内容,丰富了学生的课余生活,培养了学生组合分解能力、动手实践能力和思维创新能力,特别是对学生创新素质的提高产生了积极的作用和深远的影响。
第一章数学的起源及早期发展一、世界上早期常见有几种古老文明记数系统,它们分别是什么数字,采用多少进制数系?(P13)1.古埃及的象形数字(公元前3400年左右)2.古巴比伦的楔形数字(公元前2400年左右)3.中国的甲骨文(公元前1600年左右)4.希腊阿提卡数字(公元前500年左右)5.中国的算筹码(公元前500年左右)6.印度婆罗门数字(公元前500年左右)7.玛雅数字(?)其中除巴比伦楔形数字采用六十进制、玛雅数字采用二十进制外,其他均属十进制数系二、“河谷文明”指的是什么?(P16)历史学家往往把兴起于埃及、美索不达米亚、中国、印度等地域的古代文明称为“河谷文明”。
第1部分 第1章 数学文化和数学史(一)

气温为( B )
A.零上 3 ℃
B.零下 3 ℃
C.零上 7 ℃
D.零下 7 ℃
二、无理数的发现 毕达哥拉斯学派中的一名成员希伯索斯发现了无理数 2,导致了第一次数学危 机.后来,古希腊人终于正视了希伯索斯的发现,并进一步给出了证明过程.
2.公元前 5 世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数 2,导致
3.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术” 的注文中指出,可 将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表 示法,观察图 1,可推算图 2 中所得的数值为 --3 3 .
图1
图2
四、三角形数与正方形数 希腊人常用小石子在沙滩上摆成各种形状来研究数,古希腊著名科学家毕达哥拉斯 发现数 1,3,6,10,15,21,……这些数量的(石子)都可以排成三角形,则称像这样 的数为三角形数(如图 1 所示),类似地,将 1,4,9,16,……这样的数称为正方形数(如 图 2 所示).第 Nhomakorabea章 数与式
数学文化和数学史(一)
一、中国人最先使用负数
中国人最先使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数
学史上首次正式引入负数.
1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数若
其意义相反,则分别叫做正数与负数.若气温为零上 10 ℃记作+10 ℃,则-3 ℃表示
是有理数”的假设不成立,所以 2是无理数.这种证明“ 2是无理数”的方法是
(B ) A.综合法
B.反证法
C.举反例法
D.数学归纳法
三、《九章算术》——正负术 《九章算术》大约于东汉初年(公元一世纪)成书, 共九章,汇总了战国和西汉时期 的数学成果,是几代人共同劳动的结晶,在世界数学史上首次正式引入负数及其加减运 算法则,给出名为“正负术”.加法法则为: “异名相除,同名相益,正无入正之, 负无入负之.”即异号两数相加,绝对值相减,同号两数相加,绝对值相加;0 加正数 为正,0 加负数为负.类似地有减法法则:“同名相除,异名相益,正无入负之,负无 入正之.”
期末 数学史知识提要

《数学简史》知识提要1 数学史的意义及研究对象:数学史是研究数学概念、数学方法和数学思想的产生、发展及其规律的科学。
主要对象包括:重要数学成果、重大数学事件和重要数学人物,及其与社会、政治、经济和一般文化的联系。
2 数学文化的特点数学史在整个人类文明史上有着特殊地位,这是由数学的文化特点决定的。
数学文化特点有以下几个方面:(1)数学以抽象的形式,追求高度精确、可靠的知识。
(2)数学追求最大限度的一般性模式特别是一般性算法的倾向。
(3)数学是创造性活动的结果,追求艺术和美的特征。
3历史上对数学的认识:亚里斯多德:量的科学;笛卡儿:顺序与度量的科学;恩格斯:空间形式与数量关系;美国学者:关于模式的科学。
第二章古代希腊数学主题:论证数学的形成与发展1论证数学的开端:论证数学的鼻祖:泰勒斯(前625-前547)和毕达哥拉斯(前580-前500)。
(1)泰勒斯:发现了许多几何命题(圆被直径平分……);开创了几何命题的逻辑论证;天文测量。
他的逸闻趣事具有很好的教育意义。
(2)毕达哥拉斯及其学派致力于哲学与数学的研究,提出了“万物皆数”是信念,推动了证明的逻辑信念的形成。
主要成果:发现毕达哥拉斯定理及其数组;几何定理的证明;正多边形(正五和正十边形)与正多面体作图;形数(把数看成形进行研究);完全数(一个整数互为另一个的不包括自身的因数之和);亲和数(两个整数互为另一个的因数(不包括自身)之和);不可公度量(实质是证明了2是无理数)的发现。
(注:什么是“可公度量”?对于任何两条给定的线段,总能找到某第三线段,以它为单位线段能将给定的两条线段划分为整数段。
这样的两条线段为“可公度量”,即有公共度量的度量单位。
这是古希腊毕达哥拉斯学派对世界任何量都能表示成两个整数比信念的反映。
)3亚历山大时期(全盛时期)主要代表人物:欧几里得、阿基米德和阿波罗里奥斯(1)欧几里得:主要代表作《原本》(又称为《几何原本》)。
他用公理化方法对当时的数学知识作了系统化、理论化的总结。
数学史与数学文化知识点

数学史与数学文化知识点数学史数学作为一门古老而重要的学科,在人类文明的发展中扮演着重要角色。
了解数学史不仅可以帮助我们更好地理解数学的发展和演变,还可以培养我们的数学思维和创造力。
本文将介绍一些关键的数学史事件和数学文化知识点,帮助读者更好地了解数学的历史和背景。
1. 古代数学文化古代数学文化是数学史上的重要组成部分。
古埃及人和古希腊人是古代数学发展的两个重要文化群体。
古埃及人发展了一种基于几何形状和比例的数学系统,他们的数学知识主要应用于土地测量、建筑和天文学等领域。
古希腊人则以数学为哲学基础,开创了几何学和数学证明的范式。
毕达哥拉斯定理和欧几里得的《几何原本》是古希腊数学的重要成果。
2. 阿拉伯数学文化阿拉伯数学文化是中世纪数学史上的重要里程碑。
在中世纪,阿拉伯世界成为数学知识的中心。
阿拉伯学者通过翻译和批注古希腊和古埃及的数学文献,将其传播到欧洲,并在此基础上进行了许多重要的创新。
他们引入了阿拉伯数字系统、十进制计数法和代数学的概念,这些数学概念至今仍然广泛应用于现代数学。
3. 文艺复兴时期的数学文艺复兴时期是数学史上的又一个高潮时期。
在这一时期,欧洲的数学家们恢复了对古希腊数学文献的研究,并对数学的发展做出了重要贡献。
莱布尼茨和牛顿的微积分学、笛卡尔的解析几何学以及费马的数论等都是文艺复兴时期数学的重要成就。
这些成就不仅为数学打下了坚实的基础,还对物理学和工程学的发展产生了深远影响。
4. 现代数学的发展现代数学是指从19世纪开始的数学发展阶段。
这一时期的数学家们通过对数学基础和基本概念的重新思考,推动了数学的大革命。
在这一时期,数学的抽象性和形式化程度显著增强,新的数学分支如复分析、拓扑学和群论等相继涌现。
现代数学的发展使得数学成为一个自成体系的学科,也使得数学在现实世界中的应用更加广泛和深入。
结语数学史的了解对于培养我们的数学兴趣和思维能力至关重要。
通过了解古代数学文化、阿拉伯数学文化、文艺复兴时期数学和现代数学的发展,我们可以更好地理解数学学科的历史沿革和重要概念的起源。
(完整word版)数学史复习资料

《数学史》复习资料1、名词解释:2、可公度量:对于任何两条给定的线段, 总能找到某第三线段, 以它为单位线段能将给定的两条线段划分为整数段。
这样的两条线段为“可公度量”, 即有可公度量的度量单位。
这是古希腊毕达哥拉斯学派对世界任何量都能表示成两个整数比信念的反应。
3、出入相补原理: 一个几何图形(平面或立方体的)被分割成若干部分后, 面积或体积总保持不变。
4、费马大定理: 关于X、Y、Z的不定方程Xn+Yn =Zn , 对于任意大于2的自然数n无非零整数解。
大数定律: 概率论历史上第一个极限定理属于伯努利, 后人称之为“大数定律”。
概率论中讨论随机变量序列的算术平均值向常数收敛的定律。
P128 帕斯卡曾提出的n为正数时的二项式定理, 得到所谓伯努利定理: 若p是某一事件单独出现一次的概率, q是不出现该事件的概论, 则在n次试验中, 该事件至少出现m次的概率等于二项式(p+q)n 的展式中的从pn 项到pm qn-m 项的各项之和。
容易看出, 这实际上就是概率论中最重要的定律之一——“大数定律”的最早表现形式。
倍立方体:就是已知一立方体, 求作另一立方体, 使它的体积等于已知立方体的两倍。
也即求作一立方体的边, 使该立方体的体积为给定立方体的两倍。
祖氏原理:P65“幂势既同, 则积不容异”, 即夹在两个平行平面间的两个几何体, 被平行于这两个平面的任意平面所截, 若所得截面总相等, 则此二几何体积相等。
它被称为“祖暅原理”。
1.简述古希腊数学的特点。
答案二: (1)追求理性和唯理的论证数学特点;(2)欧氏几何开创了公理化理论体系;(3)欧式几何形成了演绎思维的特征;总之, 希腊数学是追求理性, 主要以演绎几何为特征的数学。
2.简述欧几里得《原本》中所确立的公理化思想。
答:公理化思想是古希腊时期在欧氏几何中确立数学演绎范式。
这种范式要求一门学科中的每个命题必须是在它之前已建立的一些命题的逻辑结论, 而所有这样的推理链的共同出发点, 就是一些基本定义和被认为不证自明的基本原理——公理或公设。
数学史知识点及答案讲解

千里之行,始于足下。
数学史知识点及答案讲解数学史知识点及答案讲解数学是一门古老而且重要的学科,它的发展与人类文明的进步密切相关。
下面将介绍数学史的一些知识点及答案的讲解。
1. 古代数学古代数学的发展可以追溯到古埃及、巴比伦和古希腊等文明,其中最著名的数学家是古希腊的欧几里德和阿基米德。
欧几里德的《几何原本》是一部详尽而完整的几何学著作,其中引入了许多重要的几何定理和证明方法。
阿基米德则在几何学和力学方面做出了重要贡献,特别是他的浮力定律和杠杆原理。
2. 中世纪数学中世纪数学的发展受到了基督教教义的限制,因此在这个时期数学的进展相对较慢。
然而,一些重要的数学家如斯内尔和费马还是在这个时期做出了一些突破性的工作。
斯内尔提出了无理数的概念,并证明了它的存在。
费马则发展了一种新的证明方法,称为费马大定理,在证明中使用了分析几何的技巧。
3. 近代数学近代数学的发展可以追溯到17世纪的启蒙时代,这个时期出现了许多重要的数学家和数学理论。
牛顿和莱布尼茨同时独立地发现了微积分学,这是一种用于研究曲线和函数的重要工具。
欧拉则在数学分析和图论方面做出了重要贡献,他是数学史上最多产的数学家之一,发表了大量的著作和论文。
4. 现代数学现代数学的发展可以追溯到19世纪末和20世纪初,这个时期出现了一系列重要的数学理论和概念。
高斯和黎曼对复数和复变函数的研究开创了复分析第1页/共3页锲而不舍,金石可镂。
学的发展。
庞加莱在拓扑学方面做出了重要贡献,提出了庞加莱猜想,并且开创了现代数学的基础。
其他重要的数学家还包括维尔斯特拉斯、魏尔斯特拉斯、哥尼尔和伯努利等。
5. 现代数学的应用现代数学的应用非常广泛,几乎涉及到所有的科学领域。
数学在物理学、工程学、计算机科学、经济学等领域有着重要的应用。
例如,在物理学中,数学被用来建立和解决物理定律和方程,如牛顿的运动定律和麦克斯韦方程。
在计算机科学中,数学被用来研究和设计算法和数据结构。
在经济学中,数学被用来研究和模拟经济系统,如供求关系和市场机制。
数学史复习资料.doc

数学史复习资料1.世界上第一个把n计算到3.1415926< n <3.1415927的数学家是(祖冲之)。
2.亚力山大晚期一位重要的数学家是(帕波斯),他唯一的传世之作《数学汇编》是一部荟萃总结前人成果的典型著作。
3.古希腊亚历山大时期的数学家阿波罗尼兹在前人工作的基础上创立了相当完美的圆锥曲线理论,其著作《圆锥曲线》代表了希腊演绎几何的最高成就。
4.我国的数学教育有悠久的历史,(隋唐)代开始在国子寺里设立“算学”,唐至五代代则在科举考试中开设了数学科目,叫“明算科”。
5.《几何基础》的作者是(希尔伯特),该书所提出的公理系统包括(五)组公理。
6.用“分割法”建立实数理论的数学家是(戴德金),该理论建立于(19)世纪。
7.费马大定理证明的最后一步是英国数学家(怀尔斯)于1994年完成的,他因此于1996年获得了(沃尔夫)奖。
8.“蓦势既同,则积不容异”是我国古代数学家(刘徽)首先明确提出的,这一原理在西方文献中被称作(〈瓦列利)原理。
9.创造并首先使用“阿拉伯数码”的国家或民族是(印度),而首先使用十进位值制记数的国家或民族则是(中国)。
10.古希腊的三大著名几何问题是化圆为方、倍立方和三等分角。
11.我国元代数学著作《四元玉鉴》的作者是(朱世杰),《海岛算经》的作者是—刘徽12.就微分学与积分学的起源而言(积分学早于微分学)13.在现存的中国古代数学著作中,《周髀算经》是最早的一部。
卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。
14.希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,即:相容性、完备性、独立性。
15.二项式展开式的系数图表,在中学课本中称其为_杨辉一三角,而数学史学者常常称它为贾宪三角。
16.阿拉伯数学家花拉子米的《代数学》第一次给出了一次和二次方程的一般解法,并用—几何—方法对这一解法给出了证明。
17.被称为“现代分析之父”的数学家是(柯西),被称为“数学之王”的数学家是(高斯)。
数学史和数学文化(六)

体,而无所失矣”.我国首创“割圆术”的数学家是( A )
A.刘徽
B.祖冲之
C.秦九韶
D.杨辉
2.圆周率是一个无限不循环小数,当代科学家利用巨型电子计算机已计算到小数
点后约 100 万兆位,而在世界上第一次把圆周率的计算精确到小数点后第 7 位数字的科
学家是( C )
A.阿基米德
B.张衡
C.祖冲之
D.宋应星
十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频 频创新.整个十九世纪,可以说是圆周率的手工计算量最大的世纪.
进入二十世纪,随着计算机的发明,圆周率的计算突飞猛进,π 的小数点后的位数 不断增长,20 世纪 50 年代达到千位以上,60 年代则达到 50 万位,80 年代达到 10 亿位.到 21 世纪初,科学家已计算出 π 的小数点后超过万亿的位数.
请完成下列问题:
1.历史上,对于圆周率 π 的研究是古代数学一个经久不衰的话题.在我国,东汉 初年的《周髀算经》里就有“径一周三”的古率.魏晋时期的我国数学家首创“割圆术”,
利用圆的内接正多边形来确定圆周率,计算出 π≈15507 ≈3.14,并指出在圆的内接正多 边形边数加倍的过程中“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合
当时是领先其他国家一千多年.如图,依据“割圆术”,由圆内接正六边形算得的圆周
率的近似值是( C )
A.0.5
B.1
C.3
D.π
4.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正 多边形边数的增加,它的周长和面积越来越接近圆的周长和圆的面积,“割之弥细,所 失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.试用这个方法解决问 题:如图,⊙O 的内接多边形周长为 3,⊙O 的外切多边形周长为 3.4,则下列各数中 与此圆的周长最接近的是( C )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学史与数学文化期末复习资料
数学史期末复习资料
数学史的三大危机:初等:
第一次危机:毕达哥拉斯学派主张←万物皆数(有理数)→无理数→欧多克斯→
近代(17C):第二次:微积分→极限→柯西→运动与变化→函数
现代(19C下半叶):第三次危机:罗素悖论(集合)→公理化
0-数学史
1.数学史的分期通常采用的线索:(1)按时代顺序(2)按数学对象、方法等本身的质变过程(3)按数学发展的社会背景。
2.数学史的四个分期:I数学的起源与早期发展(萌芽时期,公元前6世纪前)II初等数学时期(公元前6世纪-16世纪)
(1)古希腊数学(公元前6世纪-16世纪)
(2)中世纪东方数学(3世纪-15世纪)
(3)欧洲文艺复兴时期(15世纪-16世纪)
III近代数学时期(或称变量数学建立时期,17世纪-18世纪)
IV现代数学时期(1820-现在)
(1)现代数学酝酿时期(1820-1870)
(2)现代数学形成时期(1870-1940)
(3)现代数学繁荣时期(或称当代数学时期,1950-现在)
3.使用位值制的两种数字:巴比伦楔形数字和中国筹算数码。
最早使用位值制的国家是古巴比伦,最早使用十进制位值得国家是中国。
4.埃及数学:古埃及人用纸莎草书写,关于古埃及数学知识主要依据莱茵德纸草书和莫斯科纸草书。
5.美索不达米亚数学:主要著作泥版文书。
2.古代希腊数学
1.泰勒斯证明了四条定理: (1) 圆的直径将圆分为两个相等的部分
(2) 等腰三角形两底角相等
(3) 两直线相交形成的对顶角相等
(4) 如果一三角形有两角、一边分别与另一三角形的对应角、边相等,那么这两个三角形全等。
他是最早的希腊数学家和古希腊论证几何学鼻祖。
2.毕达哥拉斯学派的基本信条是:万物皆数。
毕达哥拉斯可公度量:对于任何两条给定的线段,总能找到某第三线段,以它为单位线段能将给定的两条线段划分为整数段。
3.普鲁塔克的面积剖分法证明勾股定理。
4..雅典时期的希腊数学学派:(1)伊利亚学派(2)诡辩学派
(3)雅典学院(柏拉图学派)(4)亚里士多德学派
5. 三大几何问题:(1)化圆为方,即做一个与给定面积相等的正方形。
诡辩学派安提丰,提出了用圆内接正多边形逼近圆面积的方法来化圆为方---穷竭法。
(2)倍立方体,即求作一个立方体,使其体积等于已知立方体的两倍。
梅内赫莫斯,圆锥曲线
(3)三等分角,即分任意角为三等分。
6.逻辑演绎结构的倡导:柏拉图、亚里士多德
7.欧几里得与《原本》
(1)公设:a. 假定从任意一点到任意一点可作一直线
b. 一条有限直线可不断延长
c. 以任意中心和直径可以画圆
d. 凡直角都彼此相等
e. 若一直线落在两直线上所构成的同旁内角和小于两直角,那么把两直线无限延长,它们将在同旁内角和小于两直角的一侧相交。
(2)公理:a .等于同量的量彼此相等
b. 等量加等量,和相等
c. 等量减等量,差相等
d. 彼此重合的图形是全等的
e. 整体大于部分
(3)比例论,它代表了《原本》的最大成就,因为它在当时的认识水平上消除了由不可公度量引起的数学危机。
8.阿基米德的数学著作集中探讨与面积和体积计算相关的问题,在《圆的度量》中,阿基米德将穷竭法应用于圆的周长和面积公式。
9.阿波罗尼奥斯:《圆锥曲线论》
10.三角学的建立最卓越的代表人物托勒玫,它的著作总结了在他之前的古代三角学知识,为三角学的进一步发展和应用奠定了基础。
丢番图:《算术》帕波斯:《数学汇编》
3.中世纪的中国数学
1.中国数学先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期以及宋元时期,其中宋元时期达到中国古典数学的顶峰。
2.《九章算术》采用问题集的形式,全书共246个问题,分成九章,依次为:方田,粟米,衰分,少广,商功,均输,盈不足,方程,勾股。
其中包含的数学成就是丰富和多方面的。
3.壍堵(底面为直角三角形的正柱体);阳马(底面为长方形而有一棱与底面垂直的椎体);鳖臑(底面为直角三角形而有一棱与底面垂直的椎体)。
4.刘徽最突出的成就:割圆术和体积理论。
著作:《九章算术注》、《海岛算经》
5.祖冲之,代表性著作是《缀术》,他算出圆周率数值上下限3.1415926(朒数)<π<3.1415927(盈数)
(2)祖式原理:出入相补原理;幂势既同,则积不容异。
6.《缉古算经》是十部算经中年代最晚的一部。
7、宋元四大家:杨辉、秦九韶、李治、朱世杰
秦九韶代表作《数书九章》
8.首先系统阐释天元术的是李冶:《测圆海镜》、《益古演段》。
四元术最早出现在朱世杰的《四元玉鉴》中。
“天”“地”“人”“物”。
4.印度与阿拉伯数字
1.印度是最早用圆圈符号表示零的国家和最早使用数字。
用圆圈符号“0”表示零,可以说是数学史上的一大发明。
2.“悉檀多”时期:阿耶波多,婆罗摩笈多,玛哈维拉,婆什伽罗。
(1)阿耶波多建立丢番图方程求解所谓“库塔卡”方法。
(2)玛哈维拉,《计算方法纲要》
(3)婆什伽罗《莉拉沃蒂》、《算法本源》
3.花拉子米,“代数学”这个词最早出现在他的《还原与对消计算概要》中。
5.近代数学的兴起
1.欧洲黑暗时期过后,第一位有影响的数学家是斐波那契。
2.卡尔丹公布了所有三次方程的解法。
费拉里,解决了四次方程。
韦达,数学符号系统化。
笛卡尔,完成对韦达所使用的代数符号的改进工作。
他首先用拉丁字母的前几个表示已知量(a、b、c…)后几个表示未知量(x、y、z…)
3.富有文艺复兴特色的透视学的兴起是由于文艺复兴时期绘画、制图中提出的这类问题的刺激。
4.纳皮尔,首先发明对数方法。
布里格斯:“常用对数”
5.解析几何:1.定义:用代数方法解决几何问题
诞生及其意义:①最重要的前驱:奥雷斯姆《论形态幅度》
②但解析几何的真正发明归功于笛卡尔和费马;笛卡尔发表《方法论》,解析几何的发明包含在《几何学》这篇附录中,笛卡尔的出发点是一个著名的古希腊数学问题——帕波斯问题。
6.费马工作的出发点是竭力恢复失传的阿波罗尼奥的《论平面轨迹》,他为此而写了一本题为《论平面和立体的轨迹引论》,书中清楚地阐述了费马的解析几何原理。
6.微积分的创立
1.与积分学相比而言,微分学的起源则要晚得多。
2.半个世纪的酝酿:
②卡瓦列里不可分量原理:计算出许多立体图形的体积。
③笛卡尔《在几何学》中提出了求切线的所谓圆法,本质上是一种代数方法。
④费马在一份手稿中提出了求极大值与极小值的代数的方法。
⑤巴罗给出了求曲线切线的方法,《几何讲义》。
3.《流数简论》是历史上第一篇系统的微积分文献。
4.牛顿微积分学说最早公开在1687年出版的力学名著《自然哲学的数学原理》,成为数学史上划时代的著作。
5.1684年莱布尼茨发表了他的第一篇微分学论文《一种求极大值与极小值和求切线的新方法》,是数学史上第一篇正式发表的微积分文献。
7—15
1.欧拉在1748年出版的《无限小分析引论》以及《微分学》和《积分学》引进一批符号:f(x)——函数符号∑——求和号
e ——自然对数底 i ——虚数单位
2.布莱尼茨首先使用了函数这一术语。
3.学习数学史的意义:(1)可以丰富课堂内容:由于数学史揭示数学知识的来源于应用,因此可以将它运用于课堂导入、课堂活动资源或后续的拓展性学习等。
(2)用来促进学生对知识本质的理解:数学史展示数学知识的起源、形成、与发展过程,诠释数学的源流。
(3)用来解决学生学习过程中出现的问题。
(4)可以树立学生学习数学的信心,增强民族自豪感:通过阅读数学家们在成长过程中遭遇的挫折,使同学能够正确看待学习过程中的困难。
4.(特例)非欧几何代表人物,高斯、波约、罗巴切夫斯基(非欧几何之父)。
5.柯西:《分析教程》、《无限小计算教程概论》。
6.魏尔斯特拉斯关于分析严格化的贡献使他获得了“现代分析之父”的称号。
7.20世纪纯粹数学的发展表现出如下主要的特征或趋势:
①更高的抽象性;②更强的统一性;③更深入的基础探讨。
8.希尔伯特提出的23个数学问题,是20世纪前半叶数学研究的主要方向。
9.第三次数学危机:产生:罗素的悖论。
消除:策梅洛-弗兰克尔公理系统。
通过对集合类型加以适当限制,达到了避免罗素悖论的目的。
10.数学基础的三大学派:(一)逻辑主义:罗素(二)直觉主义:布劳威尔
(三)形式主义:希尔伯特
11.第一台能做加减运算的机械式计算机是由帕斯卡发明的。
12.EDVAC方案,史称“101页报告”(冯·诺依曼)
13.1976年以后,中国数学家吴文俊开辟了一条定理机器证明的代数化途径。
吴文俊被称为“中国人工智能之父”。