2017河南中考数学+答案解析

合集下载

2017中考数学复习----二次函数综合题

2017中考数学复习----二次函数综合题

2017中考数学复习----二次函数综合题1.如图,在△ABC中,∠BAC=90,BC∥x轴,抛物线y=ax2﹣2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.(1)求抛物线的解析式;(2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B 两点,与x轴交于另一个点C,对称轴与直线AB交于点E.(1)求抛物线的解析式;(2)在第三象限内、F为抛物线上一点,以A、E、F为顶点的三角形面积为4,求点F的坐标;(3)连接B、C,点P是线段,AB上一点,作PQ平行于x轴交线段BC于点Q,过P作PM ⊥x轴于M,过Q作QN⊥x轴于N,求矩形PQNM面积的最大值和P点的坐标.2.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的函数关系式及顶点D的坐标;(2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值.4.在平面直角坐标系中,抛物线y=x2﹣x﹣2的顶点为点D,与直线y=kx在第一象限内交于点A,且点A的横坐标为4;直线OA与抛物线的对称轴交于点C.(1)求△AOD的面积;(2)若点F为线段OA上一点,过点F作EF∥CD交抛物线于点E,求线段EF的最大值及此时点E坐标;(3)如图2,点P为该抛物线在第四象限部分上一点,且∠POA=45°,求出点P的坐标.5.如图,已知抛物线L1:y1=x2,平移后经过点A(﹣1,0),B(4,0)得到抛物线L2,与y轴交于点C.(1)求抛物线L2的解析式;(2)判断△ABC的形状,并说明理由;(3)点P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC?若存在,求出点P的坐标;若不存在,说明理由.7.如图,已知抛物线与x轴交于A (﹣4,0)和B(1,0)两点,与y轴交于C点.(1)求此抛物线的解析式;(2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q点,当P点运动到什么位置时,线段PQ的长最大,并求此时P点的坐标.6.抛物线y=ax2+bx+c(a≠0)的顶点为P(1,﹣4),在x轴上截得的线段AB长为4个单位,OA<OB,抛物线与y轴交于点C.(1)求这个函数解析式;(2)试确定以B、C、P为顶点的三角形的形状;(3)已知在对称轴上存在一点F使得△ACF周长最小,请写出F点的坐标.8.如图,抛物线y=﹣x2+ax+8(a≠0)于x轴从左到右交于点A,B于y轴交于点C于直线y=kx+b 交于点c和点D(m,5),tan∠DCO=1。

2017年河南省中考数学试题(解析版)

2017年河南省中考数学试题(解析版)

2017年河南省中考数学试卷满分:120分 版本:人教一、选择题(每小题3分,共10小题,合计30分)1.(2017河南,1,3分)下列各数中比1大的数是( )A . 2B .0C .-1D .-3答案:A ,解析:∵-1,-3是负数,根据“正数大于一切负数”和“正数都大于0”知-3<-1<0<1,故可排除B 、C 、D ,又∵1<2,所以应选A.2.(2017河南,2,3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示为( )A . 74.4×1012B .7.44×1012C .74.4×1013D .7.44×1014答案:C ,解析:先把74.4万亿元变成744 000 000 000 00后,再把化为a ×10n 的形式. 解:74.4万亿=744 000 000 000 00=7.44×1013 ,故选择B .3.(2017河南,3,3分)某几何体的左视图如下图所示,则该几何体不可能是( )A. B. C. D.答案:D ,解析:从左视图可以看到几何体有几列,每列的最高层数是多少,选A 、B 、C 从左面去看都只能看到2列,并且第一列的最高层数为2,第二列只有一层,和题中给出的左视图吻合,只有选项D 的左视图应该可以看到有3列,第一列有2层,第2、3列均有1层,不符合题意,故应选D .4.(2017河南,4,3分)解分式方程x x -=--13211,去分母得( ) A .()3121-=--x B .()3121=--xC .3221-=--xD .3221=+-x答案:A ,解析:∵()11--=-x x ,∴原方程可变形为13211--=--x x ,方程左右两边同时乘以最简公分母()1-x ,得:()3121-=--x ,故选择A .5.(2017河南,5,3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A .95分,95分B .95分,90分C . 90分,95分D .95分,85分答案:A ,解析:∵在这组数据中,80分、85分、100分各出现了1次,95分出现了3次,∴这组数据的众数为95分;∵将这组数据首尾逐一划掉2个数,最中间的2个数是95分、95分,∴这组数据的中位数为(95+95)÷2=95(分),故选择A .6.(2017河南,6,3分)一元二次方程2x 2-5x -2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 答案:B ,解析:∵2=a ,5-=b ,2-=c ,∴∆=()()04116252245422>=+=-⨯⨯--=-ac b ,∴一元二次方程2x 2-5x -2=0有两个不相等的实数根,故选择B .7.(2017河南,7,3分)如图,在□ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定□ABCD 是菱形的只有( )A . AC ⊥BDB .AB=BC C .AC=BD D .∠1=∠2 答案:C ,解析:选项A ,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AC ⊥BD ,∴□ABCD 是菱形(对角线互相垂直且平分的平行四边形是菱形);选项B ,∵四边形ABCD 是平行四边形,AB=BC ,∴□ABCD 是菱形(一组邻边相等的平行四边形是菱形);选项C ,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AC=BD ,∴□ABCD 是矩形(对角线相等且平分的平行四边形是矩形);选项D ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠1=∠ACB ,∵∠1=∠2,∴∠ACB=∠2,∴AB=BC ,∴□ABCD 是菱形(一组邻边相等的平行四边形是菱形),故答案为C .8.(2017河南,8,3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数学—1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .81B .61C .41D .21答案:C ,解析:先用列表法将所有等可能的出现的结果列举出来:字都是正数的概率是41164=,故选择C . 9.(2017河南,9,3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D'处,则点C 的对应点C'的坐标为( )A .(3,1)B .(2,1)C . (1,3)D .(2,3) 答案:D ,解析:过点C'作C'E ⊥x 轴,垂足为E 点,∵AB=2,O 是AB 的中点,∴OA=0B=1,在Rt ∆AOD'中,∵AD'=2,∴∠AD'O =30゜,∴∠D'AO =60゜,∵AD'∥BC',∴∠D'AO =∠C'BE=60゜,∴∠BC'E =30゜,∵BC'=2,∴BE=1,CE=3,∴EO=2,∴C'的坐标为(2,3),故应选D .10.(2017河南,10,3分)如图,将半径为2,圆心角为120゜的扇形OAB 绕点A 逆时针旋转60,点O ,B 的对应点分别为O',B',连接BB',则图中阴影部分的面积是( )A .32πB .332π-C .3232π-D .3234π-答案C ,解析:如图,连结OO ',O ′B 由旋转性质知:∠OAO'=60゜,∵OA =OO',∴∆AOO'是等边三角形,∴∠ AOO'=60゜,∵∠AOB =120゜,∴∠BOO'=60゜, ∵OB =OO',∴∆BOO'是等边三角形,∴∠BO'O =∠OBO'=60゜,∴OB =OO'=O'B= 2,∵∠AO'B'=120゜,∴∠OO'B'=120゜+60゜=180゜,∴O 、O'、B'三点共线,∵O'B'=O'B =OB ,∴∠O'BB'=∠O'B'B =30゜,∴∠OBB'=30゜+60゜=90゜,∴BB'=324222=+,∴S 阴影= 3232360*********ππ-=︒⨯⋅︒-⨯⨯. 二、填空题:(每小题3分,共5小题,合计15分)11.(2017河南,11,3分)计算:423-=答案:6,解析:∵822223=⨯⨯=,24=,∴423-=6. 12.(2017河南,12,3分)不等式组⎪⎩⎪⎨⎧<-≤-x x x 2102的解集是 答案:21≤<-x ,解析:解不等式①,得:2≤x ;解不等式②,得:1->x ,∴不等式组的解集是21≤<-x .13.(2017河南,13,3分)已知点A (1,m ),B (2,n )在反比例函数xy 2-=的图象上,则m 与n 的大小关系为 .答案:n m <,解析:法一:∵02<-=k ,∴y 随x 的增大而增大,∵1<2,∴n m <; 法二:将点A (1,m ),B (2,n )代入反比例函数xy 2-=的解析式中,得2-=m ,1-=n ,∴n m <. 14.(2017河南,14,3分)如图1,点P 从∆ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则∆ABC 的面积是 .答案:12,解析:观察图象,可以获得以下信息:∵①点P 在由B →C 的过程中,BP 的长度y 随时间x 变化的关系为正比例函数,表现在图象上应该是一段线段;②点P 在由C →A的过程中,BP 的长度y 随时间x 变化的关系为二次函数,表现在图象上应该是抛物线的一部分;③且当BP ⊥AC 时,BP 的长度最短,反映在图象上应为抛物线的最低点;④当P 到达A 点时,此时BP=5,∴AB=AC=5,AC 边上的高BP=4,此时,由勾股定理可得:AP=CP=34522=-,∴AC=6,S ∆ABC 126421=⨯⨯.15.(2017河南,15,3分)如图,在直角∆ABC 中,∠A=90゜,AB=AC ,BC=12+,点M 、N 分别是边BC 、AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B'始终落在边AC 上,若∆MB'C 为直角三角形,则BM 的长为 .答案:1或212+,解析:∵∠A=90゜,AB=AC ,BC=12+,∴AB =122+, ①当∠MB'C =90゜时,∵∠B =45゜,∴∠MB'N =45゜,∵∠MB'A =90゜,∴∠A B'N =45゜,∵∠A =90゜,∴∠B'NA =45゜,∴AN =AB',设BN=x ,则NB'=x ,AN =122+—x ,在Rt △ANB' 中,122+—x =22x ,∴x =1,∴CB'=122+—22=1,∴CM=21122=+,∴BM=12+—2=1; ②当∠B'MC =90゜时,∴∠B'MB =90゜,∴∠BMN =∠B'MN =45゜,∵∠B =45゜,∴MN ⊥AB ,NB =NB',∴B'与A 点重合,∴BM =AM ,∵∠C =45゜,∠B'MC =90゜,∴AM =CM ,∴BM = CM ,∵BC=12+,∴BM =212+.三、解答题:(本大题共8个小题,满分75分)16.(2017河南,16,8分)先化简,再求值:()()()()y x x y x y x y x --+-++522,其中12+=x ,12-=y思路分析:①利用完全平方公式对式子()22y x +进行展开运算;②式子()()y x y x +-符合平方差公式特征,可以利用平方差公式对其进行展开运算;③按照单项式乘以多项式的运算法则计算式子()y x x --5,上述运算过程中一定要注意符号别弄错,且不要有漏乘的项.解:()()()()y x x y x y x y x --+-++522xy x y x y xy x 554422222+--+++=xy xy y y x x 54552222++-+-=xy 9= 当12+=x ,12-=y 时,原式=()()91912129=⨯=-+⨯. 17.(2017河南,17,9分)为了了解同学们每月零花钱的数量,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下两个尚不完整的统计图表.请根据以上图表,解答下列问题:(1)填空:这次调查的同学共有 人,a +b = ,m = ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x 在12060<≤x 范围的人数.调查结果统计表调查结果扇形统计图思路分析:(1)由两个统计图可知,B 组学生人数有16人,占32%,∴参与调查的学生人数为16÷32%=50人,∵D 组占16%,∴D 组学生人数有:50×16%=8人,C 组学生人数有50—4—16—8—2=20人,∴a +b =28;∵A 组学生人数有4人,总人数为50人,∴4÷50=8%;(2)∵C 组学生人数有20人,总人数为50人,∴ 360°×5020=144°; (3)∵每月零花钱的数额x 在12060<≤x 范围的人数为28人,总人数为50人,∴估计每月零花钱的数额x 在12060<≤x 范围的人数为1000×5028=560(人). 解:(1)50,28,8;(2)1-32%-8%-4%-16%=40%,360゜×40%=144゜;(3)1000×5028=560(人),答:每月零花钱的数额x 在12060<≤x 范围的人数为560人. 18.(2017河南,18,9分)如图,在∆ABC 中,AB=AC ,以AB 为直径的⊙O 交AC 边于点D ,过点C 作CF ∥AB ,与过点B 的切线交于点F ,连接BD.(1)求证:BD=BF ;(2)若AB=10,CD=4,求BC 的长.思路分析:(1)利用“等边对等角”及“两直线平行,内错角相等”易证得∠ACB =∠BCF ;再利用“直径所对圆周角等于90゜”和切线的性质、“两直线平行,同旁内角互补”推理出∠BDC =∠F =90゜,由“AAS ”可得∆BDC 与∆BFC 全等,由“全等三角形对应边相等”可得出结论;(2)先求出AD 的长,在Rt ∆ABD 中,由勾股定理可计算出BD 的长,在Rt ∆CBD 中再次利用勾股定理即可求得BC 的长.解:(1)证明:∵AB =AC ,∴∠ABC =∠ACB ,∵AB ∥CF ,∴∠ABC =∠BCF ,∴∠ACB =∠BCF ,又∵AB 为直径,∴∠ADB =∠BDC =90゜,∵BF 是⊙O 切线,∴AB ⊥BF ,∵AB ∥CF ,∴∠F =90゜,∴∆BDC ≌∆BFC ,∴BD=BF ;(2)解:∵AB=10,AC=4,∴AD=6,∴BD=8,∴BC=54.19.(2017河南,19,9分)如图所示,我国两艘海监船A ,B 在南海海域巡航.某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45゜方向,B 船测得渔船C 在其南偏东53゜方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:5453sin ≈︒,5353cos ≈︒,3453tan ≈︒,414.12=)思路分析:①过点C 作CD ⊥AB 于点D ,由∠A=45゜,用含BD 的式子表示AD ;②在Rt △∠BCD 中,利用∠CBD 的正切函数列出比例式计算出BD 的长度;③在Rt △∠ACD 、Rt △∠BCD 中分别利用勾股定理求出BC 、AC 的长度;④运用“时间=路程÷速度”,分别计算海监船A ,B 到达渔船C 所需的时间,经比较后即可得到渔船C 等待救援的最少时间.解:如图,过点C 作CD ⊥AB 于点D ,设BD 为x ,在Rt △∠ACD 中,∠A=45゜,∴AD=DC=x+5,在Rt △BCD 中,由BD CD =︒53tan ,得345=+x x , ∴x =15,则BC=25201522=+,AC =220202022=+, ∴A 到C 用时为:()h 94.030220≈,B 到C 用时为:()h 12525=, ∵194.0<,∴至少要等94.0小时.20.(2017河南,20,9分)如图,一次函数b x y +-=与反比例函数()0>=x x k y 的图象交于点A (m ,3)和B (3,1).(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;(2)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若∆POD 的面积为S ,求S 的取值范围.思路分析:(1)先把点B 的坐标代入反比例函数解析式,确定出k 的值,再将利用反比例函数关系式求出点A 的坐标,再把点A 、B 的坐标代入一次函数可得一次函数的解析式;(2)由于一次函数经过P 点,所以可设P 点的坐标为(a ,4+-a ),则根据三角形面积计算公式可用含a 的式子表示出S ,利用二次函数性质判断出S 的最大值,由A 、B 两点的横坐标求得a 的取值范围,进而可得S 的最小值,于是可得S 的取值范围.解:(1)4+-=x y ,xy 3=; (2)解:由(1)得33=m ,∴m =1,则A 点的坐标为(1,3),设P 点的坐标为(a ,4+-a )(31≤≤a ),则PD OD S ⋅=21=()()22214212+--=+-⋅a a a , ∵021<-,∴当a =2时,S 有最大值2,当a =1或3时,S 有最小值为()23221212=+-⨯-=S , ∴223≤≤S . 21.(2017河南,21,10分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A 、B 两种魔方共100个(其中A 种魔方不超过50个),某商店有两种优惠活动,如图所示;请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.思路分析:①找出题目中的等量关系:2个A 种魔方的金额+6个B 种魔方的金额=130,3个A 种魔方的金额=4个B 种魔方的金额,把设出的未知数代入数量关系可列得方程组;②根据购买A ,B 两种魔方的数量不同,运用分类讨论思想,经过计算、比较,确定出合适的购买方案.解:(1)设A 型魔方的单价为a 元,B 型魔方单价为b 元,则由题意,得:⎩⎨⎧==+b a b a 4313062,解方程,得:⎩⎨⎧==1520b a , 答:A 型魔方的单价为20元,B 型魔方单价为15元.(2)设A 型魔方的数量为x 个,B 型魔方数量为(100—x )个,设总费用为W 元,活动一:W 1=0.8×20x +0.4×15(100—x )=10x +60;活动二:W 2=20x +15 [(100—x )—x ]=—10x +1500;当W 1<W 2时,即10x +60<—10x +1500,解得x <45,∴当0<x <45时,活动一方案更优惠; 当W 1=W 2时,即10x +60=—10x +1500,解得x =45,∴当x =45时,活动一和活动二均可; 当W 1>W 2时,即10x +60>—10x +1500,解得x >45,又∵50≤x ,∴当45<x ≤50时,活动二方案更优惠;综上所述,当0<x <45时,活动一方案更优惠;当x =45时,活动一和活动二均可;当45<x ≤50时,活动二方案更优惠.22.(2017河南,22,10分)如图1,在Rt ∆ABC 中,AB=AC ,点D 、E 分别在边AB ,AC 上,AD=AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把∆ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断∆PMN 的形状,试说明理由;(3)拓展延伸:把∆ADE 绕点A 在平面内自由旋转,若AD=4,AB=10,请直接写出∆PMN 面积的最大值.思路分析:(1)①由AB=AC ,AD=AE 可推出BD=CE ,又因点M ,P ,N 分别为DE ,DC ,BC 的中点,所以PM ∥CE 且PM =21CE ,同理,PN ∥BD 且PN =21BD ,于是可推得PM =PN ,∠B =∠PNC ,∠MPD =∠ACD ,∴∠MPN =∠MPD +∠DPN =∠ACD +∠PCN +∠PNC=∠ACB +∠B =90゜,于是可得PM ⊥PN ;(2)由旋转性质得出∠BAD =∠CAE ,又因AB =AC ,AD =AE ,可证得∆BAD 与∆CAE 全等,参考(1)中的解题思路即可证出PM=PN ,PM ⊥PN ,从而推出∆PMN 为等腰直角三角形;(3)在旋转的过程中,由(2)中的结论知∆PMN 为等腰直角三角形,S ∆PMN =228121BD PN =,当S ∆PMN 有最大值时,须有BD 的值最大,由三角形三边关系可推断出当B 、A 、D 三点共线时,BD 的值最大,其最大值为14,此时S ∆PMN =249141481812122=⨯⨯==BD PN . 解:(1)PM=PN ;PM ⊥PN ;(2)∆PMN 为等腰直角三角形,理由如下:由题可知:∆ABC 和∆ADE 均为等腰直角三角形,∴ AB =AC ,AD =AE ,∠BAC =∠DAE =90゜,∴∠BAD +∠DAC =∠CAE +∠DAC ,∴∠BAD =∠CAE ,∴∆BAD ≌∆CAE ,∴∠ABD =∠ACE ,BD =CE ,又∵M 、P 、N 分别是DE 、CD 、BC 的中点,∴PM 是∆CDE 的中位线,∴PM ∥CE 且PM =21CE ,∠MPD =∠ECD =∠ACD +∠ACE ; 同理,PN ∥BD 且PN =21BD ,∠DBC =∠PNC , 又∵BD =CE ,∠ABD =∠ACE ,∴PM =PN ,∴∠MPN =∠MPD +∠DPN =∠ECD +∠DCN +∠CNP=∠ACD +∠ACE +∠DCN +∠CBD=∠ACD +∠DCN +∠ABD +∠CBD=∠ACB +∠ABC =90゜,∴PM ⊥PN ,∴∆PMN 为等腰直角三角形;(3)249 23.(2017河南,23,11分)如图,直线c x y +-=32与x 轴交于点A (3,0),与y 轴交于点B ,抛物线c bx x y ++-=234经过点A ,B .(1)求B 点的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与∆APM 相似,求点M 的坐标; ②点M 在x 轴上自由运动,若三个点M 、P 、N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M 、P 、N 三点成为“共谐点”的 m 的值.思路分析:(1)将A 点坐标代入一次函数解析式求出c 的值,可得到B 坐标为(0,2),将A 、B 两点坐标代入二次函数解析式即可得到答案;(2)①将(m ,0)分别代入一次函数解析式和二次函数解析式,可得N ,P 点的坐标,然后分∆APM ∽∆BPN 、∆APM ∽∆NPB 两种情况利用平行于x 轴的坐标特征及相关角的正切函数值列出比例方程可求得M 点的坐标;②分M 是PN 的中点、N 是MP 的中点、P 是MN 的中点三种情况分别计算出m 的值.解:(1)∵直线c x y +-=32过A (3,0), ∴0332=+⨯-c ,解得:c =2, ∴直线AB 的表达式为:232+-=x y ,∴点B 坐标为(0,2). ∵抛物线过A (3,0),B (0,2), ∴⎪⎩⎪⎨⎧==++⨯-203932c c b , ∴2310342++-=x x y , (2)依题可知:M (m ,0), ∵M N ⊥x 轴交直线232+-=x y 于点P ,交抛物线2310342++-=x x y 于点N , ∴N (m ,2310342++-m m ),P (m ,232+-m ),∵∆APM 相似于∆BPN ,①∆APM ∽∆BPN ,则∠AMP =∠BNP =90゜,∴BN ∥y 轴,∴B ,N 的纵坐标相同为2, ∴2310342++-m m =2,解得:m 1=0,m 2=25, ∵m =0时,B 与N 重合,∆BPN 不存在. ∴m =25,此时M (25,0); ②∆APM ∽∆NPB ,则∠BNP =∠MAP ,过点作BH ⊥MN ,则H (m ,2),∵∠MAP =∠BNP ,∴tan ∠MAP = tan ∠BNP , ∴32==OA OB NH BH , ∴3222310322=-++-m m m ,解得:m 1=0(舍去),m 2=811, ∴m =811,此时M (811,0); (3)21或41-或—1.。

2017届河南省郑州市中考一模数学试卷(带解析)

2017届河南省郑州市中考一模数学试卷(带解析)

绝密★启用前2017届河南省郑州市中考一模数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:71分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,并且关于x 的一元二次方程ax 2+bx+c ﹣m=0有两个不相等的实数根,下列结论: ①b 2﹣4ac <0;②abc >0;③a ﹣b+c <0;④m >﹣2, 其中,正确的个数有( )A .1B .2C .3D .4【答案】B【解析】试题分析:如图所示:图象与x 轴有两个交点,则b 2﹣4ac >0,故①错误;∵图象开口向上,∴a >0,∵对称轴在y 轴右侧,∴a ,b 异号,∴b <0,∵图象与y 轴交于x 轴下方,∴c <0,∴abc >0,故②正确;当x=﹣1时,a ﹣b+c >0,故此选项错误;试卷第2页,共20页∵二次函数y=ax 2+bx+c 的顶点坐标纵坐标为:﹣2,∴关于x 的一元二次方程ax 2+bx+c ﹣m=0有两个不相等的实数根,则m >﹣2,故④正确.故选B . 考点:二次函数图象与系数的关系.2、如图,⊙O 的半径为2,点O 到直线l 距离为3,点P 是直线l 上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为( )A .B .C .2D .3【答案】A . 【解析】试题分析:过点O 作直线l 的垂线,垂足为P ,过P 作⊙O 的切线PQ ,切点为Q ,连接OQ ,此时PQ 为最小,∴OP=3,OQ=2,∵PQ 切⊙O 于点Q ,∴∠OQP=90°,由勾股定理得:PQ==,则PQ 的最小值为,故选A .考点:切线的性质.3、如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .【答案】D . 【解析】试题分析:选项A 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;选项B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;选项C 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;选项D 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.故选D .考点:相似三角形的判定. 4、下列说法正确的是( )A .投掷一枚均匀的硬币,正面朝上的概率是B .投掷一枚图钉,钉尖朝上、朝下的概率一样C .投掷一枚均匀的骰子,每一种点数出现的概率都是,所以每投6次,一定会出现一次“l 点”D .投掷一枚均匀的骰子前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大【答案】A . 【解析】试题分析:选项A 、投掷一枚均匀的硬币,正、背面朝上的几率相等,都是,故本选项正确;选项B 、投掷一枚图钉,钉尖朝上、朝下的概率不一样,故本选项错误;选项C 、根据概率的定义,可知本选项错误;选项D 、投掷结果出现6点的概率一定,不会受主观原因改变,故本选项错误;故选A . 考点:概率的意义.5、如图,用一个半径为5cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A .πcmB .2πcmC .3πcmD .5πcm【答案】C.试卷第4页,共20页【解析】试题分析:根据定滑轮的性质得到重物上升的即为转过的弧长,利用弧长公式得:l==3πcm ,则重物上升了3πcm ,故选C.考点:旋转的性质.6、如图,点F 在平行四边形ABCD 的边AB 上,射线CF 交DA 的延长线于点E ,在不添加辅助线的情况下,与△AEF 相似的三角形有( )A .0个B .1个C .2个D .3个【答案】C . 【解析】试题分析:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥DC ,∴△AEF ∽△CBF ,△AEF ∽△DEC ,∴与△AEF 相似的三角形有2个.故选C . 考点:相似三角形的判定;平行四边形的性质. 7、解一元二次方程x 2﹣8x ﹣5=0,用配方法可变形为( ) A .(x+4)2="11"B .(x ﹣4)2="11"C .(x+4)2="21"D .(x ﹣4)2=21【答案】D . 【解析】试题分析:移项得x 2﹣8x=5,两边都加上一次项系数一半的平方可得x 2﹣8x+16=5+16,即(x ﹣4)2=21,故选D . 考点:解一元二次方程-配方法.8、下列图形中是中心对称图形的有( )个.A .1B .2C .3D .4【答案】B .【解析】试题分析:根据中心对称图形的概念可得第2个、第4个图形是中心对称图形,共2个.故选B.考点:中心对称图形.试卷第6页,共20页第II 卷(非选择题)二、填空题(题型注释)9、如图,在Rt △ABC 中,∠ACB =90°,AB =5,AC =3,点D 是BC 边上一动点,连结AD ,将△ACD 沿AD 折叠,点C 落在点C′,连结C′D 交AB 于点E ,连结BC′.当△BC′D是直角三角形时,DE 的长为_____.【答案】.【解析】试题分析:如图1所示;点E 与点C′重合时.在Rt △ABC 中,BC==4.由翻折的性质可知;AE=AC=3、DC=DE .则EB=2.设DC=ED=x ,则BD=4﹣x .在Rt △DBE 中,DE 2+BE 2=DB 2,即x 2+22=(4﹣x )2.解得:x=.∴DE=.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC ﹣DC=4﹣3=1.∵DE ∥AC ,∴△BDE ∽△BCA .∴,即.解得:DE=.点D 在CB 上运动,∠DBC′<90°,故∠DBC′不可能为直角.考点:翻折变换(折叠问题).10、如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯下的影长分别为1.8m ,1.5m ,已知小军、小珠的身高分别为1.8m ,1.5m ,则路灯的高为 m .【答案】3m . 【解析】试题分析:如图,∵CD ∥AB ∥MN , ∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴,即,解得:AB=3m , 答:路灯的高为3m .考点:中心投影.11、如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是 .【答案】.【解析】试题分析:画树状图得:试卷第8页,共20页∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:.考点:列表法与树状图法.12、将抛物线y=x 2﹣4x ﹣4向左平移4个单位,再向上平移3个单位,得到抛物线的函数表达式是 .【答案】y=(x+2)2﹣5. 【解析】试题分析:由“左加右减”的原则可知,将抛物线y=x 2﹣4x ﹣4向左平移4个单位所得直线的解析式为:y=(x ﹣2+4)2﹣8=(x+2)2﹣8;由“上加下减”的原则可知,将抛物线y=(x+2)2﹣8向上平移3个单位所得抛物线的解析式为:y=(x+2)2﹣5. 考点:二次函数图象与几何变换.13、已知P 1(x 1,y 1),P 2(x 2,y 2)两点都在反比例函数的图象上,且x 1<x 2<0,则y l y 2(填“>”或“<”).【答案】<. 【解析】试题分析:由题意,得比例函数的图象上,且x 1<x 2<0,则y l <y 2,考点:反比例函数图象上点的坐标特征.14、已知关于x 的一元二次方程x 2﹣(k+2)x+2k=0,若x=l 是这个方程的一个根,则求k= .【答案】1. 【解析】试题分析:把x=1代入x 2﹣(k+2)x+2k=0得1﹣(k+2)+2k=0,解得k=1. 考点:一元二次方程的解.三、解答题(题型注释)15、如图1,地面BD 上两根等长立柱AB ,CD 之间悬挂一根近似成抛物线y=x 2﹣x+3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB 为3米的位置处用一根立柱MN 撑起绳子(如图2),使左边抛物线F 1的最低点距MN 为1米,离地面1.8米,求MN 的长;(3)将立柱MN 的长度提升为3米,通过调整MN 的位置,使抛物线F 2对应函数的二次项系数始终为,设MN 离AB 的距离为m ,抛物线F 2的顶点离地面距离为k ,当2≤k≤2.5时,求m 的取值范围.【答案】(1)m ;(2)MN 的长度为2.1m ;(3)m 的取值范围是4≤m≤8﹣2.【解析】试题分析:(1)直接利用配方法求出二次函数最值得出答案;(2)利用顶点式求出抛物线F 1的解析式,进而得出x=3时,y 的值,进而得出MN 的长;(3)根据题意得出抛物线F 2的解析式,得出k 的值,进而得出m 的取值范围.试题解析:(1)∵a=>0,∴抛物线顶点为最低点,∵y=x 2﹣x+3=(x ﹣4)2+,∴绳子最低点离地面的距离为:m ;试卷第10页,共20页(2)由(1)可知,对称轴为x=4,则BD=8, 令x=0得y=3,∴A (0,3),C (8,3),由题意可得:抛物线F 1的顶点坐标为:(2,1.8), 设F 1的解析式为:y=a (x ﹣2)2+1.8, 将(0,3)代入得:4a+1.8=3, 解得:a=0.3,∴抛物线F 1为:y=0.3(x ﹣2)2+1.8, 当x=3时,y=0.3×1+1.8=2.1, ∴MN 的长度为:2.1m ; (3)∵MN=DC=3,∴根据抛物线的对称性可知抛物线F 2的顶点在ND 的垂直平分线上,∴抛物线F 2的顶点坐标为:(m+4,k ),∴抛物线F 2的解析式为:y=(x ﹣m ﹣4)2+k ,把C (8,3)代入得:(8﹣m ﹣4)2+k=3,解得:k=﹣(4﹣m )2+3,∴k=﹣(m ﹣8)2+3,∴k 是关于m 的二次函数,又∵由已知m <8,在对称轴的左侧, ∴k 随m 的增大而增大,∴当k=2时,﹣(m ﹣8)2+3=2,解得:m 1=4,m 2=12(不符合题意,舍去),当k=2.5时,﹣(m ﹣8)2+3=2.5, 解得:m 1=8﹣2,m 2=8+2(不符合题意,舍去),试卷第11页,共20页∴m 的取值范围是:4≤m≤8﹣2.考点:二次函数的应用.16、如图,在矩形ABCD 中,E 为CD 的中点,F 为BE 上的一点,连结CF 并延长交AB 于点M ,MN ⊥CM 交射线AD 于点N . (1)当F 为BE 中点时,求证:AM=CE ;(2)若 =2,求的值;(3)若=n ,当n 为何值时,MN ∥BE ?【答案】(1)详见解析;(2)3;(3)n=4. 【解析】试题分析:(1)如图1,易证△BMF ≌△ECF ,则有BM=EC ,然后根据E 为CD 的中点及AB=DC 就可得到AM=EC ;(2)如图2,设MB=a ,易证△ECF ∽△BMF ,根据相似三角形的性质可得EC=2a ,由此可得AB=4a ,AM=3a ,BC=AD=2a .易证△AMN ∽△BCM ,根据相似三角形的性质即可得到AN= a ,从而可得ND=AD ﹣AN=a ,就可求出的值;(3)如图3,设MB=a ,同(2)可得BC=2a ,CE=na .由MN ∥BE ,MN ⊥MC 可得∠EFC=∠HMC=90°,从而可证到△MBC ∽△BCE ,然后根据相似三角形的性质即可求出n 的值.试题解析:(1)当F 为BE 中点时,如图1, 则有BF=EF .∵四边形ABCD 是矩形, ∴AB=DC ,AB ∥DC ,∴∠MBF=∠CEF ,∠BMF=∠ECF . 在△BMF 和△ECF 中,试卷第12页,共20页,∴△BMF ≌△ECF , ∴BM=EC . ∵E 为CD 的中点,∴EC=DC ,∴BM=EC=DC=AB ,∴AM=BM=EC ; (2)如图2, 设MB=a ,∵四边形ABCD 是矩形,∴AD=BC ,AB=DC ,∠A=∠ABC=∠BCD=90°,AB ∥DC , ∴△ECF ∽△BMF ,∴=2,∴EC=2a ,∴AB=CD=2CE=4a ,AM=AB ﹣MB=3a .∵=2,∴BC=AD=2a . ∵MN ⊥MC , ∴∠CMN=90°, ∴∠AMN+∠BMC=90°. ∵∠A=90°,∴∠ANM+∠AMN=90°, ∴∠BMC=∠ANM , ∴△AMN ∽△BCM ,∴,试卷第13页,共20页∴,∴AN=a ,ND=AD ﹣AN=2a ﹣a=a ,∴=3;(3)当=n 时,如图3,设MB=a ,同(2)可得BC=2a ,CE=na . ∵MN ∥BE ,MN ⊥MC , ∴∠EFC=∠HMC=90°, ∴∠FCB+∠FBC=90°. ∵∠MBC=90°, ∴∠BMC+∠FCB=90°, ∴∠BMC=∠FBC . ∵∠MBC=∠BCE=90°, ∴△MBC ∽△BCE ,∴,∴,∴n=4.考点:相似形综合题;全等三角形的判定与性质;矩形的性质.试卷第14页,共20页17、巩义长寿山景区门票价格为50元,在今年红叶节期问,为吸引游客,推出了如下优惠活动:如果人数不超过25人,门票按原价销售,如果人数超过25人,每超过1人,所购买的门票均降低1元,但人均门票不低于35元,某单位组织员工去长寿山看红叶,共支付门票费用1350元,请问该单位这次共有多少名员工去长寿山看红叶?【答案】该单位这次共有30名员工去长寿山看红叶. 【解析】试题分析:设该单位这次共有x 名员工去长寿山看红叶,根据每超过1人,人均旅游费用降低1元,且共支付给旅行社旅游费用1350元,可列出方程求解,根据人均旅游费用不得低于35元,判断解是否合理.试题解析:设该单位这次共有x 名员工去长寿山看红叶,则人均费用是[50﹣(x ﹣25)]元由题意得[50﹣(x ﹣25)]x=1350, 整理得x 2﹣75x+1350=0, 解得x 1=45,x 2=30.当x=45时,人均门票价格为50﹣(x ﹣25)=30<35,不合题意,应舍去. 当x=30时,人均旅游费用为50﹣(x ﹣25)=45>35,符合题意. 答:该单位这次共有30名员工去长寿山看红叶. 考点:一元二次方程的应用. 18、阅读对话,解答问题:(1)分别用a 、b 表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a ,b )的所有取值;(2)求在(a ,b )中使关于x 的一元二次方程x 2﹣ax+2b=0有实数根的概率.试卷第15页,共20页【答案】(1)详见解析;(2) .【解析】试题分析:(1)用列表法易得(a ,b )所有情况;(2)看使关于x 的一元二次方程x 2﹣ax+2b=0有实数根的情况占总情况的多少即可. 试题解析:(1)(a ,b )对应的表格为:(2)∵方程x 2﹣ax+2b=0有实数根, ∴△=a 2﹣8b≥0.∴使a 2﹣8b≥0的(a ,b )有(3,1),(4,1),(4,2),∴P(△≥0)=.考点:列表法与树状图法;根的判别式.19、如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C . (1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标; (2)求在旋转过程中,△ABC 所扫过的面积.【答案】(1)图见解析,A 1的坐标为(﹣1,4),点B 1的坐标为(1,4);(2)+3.试卷第16页,共20页【解析】试题分析:(1)根据旋转中心方向及角度找出点A 、B 的对应点A 1、B 1的位置,然后顺次连接即可,根据A 、B 的坐标建立坐标系,据此写出点A 1、B 1的坐标;(2)利用勾股定理求出AC 的长,根据△ABC 扫过的面积等于扇形CAA 1的面积与△ABC 的面积和,然后列式进行计算即可.试题解析:(1)所求作△A 1B 1C 如图所示:由A (4,3)、B (4,1)可建立如图所示坐标系, 则点A 1的坐标为(﹣1,4),点B 1的坐标为(1,4); (2)∵AC=,∠ACA 1=90°∴在旋转过程中,△ABC 所扫过的面积为: S 扇形CAA1+S △ABC= +×3×2= +3.考点:作图-旋转变换;扇形面积的计算.20、杜甫实验学校准备在操场边建一个面积为600平方米的长方形劳动实践基地. (1)求实践基地的长y (米)关于宽x (米)的函数表达式;(2)由于受场地限制,实践基地的宽不能超过20米,请结合实际画出函数的图象;试卷第17页,共20页(3)当实践基地的宽是l5米时,实践基地的长是多少米?【答案】(1) y=;(2)图见解析;(3)当实践基地的宽是15米时,实践基地的长为40米. 【解析】试题分析:(1)根据矩形的面积=长×宽,列出y 与x 的函数表达式即可;(2)根据自变量的取值范围作出图象即可;(3)把x=15代入计算求出y 的值,即可得到结果.试题解析:(1)由长方形面积为2000平方米,得到xy=600,即y=;(2)图象如图所示:(3)当x=15(米)时,y= =40(米),则当实践基地的宽是15米时,实践基地的长为40米. 考点:反比例函数的应用.试卷第18页,共20页21、如图,⊙O 的直径为AB ,点C 在圆周上(异于A ,B ),AD ⊥CD . (1)若BC=3,AB=5,求AC 的值;(2)若AC 是∠DAB 的平分线,求证:直线CD 是⊙O 的切线.【答案】(1) AC=4;(2)详见解析. 【解析】试题分析:(1)首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC 的长即可;(2)连接OC ,证OC ⊥CD 即可;利用角平分线的性质和等边对等角,可证得∠OCA=∠CAD ,即可得到OC ∥AD ,由于AD ⊥CD ,那么OC ⊥CD ,由此得证.试题解析:(1)解:∵AB 是⊙O 直径,C 在⊙O 上, ∴∠ACB=90°, 又∵BC=3,AB=5, ∴由勾股定理得AC=4; (2)证明:连接OC ∵AC 是∠DAB 的角平分线, ∴∠DAC=∠BAC , 又∵AD ⊥DC , ∴∠ADC=∠ACB=90°, ∴△ADC ∽△ACB , ∴∠DCA=∠CBA , 又∵OA=OC , ∴∠OAC=∠OCA , ∵∠OAC+∠OBC=90°, ∴∠OCA+∠ACD=∠OCD=90°, ∴DC 是⊙O 的切线.试卷第19页,共20页考点:切线的判定.22、先化简,再求值:(a ﹣)÷(),其中a 满足a 2﹣3a+2=0.【答案】原式=a ,由a 2﹣3a+2=0,得a=1或a=2,当a=1时,a ﹣1=0,使得原分式无意义,当a=2,原式=2. 【解析】试题分析:先化简题目中的式子,然后根据a 2﹣3a+2=0可得a 的值,注意a 的值要使得原分式有意义,本题得以解决.试题解析:(a ﹣)÷()====a ,由a 2﹣3a+2=0,得a=1或a=2,∵当a=1时,a ﹣1=0,使得原分式无意义, ∴a=2,原式=2. 考点:分式的化简求值.23、如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M 与圆心O 重合,则图中阴影部分的面积是 .试卷第20页,共20页【答案】 .【解析】试题分析:如图,连接OM 交AB 于点C ,连接OA 、OB ,由题意知,OM ⊥AB ,且OC=MC=,在RT △AOC 中,∵OA=1,OC=,∴cos ∠AOC==,AC= =∴∠AOC=60°,AB=2AC=,∴∠AOB=2∠AOC=120°,则S 弓形ABM =S 扇形OAB ﹣S △AOB =﹣××=,S 阴影=S 半圆﹣2S 弓形ABM =π×12﹣2()=.考点:扇形面积的计算;翻折变换(折叠问题).。

河南省中考数学仿真试卷(1)(含解析)-人教版初中九年级全册数学试题

河南省中考数学仿真试卷(1)(含解析)-人教版初中九年级全册数学试题

2017年某某省中考数学仿真试卷(1)一、选择题(每小题3分,共24分)1.一个数的绝对值等于3,这个数是()A.3 B.﹣3 C.±3 D.2.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20° B.25° C.30° D.35°3.下列运算正确的是()A.a3•a2=a6B.(ab3)2=a2b6C.(a﹣b)2=a2﹣b2D.5a﹣3a=24.某校九年级(一)班学生在男子50米跑测试中,第一小组8名同学的测试成绩如下(单位:秒):7.0,7.2,7.5,7.0,7.4,7.5,7.0,7.8,则下列说法正确的是()5.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B.C.D.6.等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为()A.40 B.46 C.48 D.507.如图所示,在平面直角坐标系中,直线OM是正比例函数y=﹣x的图象,点A的坐标为(1,0),在直线OM上找点N,使△ONA是等腰三角形,符合条件的点N的个数是()A.2个B.3个C.4个D.5个8.已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是()A.CP平分∠BCDB.四边形ABED为平行四边形C.CQ将直角梯形分为面积相等的两部分D.△ABF为等腰三角形二、填空题(每小题3分,共21分)9.分解因式:x2﹣4=.10.若圆锥的底面半径为2cm,母线长为5cm,则此圆锥的表面积为.11.如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2﹣2mx+n2=0有实数根的概率为.2+60x,该型号飞机着陆后滑行m才能停下来.13.如图,直线y=6﹣x交x轴、y轴于A、B两点,P是反比例函数图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=.14.如图,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD 上的F点,若△FDE的周长为8 cm,△FCB的周长为20cm,则FC的长为cm.15.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于.三、解答题(本大题共8小题,满分75分)16.先化简,再求值:,其中x=2sin60°﹣()﹣2.17.某校积极开展每天锻炼1小时活动,老师对本校八年级学生进行一分钟跳绳测试,并对跳绳次数进行统计,绘制了八(1)班一分钟跳绳次数的频数分布直方图和八年级其余班级一分钟跳绳次数的扇形统计图.已知在图1中,组中值为190次一组的频率为0.12.(说明:组中值为190次的组别为180≤次数<200)请结合统计图完成下列问题:(1)八(1)班的人数是,组中值为110次一组的频率为;(2)请把频数分布直方图补充完整;(3)如果一分钟跳绳次数不低于120次的同学视为达标,八年级同学一分钟跳绳的达标率不低于90%,那么八年级同学至少有多少人?18.如图,在梯形ABCD中,AD∥BC,E是BC上的一点,且CE=8,BC=12,CD=4,∠C=30°,∠B=60°.点P是线段BC边上一动点(包括B、C两点),设PB的长是x.(1)当x为何值时,以点P、A、D、E为顶点的四边形为直角梯形.(2)当x为何值时,以点P、A、D、E为顶点的四边形为平行四边形.(3)P在BC上运动时,以点P、A、D、E为顶点的四边形能否为菱形.19.如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴正方向平移,在第一象限内B,C两点的对应点B′,C′恰好落在某反比例函数图象上,求该反比例函数的解析式;(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值X围.20.如图所示,某幼儿园为加强安全管理,决定将园内滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上.(1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方有3米长的空地就能保证安全,已知原滑滑板的前方有5米长的空地,则这样改造是否可行?请说明理由.(参考数据:≈1.414,≈1.732,≈2.449,以上结果均保留到小数点后两位)21.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)超过30平方米不超过m(平方米)部分(45≤m≤60)超过m平方米部分根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米左右,缴纳房款为y万元,且57<y≤60 时,求m的取值X围该.22.如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.23.如图,抛物线y=ax2+bx+c的开口向下,与x轴交于点A(﹣3,0)和点B(1,0).与y 轴交于点C,顶点为D.(1)求顶点D的坐标.(用含a的代数式表示);(2)若△ACD的面积为3.①求抛物线的解析式;②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P,且∠PAB=∠DAC,求平移后抛物线的解析式.2017年某某省中考数学仿真试卷(1)参考答案与试题解析一、选择题(每小题3分,共24分)1.一个数的绝对值等于3,这个数是()A.3 B.﹣3 C.±3 D.【考点】绝对值.【分析】根据绝对值的定义即可求解.【解答】解:因为|3|=3,|﹣3|=3,∴绝对值等于3的数是±3.故选C.2.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20° B.25° C.30° D.35°【考点】平行线的性质.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得答案∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.【解答】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=25°,∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣25°=20°,∴∠2=∠3=20°.故选A.3.下列运算正确的是()A.a3•a2=a6B.(ab3)2=a2b6C.(a﹣b)2=a2﹣b2D.5a﹣3a=2【考点】完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数幂、积的乘方与幂的乘方的性质,完全平方公式以及合并同类项的知识,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、a3•a2=a5,故本选项错误;B、(ab3)2=a2b6,故本选项正确;C、(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、5a﹣3a=2a,故本选项错误.故选B.4.某校九年级(一)班学生在男子50米跑测试中,第一小组8名同学的测试成绩如下(单位:秒):7.0,7.2,7.5,7.0,7.4,7.5,7.0,7.8,则下列说法正确的是()【考点】极差;算术平均数;中位数;众数.【分析】平均数只要求出数据之和再除以总个数即可;对于中位数,按从小到大的顺序排列,只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数是出现频数最大的数据.【解答】解:A、中位数是7.3,故A错误;B、众数是7.0,故B错误;C、平均数是7.3,故C正确;D、极差是0.8,故D错误.故选C.5.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B.C.D.【考点】简单几何体的三视图.【分析】看哪个几何体的三视图中有长方形,圆,及三角形即可.【解答】解:A、三视图分别为正方形,三角形,圆,故A选项符合题意;B、三视图分别为三角形,三角形,圆及圆心,故B选项不符合题意;C、三视图分别为正方形,正方形,正方形,故C选项不符合题意;D、三视图分别为三角形,三角形,矩形及对角线,故D选项不符合题意;故选:A.6.等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为()A.40 B.46 C.48 D.50【考点】全等三角形的判定与性质;三角形的面积;等腰直角三角形.【分析】求出∠ABD=∠ACF,根据ASA证△ABD≌△ACF,推出AD=AF,得出AB=AC=2AD=2AF,求出AF长,求出AB、AC长,根据三角形的面积公式得出△FBC的面积等于BF×AC,代入求出即可.【解答】解:∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,∵在△ABD和△ACF中,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴△FBC的面积是×BF×AC=×12×8=48,故选C.7.如图所示,在平面直角坐标系中,直线OM是正比例函数y=﹣x的图象,点A的坐标为(1,0),在直线OM上找点N,使△ONA是等腰三角形,符合条件的点N的个数是()A.2个B.3个C.4个D.5个【考点】一次函数综合题.【分析】本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,AN=OA=1,共有2个,AO=ON=1时,有一个点,若OA是底边时,N是OA的中垂线与x轴的交点,有1个,再利用直线OM是正比例函数y=﹣x的图象,得出∠AON2=60°,即可得出答案.【解答】解:∵直线OM是正比例函数y=﹣x的图象,∴图形经过(1,﹣),∴tan∠AON2=.∴∠AON2=60°,若AO作为腰时,有两种情况,当A是顶角顶点时,N是以A为圆心,以OA为半径的圆与OM的交点,共有1个,当O是顶角顶点时,N是以O为圆心,以OA为半径的圆与MO的交点,有2个;此时2个点重合,若OA是底边时,N是OA的中垂线与直线MO的交点有1个.以上4个交点有2个点重合.故符合条件的点有2个.故选:A.8.已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是()A.CP平分∠BCDB.四边形ABED为平行四边形C.CQ将直角梯形分为面积相等的两部分D.△ABF为等腰三角形【考点】直角梯形;全等三角形的判定与性质;平行四边形的判定与性质.【分析】本题可用排除法证明,即证明A、B、D正确,C不正确;易证△BCF≌△DCE(SAS),得∠FBC=∠EDC,∴△BPE≌△DPF,∴BP=DP;∴△BPC≌△DPC,∴∠BCP=∠DCP,∴A正确;∵AD=BE且AB∥BE,所以,四边形ABED为平行四边形,B正确;∵BF=ED,AB=ED,∴AB=BF,即D正确;【解答】解:易证△BCF≌△DCE(SAS),∴∠FBC=∠EDC,BF=ED;∴△BPE≌△DPF(AAS),∴BP=DP,∴△BPC≌△DPC(SSS),∴∠BCP=∠DCP,即A正确;又∵AD=BE且AD∥BE,∴四边形ABED为平行四边形,B正确;∵BF=ED,AB=ED,∴AB=BF,即D正确;综上,选项A、B、D正确.故选:C.二、填空题(每小题3分,共21分)9.分解因式:x2﹣4= (x+2)(x﹣2).【考点】因式分解﹣运用公式法.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).10.若圆锥的底面半径为2cm,母线长为5cm,则此圆锥的表面积为14πcm2.【考点】圆锥的计算.【分析】先求得圆锥的底面周长,再根据圆锥的侧面积等于lr,l表示圆锥的底面周长,r表示圆锥的母线长或侧面展开扇形的半径.【解答】解:圆锥的底面周长=4πcm,圆锥的侧面积=lr=×4π×5=10πcm2,底面积为4πcm2,表面积为10π+4π=14πcm2,故答案为:14πcm2.11.如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2﹣2mx+n2=0有实数根的概率为.【考点】概率公式;根的判别式.【分析】从0,1,2,3四个数中任取的一个数,从0,1,2三个数中任取的一个数则共有12种结果,且每种结果出现的机会相同,关于x的一元二次方程x2﹣2mx+n2=0有实数根的条件是:4(m2﹣n2)≥0,在上面得到的数对中共有9个满足.【解答】解:从0,1,2,3四个数中任取的一个数,从0,1,2三个数中任取的一个数则共有:4×3=12种结果,∵满足关于x的一元二次方程x2﹣2mx+n2=0有实数根,则△=(﹣2m)2﹣4n2=4(m2﹣n2)≥0,符合的有9个,∴关于x的一元二次方程x2﹣2mx+n2=0有实数根的概率为.2+60x,该型号飞机着陆后滑行600 m才能停下来.【考点】二次函数的应用.【分析】2+60x的最大函数值,将函数解析式化为顶点式即可解答本题.【解答】解:∵2+60x=﹣1.5(x﹣20)2+600,∴x=20时,y取得最大值,此时y=600,即该型号飞机着陆后滑行600m才能停下来,故答案为:600.13.如图,直线y=6﹣x交x轴、y轴于A、B两点,P是反比例函数图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=8 .【考点】反比例函数综合题.【分析】首先作辅助线:过点E作EC⊥OB于C,过点F作FD⊥OA于D,然后由直线y=6﹣x 交x轴、y轴于A、B两点,求得点A与B的坐标,则可得OA=OB,即可得△AOB,△BCE,△ADF是等腰直角三角形,则可得AF•BE=CE•DF=2CE•DF,又由四边形CEPN与MDFP是矩形,可得CE=PN,DF=PM,根据反比例函数的性质即可求得答案.【解答】解:过点E作EC⊥OB于C,过点F作FD⊥OA于D,∵直线y=6﹣x交x轴、y轴于A、B两点,∴A(6,0),B(0,6),∴OA=OB,∴∠ABO=∠BAO=45°,∴BC=CE,AD=DF,∵PM⊥OA,PN⊥OB,∴四边形CEPN与MDFP是矩形,∴CE=PN,DF=PM,∵P是反比例函数y=(x>0)图象上的一点,∴PN•PM=4,∴CE•DF=4,在Rt△BCE中,BE==CE,在Rt△ADF中,AF==DF,则AF•BE=CE•DF=2CE•DF=8.故答案为:8.14.如图,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD 上的F点,若△FDE的周长为8 cm,△FCB的周长为20cm,则FC的长为 6 cm.【考点】翻折变换(折叠问题);平行四边形的性质.【分析】根据折叠的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【解答】解:AE=EF,AB=BF;△FDE的周长为DE+FE+DF=AD+DF=8cm,△FCB的周长为FC+AD+AB=20 cm,分析可得:FC=[FC+AD+AB﹣(AD+DF)]=(2FC)=(△FCB的周长﹣△FDE的周长)=(20﹣8)=6cm.故答案为6.15.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于.【考点】二次函数综合题.【分析】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,=,代入求出BF和CM,相加即可求出答案.【解答】解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE==,设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x,即=,=,解得:BF=x,CM=﹣x,∴BF+CM=.故答案为:三、解答题(本大题共8小题,满分75分)16.先化简,再求值:,其中x=2sin60°﹣()﹣2.【考点】分式的化简求值;负整数指数幂;特殊角的三角函数值.【分析】将原式第二项中被除式的分子利用完全平方公式分解因式,除式的分子利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后再利用同分母分式的减法运算计算,得到最简结果,接着利用特殊角的三角函数值及负指数公式化简,求出x的值,将x的值代入化简后的式子中计算,即可得到原式的值.【解答】解:﹣÷=﹣÷=﹣•=﹣=﹣,当x=2sin60°﹣()﹣2=2×﹣4=﹣4时,原式=﹣=﹣.17.某校积极开展每天锻炼1小时活动,老师对本校八年级学生进行一分钟跳绳测试,并对跳绳次数进行统计,绘制了八(1)班一分钟跳绳次数的频数分布直方图和八年级其余班级一分钟跳绳次数的扇形统计图.已知在图1中,组中值为190次一组的频率为0.12.(说明:组中值为190次的组别为180≤次数<200)请结合统计图完成下列问题:(1)八(1)班的人数是50 ,组中值为110次一组的频率为0.16 ;(2)请把频数分布直方图补充完整;(3)如果一分钟跳绳次数不低于120次的同学视为达标,八年级同学一分钟跳绳的达标率不低于90%,那么八年级同学至少有多少人?【考点】频数(率)分布直方图;一元一次不等式的应用;扇形统计图.【分析】(1)用频数除以所占的频率可得八(1)班的人数,由频数分布直方图知,组中值为110次一组的频数是8,再由频率=频数÷数据总和计算;(2)先计算组中值为130次一组的频数为50﹣8﹣10﹣14﹣6=12人,再补充完整频数分布直方图即可;(3)根据八年级同学一分钟跳绳的达标率不低于90%,列不等式求解.【解答】解:(1)八(1)班的人数是6÷0.12=50人,由频数分布直方图知,组中值为110次一组的频数是8,所以它对应的频率是8÷50=0.16;(2)组中值为130次一组的频数为12人,(3)设八年级同学人数有x人,达标的人数为12+10+14+6=42,根据一分钟跳绳次数不低于120次的同学视为达标,达标所占比例为:1﹣9%=91%=0.91,则可得不等式:42+0.91(x﹣50)≥0.9x,解得:x≥350,答:八年级同学人数至少有350人.18.如图,在梯形ABCD中,AD∥BC,E是BC上的一点,且CE=8,BC=12,CD=4,∠C=30°,∠B=60°.点P是线段BC边上一动点(包括B、C两点),设PB的长是x.(1)当x为何值时,以点P、A、D、E为顶点的四边形为直角梯形.(2)当x为何值时,以点P、A、D、E为顶点的四边形为平行四边形.(3)P在BC上运动时,以点P、A、D、E为顶点的四边形能否为菱形.【考点】梯形;平行四边形的性质;菱形的性质;直角梯形.【分析】(1)如图,分别过A、D作BC的垂线,垂足分别为F、G,容易得到AF=DG,AD=FG,而CD=4,∠C=30°,由此可以求出CG=6,DG=AF=2,又∠B=60°,BF=2,若点P、A、D、E为顶点的四边形为直角梯形,则∠APC=90°或∠DPC=90°,那么P与F重合或P与G 重合,根据前面求出的长度即可求出此时的x的值;(2)若以点P、A、D、E为顶点的四边形为平行四边形,由于AD=BE=4,且AD∥BE,有两种情况:①当点P与B重合时,利用已知条件可以求出BP的长度;②当点P在CE中点时,利用已知条件也可求出BP的长度;(3)以点P、A、D、E为顶点的四边形能构成菱形.由(1)(2)知,当BP=0或8时,以点P、A、D、E为顶点的四边形是平行四边形,根据已知条件分别计算一组邻边证明它们相等即可证明它是菱形.【解答】解:(1)分别过点A、D作BC的垂线,垂足分别为F、G.∵∠C=30°,且CD=,∴DG=2,CG=6,∴DG=AF=2,∵∠B=60°,∴BF=2.∵BC=12,∴FG=AD=4,显然,当P点与F或点G重合时,以点P、A、D、E为顶点的四边形为直角梯形.所以x=2或x=6;(2)∵AD=BE=4,且AD∥BE,∴当点P与B重合时,即x=0时.点P、A、D、E为顶点的四边形为平行四边形,又∵当点P在CE中点时,EP=AD=4,且EP∥AD,∴x=8时,点P、A、D、E为顶点的四边形为平行四边形;(3)由(1)(2)知,∵∠BAF=30°,∴AB=2BF=4,∴x=0时,且PA=AD,即以点P、A、D、E为顶点的四边形为菱形.∵AB=BE,且∠B=60°,∴△ABE为正三角形.∴AE=AD=4.即当x=8时,即以点P、A、D、E为顶点的四边形为菱形,∴当BP=0或8时,以点P、A、D、E为顶点的四边形是菱形.19.如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴正方向平移,在第一象限内B,C两点的对应点B′,C′恰好落在某反比例函数图象上,求该反比例函数的解析式;(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值X围.【考点】反比例函数综合题.【分析】(1)作⊥x轴于点N,根据HL证明Rt△CAN≌Rt△AOB,求出NO的长度,进而求出d;(2)设△ABC沿x轴的正方向平移c个单位,用c表示出C′和B′,根据两点都在反比例函数图象上,求出k的值,进而求出c的值,即可求出反比例函数和直线B′C′的解析式;(3)直接从图象上找出y1<y2时,x的取值X围.【解答】解:(1)作⊥x轴于点N,∵A(﹣2,0)B(0,1).∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵,∴Rt△CAN≌Rt△AOB(HL),∴AN=BO=1,=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1)又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=,得﹣6+2c=c,解得c=6,即反比例函数解析式为y1=,(3)此时C′(3,2),B′(6,1),设直线B′C′的解析式y2=mx+n,∵,∴,∴直线C′B′的解析式为y2=﹣x+3;由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(6,1),∴若y1<y2时,则3<x<6.20.如图所示,某幼儿园为加强安全管理,决定将园内滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上.(1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方有3米长的空地就能保证安全,已知原滑滑板的前方有5米长的空地,则这样改造是否可行?请说明理由.(参考数据:≈1.414,≈1.732,≈2.449,以上结果均保留到小数点后两位)【考点】二次根式的应用.【分析】(1)先在Rt△ABC中利用45°的正切计算出AC=2,再在Rt△ADC中利用含30度的直角三角形三边的关系得到AD≈5.656(m),然后计算AD﹣AB即可;(2)利用等腰直角三角形的性质得到BC=AC=2,再在Rt△ADC中利用30度的正切计算出CD=2,则BD≈<3,由于滑滑板的正前方有3米长的空地就能保证安全,则可判定这样改造不可行.【解答】解:(1)在Rt△ABC中,∵tan∠ABC=,∴AC=4tan45°=2,在Rt△ADC中,∵∠D=30°,∴AD=2AC=4≈5.656(m),∵AD﹣AB=5.656﹣4≈1.66(m),∴改善后滑滑板会加长1.66米;(2)不可行,理由如下:∵△ABC为等腰直角三角形,∴BC=AC=2,在Rt△ADC中,∵tanD=,∴CD===2,∴BD=CD﹣BC=2﹣2≈2.060,<3,∴这样改造不可行.21.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)超过30平方米不超过m(平方米)部分(45≤m≤60)超过m平方米部分根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米左右,缴纳房款为y万元,且57<y≤60 时,求m的取值X围该.【考点】一次函数的应用.【分析】(1)根据房款=房屋单价×购房面积就可以表示出应缴房款;(2)由分段函数当0≤x≤30,当30<x≤m时,当x>m时,分别求出y与x之间的表达式即可;(3)当50≤m≤60和当45≤m<50时,分别讨论建立不等式组就可以求出结论.【解答】×90+×30=42(万元).(2)由题意,得①当0≤x≤×3x=0.9x;②当30<x≤×3×30+×3×(x﹣30)=1.5x﹣18;③当x>×3×30+×3(m﹣30)+×3×(x﹣m)=2.1x﹣0.6m﹣18.∴y=;(3)由题意,得①当50≤m≤×50﹣18=57(舍);②当45≤m<×50﹣0.6m﹣18=87﹣0.6m.∵57<y≤60,∴57<≤60,∴45≤m<50.综合①②得45≤m<50.22.如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.【考点】四边形综合题.【分析】(1)延长CB到Q,使BQ=DF,连接AQ,根据四边形ABCD是正方形求出AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠EAF,证△EAQ≌△EAF,推出EF=BQ即可;(2)根据△EAQ≌△EAF,EF=BQ得出×BQ×AB=×FE×AM,求出即可;(3)延长CB到Q,使BQ=DF,连接AQ,根据折叠和已知得出AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠FAE,证△EAQ≌△EAF,推出EF=EQ即可.【解答】(1)EF=BE+DF,证明:如答图1,延长CB到Q,使BQ=DF,连接AQ,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,在△ADF和△ABQ中,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠DAB=90°,∠FAE=45°,∴∠DAF+∠BAE=45°,∴∠BAE+∠BAQ=45°,即∠EAQ=∠FAE,在△EAQ和△EAF中∴△EAQ≌△EAF,∴EF=EQ=BE+BQ=BE+DF.(2)解:AM=AB,理由是:∵△EAQ≌△EAF,EF=EQ,∴×EQ×AB=×FE×AM,∴AM=AB.(3)AM=AB,证明:如答图2,延长CB到Q,使BQ=DF,连接AQ,∵折叠后B和D重合,∴AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,在△ADF和△ABQ中,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠FAE=∠BAD,∴∠DAF+∠BAE=∠BAE+∠BAQ=∠EAQ=∠BAD,即∠EAQ=∠FAE,在△EAQ和△EAF中,,∴△EAQ≌△EAF(SAS),∴EF=EQ,∵△EAQ≌△EAF,EF=EQ,∴×EQ×AB=×FE×AM,∴AM=AB.23.如图,抛物线y=ax2+bx+c的开口向下,与x轴交于点A(﹣3,0)和点B(1,0).与y 轴交于点C,顶点为D.(1)求顶点D的坐标.(用含a的代数式表示);(2)若△ACD的面积为3.①求抛物线的解析式;②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P,且∠PAB=∠DAC,求平移后抛物线的解析式.【考点】二次函数综合题.【分析】(1)已知抛物线与x轴的两交点的横坐标分别是﹣3和1,设抛物线解析式的交点式y=a(x+3)(x﹣1),再配方为顶点式,可确定顶点坐标;(2)①设AC与抛物线对称轴的交点为E,先运用待定系数法求出直线AC的解析式,求出点E的坐标,即可得到DE的长,然后由S△ACD=×DE×OA列出方程,解方程求出a的值,即可确定抛物线的解析式;②先运用勾股定理的逆定理判断出在△ACD中∠ACD=90°,利用三角函数求出tan∠DAC=.设y=﹣x2﹣2x+3=﹣(x+1)2+4向右平移后的抛物线解析式为y=﹣(x+m)2+4,两条抛物线交于点P,直线AP与y轴交于点F.根据正切函数的定义求出OF=1.分两种情况进行讨论:(Ⅰ)如图2①,F点的坐标为(0,1),(Ⅱ)如图2②,F点的坐标为(0,﹣1).针对这两种情况,都可以先求出点P的坐标,再得出m的值,进而求出平移后抛物线的解析式.【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于点A(﹣3,0)和点B(1,0),∴抛物线解析式为y=a(x+3)(x﹣1)=ax2+2ax﹣3a,∵y=a(x+3)(x﹣1)=a(x2+2x﹣3)=a(x+1)2﹣4a,∴顶点D的坐标为(﹣1,﹣4a);(2)如图1,①设AC与抛物线对称轴的交点为E.∵抛物线y=ax2+2ax﹣3a与y轴交于点C,∴C点坐标为(0,﹣3a).设直线AC的解析式为:y=kx+t,则:,解得:,∴直线AC的解析式为:y=﹣ax﹣3a,∴点E的坐标为:(﹣1,﹣2a),∴DE=﹣4a﹣(﹣2a)=﹣2a,∴S△ACD=S△CDE+S△ADE=×DE×OA=×(﹣2a)×3=﹣3a,∴﹣3a=3,解得a=﹣1,∴抛物线的解析式为y=﹣x2﹣2x+3;②∵y=﹣x2﹣2x+3,∴顶点D的坐标为(﹣1,4),C(0,3),∵A(﹣3,0),∴AD2=(﹣1+3)2+(4﹣0)2=20,CD2=(﹣1﹣0)2+(4﹣3)2=2,AC2=(0+3)2+(3﹣0)2=18,∴AD2=CD2+AC2,∴∠ACD=90°,∴tan∠DAC===,∵∠PAB=∠DAC,∴tan∠PAB=tan∠DAC=.如图2,设y=﹣x2﹣2x+3=﹣(x+1)2+4向右平移后的抛物线解析式为y=﹣(x+m)2+4,两条抛物线交于点P,直线AP与y轴交于点F.∵tan∠PAB===,∴OF=1,则F点的坐标为(0,1)或(0,﹣1).分两种情况:(Ⅰ)如图2①,当F点的坐标为(0,1)时,易求直线AF的解析式为y=x+1,由,解得,(舍去),∴P点坐标为(,),将P点坐标(,)代入y=﹣(x+m)2+4,得=﹣(+m)2+4,解得m1=﹣,m2=1(舍去),∴平移后抛物线的解析式为y=﹣(x﹣)2+4;(Ⅱ)如图2②,当F点的坐标为(0,﹣1)时,易求直线AF的解析式为y=﹣x﹣1,由,解得,(舍去),∴P点坐标为(,﹣),将P点坐标(,﹣)代入y=﹣(x+m)2+4,得﹣=﹣(+m)2+4,解得m1=﹣,m2=1(舍去),∴平移后抛物线的解析式为y=﹣(x﹣)2+4;综上可知,平移后抛物线的解析式为y=﹣(x﹣)2+4或y=﹣(x﹣)2+4.。

2017年河南省中考数学试卷(含答案解析版),推荐文档

2017年河南省中考数学试卷(含答案解析版),推荐文档

2017 年河南省中考数学试卷一、选择题(每小题3 分,共30 分)1.(3 分)下列各数中比1 大的数是()A.2 B.0 C.﹣1 D.﹣32.(3 分)2016 年,我国国内生产总值达到74.4 万亿元,数据“74.4 万亿”用科学记数法表示()A.74.4×1012 B.7.44×1013 C.74.4×1013D.7.44×10153.(3 分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.1 34.(3 分)解分式方程x‒ 1﹣2=1 ‒x,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.(3 分)八年级某同学6 次数学小测验的成绩分别为:80 分,85 分,95 分,95 分,95 分,100 分,则该同学这6 次成绩的众数和中位数分别是()A.95 分,95 分B.95 分,90 分C.90 分,95 分D.95 分,85 分6.(3 分)一元二次方程2x2﹣5x﹣2=0 的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.(3 分)如图,在▱ABCD 中,对角线AC,BD 相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3 分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()1 A.81B.61C.41D.29.(3 分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2 的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为()A.(3,1)B.(2,1)C.(1,3)D.(2,3)10.(3 分)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()3﹣32 2A.3 B.2 C.22D.4二、填空题(每小题3 分,共15 分)11.(3 分)计算:23﹣4=.{x x‒‒21<≤ 012.(3 分)不等式组 2的解集是.213.(3 分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m 与n 的大小关系为.14.(3 分)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A,图2 是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是.15.(3 分)如图,在Rt△ABC 中,∠A=90°,AB=AC,BC= 2+1,点M,N 分别是边BC,AB 上的动点,沿MN 所在的直线折叠∠B,使点B 的对应点B′始终落在边AC 上,若△MB′C为直角三角形,则BM 的长为.3﹣3﹣三、解答题(本题共8 个小题,满分75 分)16.(8 分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x= 2+1,y= 2﹣1.17.(9 分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A40≤x<3016B30≤x<60aC60≤x<90Db90≤x<120E2x≥120请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b= ,m= ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000 人,请估计每月零花钱的数额x 在60≤x<120 范围的人数.18.(9 分)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 交AC 边于点D,过点C 作CF∥AB,与过点B 的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC 的长.19.(9 分)如图所示,我国两艘海监船A,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B 船在A 船的正南方向5 海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30 海里/小时,B 船的航速为25 海里/小时,问4C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈5,cos53°3 4≈5,tan53°≈3,2≈1.41)20.(9 分)如图,一次函数y=﹣x+b 与反比例函数y= (x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P 是线段AB 上一点,过点P 作PD⊥x 轴于点D,连接OP,若△POD 的面积为S,求S 的取值范围.21.(10 分)学校“百变魔方”社团准备购买A,B 两种魔方,已知购买2 个A 种魔方和6 个B 种魔方共需130 元,购买3 个A 种魔方和4 个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B 两种魔方共100 个(其中A 种魔方不超过50 个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10 分)如图1,在Rt△ABC 中,∠A=90°,AB=AC,点D,E 分别在边AB,AC 上,AD=AE,连接DC,点M,P,N 分别为DE,DC,BC 的中点.(1)观察猜想图1 中,线段PM 与PN 的数量关系是,位置关系是;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2 的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点 A 在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN 面积的最大值.223.(11 分)如图,直线y=﹣3x+c 与x 轴交于点A(3,0),与y 轴交于点B,抛4物线y=﹣3x2+bx+c 经过点A,B.(1)求点 B 的坐标和抛物线的解析式;(2)M(m,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P,N.①点M 在线段OA 上运动,若以B,P,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M,P,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N 三点为“共谐点”.请直接写出使得M,P,N 三点成为“共谐点”的m 的值.2017 年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3 分,共30 分)1.(3 分)(2017•河南)下列各数中比1 大的数是()A.2 B.0 C.﹣1 D.﹣3【考点】18:有理数大小比较.【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3 分)(2017•河南)2016 年,我国国内生产总值达到74.4 万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【解答】解:将74.4 万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3 分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是(A.B.C.D.【考点】U3:由三视图判断几何体.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D 不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.1 34.(3 分)(2017•河南)解分式方程x‒ 1﹣2=1 ‒x,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】分式方程变形后,两边乘以最简公分母x﹣1 得到结果,即可作出判断.1 3【解答】解:分式方程整理得:x‒ 1﹣2=﹣x‒ 1,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检5.(3 分)(2017•河南)八年级某同学6 次数学小测验的成绩分别为:80 分,85 分,95 分,95 分,95 分,100 分,则该同学这6 次成绩的众数和中位数分别是()A.95 分,95 分B.95 分,90 分C.90 分,95 分D.95 分,85 分【考点】W5:众数;W4:中位数.【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95 分和95 分,故中位数为95 分,数据95 出现了 3 次,最多,故这组数据的众数是95 分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3 分)(2017•河南)一元二次方程2x2﹣5x﹣2=0 的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】AA:根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0 时,方程有两个不相等的实数根;当△=0 时,方程有两个相等的实数根;当△<0 时,方程无实数根.7.(3 分)(2017•河南)如图,在▱ABCD 中,对角线AC,BD 相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线相等是平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD 的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3 分)(2017•河南)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()1 A.81B.61C.41D.2【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16 种等可能的结果,两个数字都是正数的有 4 种情况,4 1∴两个数字都是正数的概率是:16=4.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3 分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2 的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为()A.(3,1)B.(2,1)C.(1,3)D.(2,3)【考点】LE:正方形的性质;D5:坐标与图形性质;L1:多边形.1【分析】由已知条件得到AD′=AD=2,AO=2AB=1,根据勾股定理得到OD′=AD'2 ‒OA2= 3,于是得到结论.【解答】解:∵AD′=AD=2,3 ﹣31AO=2AB=1,∴OD′= AD '2 ‒ OA 2= 3,∵C′D′=2,C′D′∥AB , ∴C (2, 3),故选 D .【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识 别图形是解题的关键.10.(3 分)(2017•河南)如图,将半径为 2,圆心角为 120°的扇形 OAB 绕点 A 逆时针旋转 60°,点 O ,B 的对应点分别为 O′,B′,连接 BB′,则图中阴影部分的面积是()22A . 3B .2C .2 2D .4【考点】MO :扇形面积的计算;R2:旋转的性质.【分析】连接 OO′,BO′,根据旋转的想知道的∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论. 【解答】解:连接 OO′,BO′,∵将半径为 2,圆心角为 120°的扇形 OAB 绕点 A 逆时针旋转 60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,3﹣ 3﹣3﹣∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B 是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )160 ⋅ π × 22 12=2×1×2 3﹣(故选 C .360﹣2×2 ×3)=2 .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质, 正确的作出辅助线是解题的关键.二、填空题(每小题 3 分,共 15 分)11.(3 分)(2017•河南)计算:23﹣ 4= 6 . 【考点】22:算术平方根;1E :有理数的乘方. 【分析】明确 4表示 4 的算术平方根,值为 2. 【解答】解: 23﹣ 故答案为: 6.4=8﹣2=6,【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,{x x ‒‒21≤0① 比较简单.12.(3 分)(2017•河南)不等式组x x ‒‒21≤ 0<2 的解集是 ﹣1<x ≤2 . 【考点】CB :解一元一次不等式组.【分析】先求出不等式的解集,再求出不等式组的公共部分,【解答】解: 2 < x ②解不等式①0 得:x ≤2,解不等式②得:x >﹣1, ∴不等式组的解集是 ﹣1<x ≤2, 故答案为 ﹣1<x ≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.213.(3 分)(2017•河南)已知点 A (1,m ),B (2,n )在反比例函数 y=﹣x 的图象上,则 m 与 n 的大小关系为 m <n .【考点】G6:反比例函数图象上点的坐标特征.2【分析】由反比例函数 y=﹣ 可知函数的图象在第二、第四象限内,可以知道在每个象限内,y 随 x 的增大而增大,根据这个判定则可.2【解答】解:∵反比例函数 y=﹣x 中 k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y 随 x 的增大而增大,∵0<1<2,∴A 、B 两点均在第四象限,∴m <n .{故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3 分)(2017•河南)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A,图2 是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是12 .【考点】E7:动点问题的函数图象.【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出BC 与AC 的长度.【解答】解:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 先A 运动时,BP 的最大值为5,即BC=5,由于M 是曲线部分的最低点,∴此时BP 最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,1∴△ABC 的面积为:2×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC 的长度,本题属于中等题型.15.(3 分)(2017•河南)如图,在Rt△ABC 中,∠A=90°,AB=AC,BC= 2+1,点M,N 分别是边BC,AB 上的动点,沿MN 所在的直线折叠∠B,使点B 的对1 应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为22 1+2 或 1.【考点】PB:翻折变换(折叠问题);KW:等腰直角三角形.【分析】①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM= 2MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与 A 重合,M 是BC 的中点,1 12 1∴BM=2BC=2 +2;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=2MB′,∵沿MN 所在的直线折叠∠B,使点 B 的对应点B′,∴BM=B′M,∴CM= ∵BC=2BM,2+1,∴CM+BM=2BM+BM= 2+1,∴BM=1,121综上所述,若△MB′C为直角三角形,则BM 的长为2 +2或1,1 故答案为:22 1+2 或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8 个小题,满分75 分)16.(8 分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x= 2+1,y= 2﹣1.【考点】4J:整式的混合运算—化简求值.【专题】11 :计算题.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy2+1,y= 2﹣1=9xy当x= 2+1,y= 2﹣1 时,原式=9(2+1)(2﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9 分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数4A0≤x<3016B30≤x<60Ca60≤x<90bD90≤x<120E2x≥120请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50 人,a+b= 28 ,m= 8 ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000 人,请估计每月零花钱的数额x 在60≤x<120 范围的人数.【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B 组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a 的值,m 的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000 乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,4A 组所占的百分比是50=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;20(2)扇形统计图中扇形 C 的圆心角度数是360°×50=144°;28(3)每月零花钱的数额x 在60≤x<120 范围的人数是1000×50=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9 分)(2017•河南)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 交AC 边于点D,过点C 作CF∥AB,与过点B 的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC 的长.【考点】MC:切线的性质;KH:等腰三角形的性质.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC 即可.【解答】(1)证明:∵AB 是⊙O 的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF 切⊙O 于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,82 +42 ∴AC=10,∵CD=4,∴AD=10﹣4=6,在 Rt △ADB 中,由勾股定理得:BD= 102 ‒ 62=8,5.在 Rt △BDC 中,由勾股定理得:BC==4 【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9 分)(2017•河南)如图所示,我国两艘海监船 A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船 C ,此时,B 船在A 船的正南方向 5 海里处,A 船测得渔船 C 在其南偏东 45°方向,B 船测得渔船C 在其南偏东 53°方向,已知 A 船的航速为 30 海里/小时,B 船的航速为 25 海里 /小时,问 C 船至少要等待多长时间才能得到救援?(参考数据:sin53° 4 3 4≈5,cos53°≈5,tan53°≈3, 2≈1.41)【考点】TB :解直角三角形的应用﹣方向角问题.【分析】如图作 CE ⊥AB 于 E .设 AE=EC=x ,则 BE=x ﹣5,在 Rt △BCE 中,根据E 4tan53°=B E ,可得3=x ‒ 5,求出 x ,再求出 BC 、AC ,分别求出 A 、B 两船到 C 的时间,即可解决问题.【解答】解:如图作 CE ⊥AB 于 E .在Rt△ACE 中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE 中,E∵tan53°=B E,4∴3=x‒ 5,解得x=20,∴AE=EC=20,2=28.2,∴AC=20EBC=sin53°=25,28.2 25∴A 船到C 的时间≈ 30 =0.94 小时,B 船到C 的时间=25=1 小时,∴C 船至少要等待0.94 小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9 分)(2017•河南)如图,一次函数y=﹣x+b 与反比例函数y=x(x>0)的图象交于点A(m,3)和B(3,1).3 (1)填空:一次函数的解析式为y=﹣x+4 ,反比例函数的解析式为y= ;(2)点P 是线段AB 上一点,过点P 作PD⊥x 轴于点D,连接OP,若△POD 的面积为S,求S 的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先将B(3,1)代入反比例函数即可求出k 的值,然后将A 代入反比例函数即可求出m 的,再根据B 两点的坐标即可求出一次函数的解析式.(2)设P 的坐标为(x,y),由于点P 在直线AB 上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S 的范围【解答】解:(1)将B(3,1)代入y= ,∴k=3,3将A(m,3)代入y= ,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,1∴S=2x(﹣x+4),∴由二次函数的图象可知:3S 的取值范围为:2≤S≤23故答案为:(1)y=﹣x+4;y= .【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10 分)(2017•河南)学校“百变魔方”社团准备购买A,B 两种魔方,已知购买2 个A 种魔方和6 个B 种魔方共需130 元,购买3 个A 种魔方和4 个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B 两种魔方共100 个(其中A 种魔方不超过50 个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【考点】9A:二元一次方程组的应用.【分析】(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据“购买2 个A 种魔方和6 个B 种魔方共需130 元,购买3 个A 种魔方和4 个B 种魔方所需款数相同”,即可得出关于x、y 的二元一次方程组,解之即可得出结论;(2)设购进A 种魔方m 个(0≤m≤50),总价格为w 元,则购进B 种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再=w 活动二和w 活动一>w 活动二,解出m 的取值范围,分别令w 活动一<w 活动二、w 活动一此题得解.【解答】解:(1)设 A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,{2 + 6 = 130根据题意得: 3 = 4 ,{ = 20解得:=15.答:A 种魔方的单价为20 元/个,B 种魔方的单价为15 元/个.(2)设购进A 种魔方m 个(0≤m≤50),总价格为w 元,则购进B 种魔方(100﹣m)个,=20m×0.8+15(100﹣m)×0.4=10m+600;根据题意得:w活动一w 活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w 活动一<w 活动二时,有10m+600<﹣10m+1500,解得:m<45;当w 活动一=w 活动二时,有10m+600=﹣10m+1500,解得:m=45;当w 活动一>w 活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45 时,选择活动一购买魔方更实惠;当m=45 时,选择两种活动费用相同;当m>45 时,选择活动二购买魔方更实惠.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y 的二元一次方程组;(2)根据两种活动方案找出w 活动一、w活动二关于m 的函数关系式.22.(10 分)(2017•河南)如图1,在Rt△ABC 中,∠A=90°,AB=AC,点D,E分别在边AB,AC 上,AD=AE,连接DC,点M,P,N 分别为DE,DC,BC 的中点.(1)观察猜想图1 中,线段PM 与PN 的数量关系是PM=PN ,位置关系是PM⊥PN ;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2 的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD=4,AB=10,请直接写出△ PMN 面积的最大值.【考点】RB:几何变换综合题.1 1【分析】(1)利用三角形的中位线得出PM=2CE,PN=2BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出1 1PM=2BD,PN=2BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN 最大时,△PMN 的面积最大,进而求出AN,AM,即可得出MN 最大=AM+AN,最后用面积公式即可得出结论.【解答】解:(1)∵点P,N 是BC,CD 的中点,1∴PN∥BD,PN=2BD,∵点P,M 是CD,DE 的中点,1∴PM∥CE,PM=2CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,1 1同(1)的方法,利用三角形的中位线得,PN=2BD,PM=2CE,∴PM=PN,∴△PMN 是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN 是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN 是等腰直角三角形,∴MN 最大时,△PMN 的面积最大,∴DE∥BC 且DE 在顶点 A 上面,∴MN 最大=AM+AN,连接AM,AN,在△ADE 中,AD=AE=4,∠DAE=90°,∴AM=2 2,在Rt△ABC 中,AB=AC=10,AN=5 2,2+5 2=7 2,∴MN最大=21 1 1 1 49=2PM2=2×2MN2=4×(7 2)2= 2 .∴S△PMN最大【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)1 1的关键是判断出PM=2CE,PN=2BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN 最大时,△PMN 的面积最大,是一道基础题目.223.(11 分)(2017•河南)如图,直线y=﹣3x+c 与x 轴交于点A(3,0),与y 轴4交于点B,抛物线y=﹣3x2+bx+c 经过点A,B.(1)求点B 的坐标和抛物线的解析式;(2)M(m,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P,N.①点M 在线段OA 上运动,若以B,P,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M,P,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N 三点为“共谐点”.请直接写出使得M,P,N 三点成为“共谐点”的m 的值.{ {【考点】HF :二次函数综合题.【分析】(1)把 A 点坐标代入直线解析式可求得 c ,则可求得 B 点坐标,由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2) ①由 M 点坐标可表示 P 、N 的坐标,从而可表示出 MA 、MP 、PN 、PB 的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于 m 的方程,可求得 m 的值;②用 m 可表示出 M 、P 、N 的坐标,由题意可知有 P 为线段 MN 的中点、M 为线段 PN 的中点或 N 为线段 PM 的中点,可分别得到关于 m 的方程,可求得 m 的值. 【解答】解:2 (1) ∵y=﹣3x +c 与 x 轴交于点 A (3,0),与 y 轴交于点 B ,∴0=﹣2+c ,解得 c=2,∴B (0,2),4∵抛物线 y=﹣3x 2+bx +c 经过点 A ,B ,‒ 12 + 3b + c = 0 3∴c = 2,解得 == 2,410∴抛物线解析式为 y=﹣3x 2+ 3 x +2;13(3 ‒ m )332(2) ①由(1)可知直线解析式为 y=﹣3x +2,∵M (m ,0)为 x 轴上一动点,过点 M 且垂直于 x 轴的直线与直线 AB 及抛物线分别交于点 P ,N ,2 4 10∴P (m ,﹣3m +2),N (m ,﹣3m 2+ 3 m +2),2410 2 4∴PM=﹣3m +2,PA=3﹣m ,PN=﹣3m 2+ 3 m +2﹣(﹣3m +2)=﹣3m 2+4m ,∵△BPN 和△APM 相似,且∠BPN=∠APM ,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°, 当∠BNP=90°时,则有 BN ⊥MN ,∴BN=OM=m ,N PN A M PM3 ‒‒ 4m 2 + 4m3‒ 2m + 2∴ =,即= 3,解得 m=0(舍去)或 m=2,∴M (2,0);PN P当∠NBP=90°时,则有P A =MP ,2∵A (3,0),B (0,2),P (m ,﹣3m +2),222 13∴BP=+ ( ‒ m + 2 ‒ 2)3= 3 m ,AP== 3 (3﹣m ), ‒ 4m 2 + 4m1311‒ 2m + 28∴ 3=311∴M ( 8 ,0);,解得 m=0(舍去)或 m= ,综上可知当以 B ,P ,N 为顶点的三角形与△APM 相似时,点 M 的坐标为(m ‒ 3)2 + ( ‒ 223+ 2)1311(2,0)或(8 ,0);2 4 10②由①可知M(m,0),P(m,﹣3m+2),N(m,﹣3m2+ 3 m+2),∵M,P,N 三点为“共谐点”,∴有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,2 4 10当P 为线段MN 的中点时,则有2(﹣3m+2)=﹣3m2+ 3 m+2,解得m=3(三点重1合,舍去)或m=2;2 4 10当M 为线段PN 的中点时,则有﹣3m+2+(﹣3m2+ 3 m+2)=0,解得m=3(舍去)或m=﹣1;2 4 10当N 为线段PM 的中点时,则有﹣3m+2=2(﹣3m2+ 3 m+2),解得m=3(舍去)或1m=﹣4;1 1综上可知当M,P,N 三点成为“共谐点”时m 的值为2或﹣1 或﹣4.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m 的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m 的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。

2017-2021年河南中考数学真题分类汇编之二次函数

2017-2021年河南中考数学真题分类汇编之二次函数

2017-2021年河南中考数学真题分类汇编之二次函数一.选择题(共2小题)1.(2019•河南)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2B.﹣4C.2D.4 2.(2017•河南)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1B.﹣3<x<﹣1C.x<1D.﹣3<x<1二.填空题(共1小题)3.(2018•河南)已知二次函数y=x2+bx+4顶点在x轴上,则b=.三.解答题(共8小题)4.(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.5.(2017•河南)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.6.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.7.(2018•河南)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m87518751875875日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?8.(2018•河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C,直线y=x ﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.9.(2019•河南)如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y =﹣x﹣2经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b 的解析式.(k,b可用含m的式子表示)10.(2018•河南)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,3),顶点F的坐标为(1,4),对称轴交x轴于点H,直线y=x+1交x轴于点D,交y轴于点E,交抛物线的对称轴于点G.(1)求出a,b,c的值.(2)点M为抛物线对称轴上一个动点,若△DGM是以DG为腰的等腰三角形时,请求出点M的坐标.(3)点P为抛物线上一个动点,当点P关于直线y=x+1的对称点恰好落在x轴上时,请直接写出此时点P的坐标.11.(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017-2021年河南中考数学真题分类汇编之二次函数参考答案与试题解析一.选择题(共2小题)1.(2019•河南)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2B.﹣4C.2D.4【考点】二次函数图象上点的坐标特征.【专题】二次函数图象及其性质.【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.【点评】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.2.(2017•河南)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1B.﹣3<x<﹣1C.x<1D.﹣3<x<1【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【专题】数形结合;二次函数图象及其性质.【分析】根据抛物线的对称性得到抛物线与x轴的另一交点坐标,然后结合函数图象可以直接得到答案.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x =﹣1,∴抛物线与x轴的另一交点坐标是(﹣3,0),∴当y>0时,x的取值范围是﹣3<x<1.故选:D.【点评】本题考查了抛物线的对称性,抛物线与x轴的交点,二次函数图象上点的坐标特征.解题时,利用了“数形结合”的数学思想.二.填空题(共1小题)3.(2018•河南)已知二次函数y=x2+bx+4顶点在x轴上,则b=±4.【考点】二次函数的性质.【分析】根据二次函数顶点在x轴上得出Δ=b2﹣4ac=m2﹣4×2×2=0,即可得出答案.【解答】解:∵二次函数y=x2+bx+4的顶点在x轴上,∴Δ=b2﹣4ac=b2﹣4×1×4=0,∴b2=16,∴b=±4.故答案为:±4.【点评】本题考查了二次函数的性质以及二次函数顶点在x轴上的特点,根据题意得出Δ=b2﹣4ac=0是解决问题的关键.三.解答题(共8小题)4.(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;应用意识.【分析】(1)先求出点B,点A坐标,利用待定系数法代入解析式求出c的值,即可求解;(2)先求出点M,点N坐标,利用函数的图象即可求解.【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴交于点B,∴点B(0,c),c>0.∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G的坐标为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,顶点(1,4).∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标为(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴当M,N在对称轴的同侧时,﹣21≤y Q≤﹣5;当M,N在对称轴的两侧时,﹣21≤y Q≤4.∴点Q的纵坐标y Q的取值范围为﹣21≤y Q≤﹣5或﹣21≤y Q≤4.【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练运用二次函数的性质解决问题是本题的关键.5.(2017•河南)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】开放型.【分析】(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,A(﹣3,0)、B(2,5),把A、B坐标代入抛物线方程即可求解;(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),M(t+3,t2+2t﹣6),根据点M在直线y=x+3上,即可求解;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)按照△QAB和△Q′AB和△ABC的面积相同即可求解.【解答】解:(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n =5,∴A(﹣3,0)、B(2,5),把A、B坐标代入抛物线方程,解得:a=1,b=2,∴抛物线方程为:y=x2+2x﹣3…①,则C(0,﹣3);(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),∴M(t+3,t2+2t﹣6),∵点M在直线y=x+3上,∴t2+2t﹣6=t+3+3,解得:t=3或﹣4,∴P点坐标为(3,12)或(﹣4,5),则线段OP的长度为:3或;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)过点C和C′分别做AB的平行线,交抛物线于点Q、Q′,则:△QAB和△Q′AB和△ABC的面积相同,直线QC和Q′C的方程分别为:y=x﹣3和y=x+9…②,将①、②联立,解得:x=﹣1或x=3或x=﹣4,∴Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.【考点】二次函数综合题.【专题】代数综合题;分类讨论;一元一次不等式(组)及应用;数据分析观念.【分析】(1)用待定系数法即可求解;(2)求出点B的坐标为(﹣1,3),再观察函数图象即可求解;(3)分类求解确定MN的位置,进而求解.【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4+2m,解得:m=﹣2,将点A的坐标代入直线表达式得:0=﹣2+b,解得b=2;故m=﹣2,b=2;(2)由(1)得,直线和抛物线的表达式为:y=﹣x+2,y=x2﹣2x,联立上述两个函数表达式并解得或(不符合题意,舍去),即点B的坐标为(﹣1,3),从图象看,不等式x2+mx>﹣x+b的解集为x<﹣1或x>2;(3)当点M在线段AB上时,线段MN与抛物线只有一个公共点,∵M,N的距离为3,而A、B的水平距离是3,故此时只有一个交点,即﹣1≤x M<2;当点M在点B的左侧时,线段MN与抛物线没有公共点;当点M在点A的右侧时,当x M=3时,抛物线和MN交于抛物线的顶点(1,﹣1),即x M=3时,线段MN与抛物线只有一个公共点,综上所述,﹣1≤x M<2 或x M=3.【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、不等式的性质等,其中(3),分类求解确定MN的位置是解题的关键.7.(2018•河南)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m87518751875875日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【考点】二次函数的应用;一元二次方程的应用.【专题】应用题.【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.8.(2018•河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C,直线y=x ﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x ﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1(舍去),m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直线EM1的解析式为y=﹣x﹣,解方程组得,则M1(,﹣);在直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=,∴x=,∴M2(,﹣),综上所述,点M的坐标为(,﹣)或(,﹣).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.9.(2019•河南)如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y =﹣x﹣2经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b 的解析式.(k,b可用含m的式子表示)【考点】二次函数综合题.【专题】函数的综合应用.【分析】(1)利用一次函数图象上点的坐标特征可求出点A,C的坐标,根据点A,C的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM⊥x轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑:(i)当∠MPC=90°时,PC∥x轴,利用二次函数图象上点的坐标特征可求出点P 的坐标;(ii)当∠PCM=90°时,设PC与x轴交于点D,易证△AOC∽△COD,利用相似三角形的性质可求出点D的坐标,根据点C,D的坐标,利用待定系数法可求出直线PC的解析式,联立直线PC和抛物线的解析式成方程组,通过解方程组可求出点P的坐标.综上,此问得解;②利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可得出点B,M的坐标,结合点C的坐标可得出点B′的坐标,根据点M,B,B′的坐标,利用待定系数法可分别求出直线BM,B′M和BB′的解析式,利用平行线的性质可求出直线l的解析式.【解答】解:(1)当x=0时,y=﹣x﹣2=﹣2,∴点C的坐标为(0,﹣2);当y=0时,﹣x﹣2=0,解得:x=﹣4,∴点A的坐标为(﹣4,0).将A(﹣4,0),C(0,﹣2)代入y=ax2+x+c,得:,解得:,∴抛物线的解析式为y=x2+x﹣2.(2)①∵PM⊥x轴,∴∠PMC≠90°,∴分两种情况考虑,如图1所示.(i)当∠MPC=90°时,PC∥x轴,∴点P的纵坐标为﹣2.当y=﹣2时,x2+x﹣2=﹣2,解得:x1=﹣2,x2=0,∴点P的坐标为(﹣2,﹣2);(ii)当∠PCM=90°时,设PC与x轴交于点D.∵∠OAC+∠OCA=90°,∠OCA+∠OCD=90°,∴∠OAC=∠OCD.又∵∠AOC=∠COD=90°,∴△AOC∽△COD,∴=,即=,∴OD=1,∴点D的坐标为(1,0).设直线PC的解析式为y=kx+b(k≠0),将C(0,﹣2),D(1,0)代入y=kx+b,得:,解得:,∴直线PC的解析式为y=2x﹣2.联立直线PC和抛物线的解析式成方程组,得:,解得:,,点P的坐标为(6,10).综上所述:当△PCM是直角三角形时,点P的坐标为(﹣2,﹣2)或(6,10).②当y=0时,x2+x﹣2=0,解得:x1=﹣4,x2=2,∴点B的坐标为(2,0).∵点C的坐标为(0,﹣2),点B,B′关于点C对称,∴点B′的坐标为(﹣2,﹣4).∵点P的横坐标为m(m>0且m≠2),∴点M的坐标为(m,﹣m﹣2).利用待定系数法可求出:直线BM的解析式为y=﹣x+,直线B′M的解析式为y=x﹣,直线BB′的解析式为y=x﹣2.分三种情况考虑,如图2所示:当直线l∥BM且过点C时,直线l的解析式为y=﹣x﹣2;当直线l∥B′M且过点C时,直线l的解析式为y=x﹣2;当直线l∥BB′且过线段CM的中点N(m,﹣m﹣2)时,直线l的解析式为y=x﹣m﹣2.综上所述:直线l的解析式为y=﹣x﹣2,y=x﹣2或y=x﹣m﹣2.【点评】本题考查了一次函数图象上点的坐标特征、待定系数法二次函数解析式、二次函数图象上点的坐标特征、待定系数法求一次函数解析式、相似三角形的判定与性质以及平行线的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)①分∠MPC=90°及∠PCM=90°两种情况求出点P的坐标;②利用待定系数法及平行线的性质,求出直线l的解析式.10.(2018•河南)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,3),顶点F的坐标为(1,4),对称轴交x轴于点H,直线y=x+1交x轴于点D,交y轴于点E,交抛物线的对称轴于点G.(1)求出a,b,c的值.(2)点M为抛物线对称轴上一个动点,若△DGM是以DG为腰的等腰三角形时,请求出点M的坐标.(3)点P为抛物线上一个动点,当点P关于直线y=x+1的对称点恰好落在x轴上时,请直接写出此时点P的坐标.【考点】二次函数综合题.【专题】函数的综合应用.【分析】(1)由抛物线的顶点坐标可设抛物线的解析式为y=a(x﹣1)2+4,由点C的坐标利用待定系数法可求出抛物线的解析式,进而可得出a,b,c的值;(2)利用一次函数图象上点的坐标特征可求出点D,G的坐标,进而可求出DG的长度,分DG=DM,GD=GM两种情况考虑:①当DG=DM时,由等腰三角形的性质可得出HG=HM1,进而可得出点M1的坐标;②当GD=GM时,由等腰三角形的性质可得出GM2=GM3=,结合点G的坐标可得出点M2,M3的坐标.综上,此问得解;(3)过点E作EN⊥直线DE,交x轴于点N,则△DOE∽△DEN,利用相似三角形的性质可求出点N的坐标,由点E,N的坐标利用待定系数法可求出直线EN的解析式,设点P关于直线y=x+1的对称点落在x轴上Q点处,连接PQ交DE于点R,设直线PQ 的解析式为y=﹣2x+m,利用一次函数图象上点的坐标特征可求出点Q的坐标,联立直线PQ和直线DE的解析式成方程组,通过解方程组可得出点R的坐标,进而可得出点P 的坐标,由点P的坐标利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可得出m的值,再将其代入点P的坐标中即可得出结论.【解答】解:(1)∵抛物线顶点F的坐标为(1,4),∴设抛物线的解析式为y=a(x﹣1)2+4.将C(0,3)代入y=a(x﹣1)2+4,得:a+4=3,解得:a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3,∴a=﹣1,b=2,c=3.(2)当y=0时,x+1=0,解得:x=﹣2,∴点D的坐标为(﹣2,0).当x=1时,y=x+1=,∴点G的坐标为(1,),∴DH=1﹣(﹣2)=3,GH=,∴DG==.分两种情况考虑(如图1):①当DG=DM时,HG=HM1,∴点M1的坐标为(1,﹣);②当GD=GM时,GM2=GM3=,∴点M2的坐标为(1,),点M3的坐标为(1,).综上所述:点M的坐标为(1,﹣),(1,)或(1,).(3)过点E作EN⊥直线DE,交x轴于点N,如图2所示.当x=0时,y=x+1=1,∴点E的坐标为(0,1),∴OE=1,DE==.∵∠DOE=∠DEN=90°,∠ODE=∠EDN,∴△DOE∽△DEN,∴=,即=,∴DN=,∴点N的坐标为(,0).∵点E(0,1),点N(,0),∴线段EN所在直线的解析式为y=﹣2x+1(可利用待定系数法求出).设点P关于直线y=x+1的对称点落在x轴上Q点处,连接PQ交DE于点R.设直线PQ的解析式为y=﹣2x+m,当y=0时,﹣2x+m=0,解得:x=,∴点Q的坐标为(,0).联立直线PQ和直线DE的解析式成方程组,得:,解得:,∴点R的坐标为(,).∵点R为线段PQ的中点,∴点P的坐标为(,).∵点P在抛物线y=﹣x2+2x+3的图象上,∴﹣()2+2×+3=,整理,得:9m2﹣68m+84=0,解得:m1=6,m2=,∴点P的坐标为(1,4)或(﹣,).【点评】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、勾股定理、等腰三角形的性质、相似三角形的判定与性质、平行线的性质、中点坐标公式以及二次函数图象上点的坐标特征,解题的关键是:(1)巧设二次函数解析式,利用待定系数法求出a值;(2)分DG=DM,GD=GM两种情况,利用等腰三角形的性质求出点M的坐标;(3)利用二次函数图象上点的坐标特征,找出关于m的一元二次方程.11.(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【考点】二次函数综合题.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN 的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=,∴M(,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(舍去)或m=0.5;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为0.5或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.考点卡片1.一元二次方程的应用1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.2、列一元二次方程解应用题中常见问题:(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.(4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.2.设:根据题意,可以直接设未知数,也可以间接设未知数.3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.4.解:准确求出方程的解.5.验:检验所求出的根是否符合所列方程和实际问题.6.答:写出答案.2.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.。

部编版2020年中考数学试题分项版解析汇编第期专题三角形含解析5

部编版2020年中考数学试题分项版解析汇编第期专题三角形含解析5

专题9:三角形一、选择题1.(2017天津第2题)060cos 的值等于( )A 3B .1C .22D .21 【答案】D. 【解析】试题分析:根据特殊角的三角函数值可得060cos =21,故选D. 2.(2017天津第9题)如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD = 【答案】C.3. (2017天津第11题)如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC 【答案】B. 【解析】试题分析:在ABC ∆中,AC AB =,AD 是ABC ∆的中线,可得点B 和点D 关于直线AD 对称,连结CE ,交AD 于点P ,此时EP BP +最小,为EC 的长,故选B.4. (2017湖南长沙第5题)一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 【答案】B 【解析】试题分析:根据三角形的内角和为180°,可知最大角为90°,因式这个三角形是直角三角形. 故选:B. 考点:直角三角形5.(2017山东滨州第7题)如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( )A .2+3B .23C .3+3D .33【答案】A.6.(2017山东滨州第8题)如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为( )A.40°B.36°C.80°D.25°【答案】B.【解析】设∠B=x,因AB=AC,根据等腰三角形的性质可得∠B=∠C=x,因AD=CD,根据等腰三角形的性质可得∠DAC=∠C=x,因BD=BA,根据等腰三角形的性质和三角形外角的性质可得∠BAD=∠ADB=2x,在△ABD中,根据三角形的内角和定理可得x+2x+2x=180°,解得x=36°,即∠B=36°,故选B.8. (2017山东滨州第11题)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M、N两点,则以下结论:(1)PM=PN恒成立,(2)OM+ON的值不变,(3)四边形PMON的面积不变,(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.1PAONBM【答案】B.9. (2017山东日照第4题)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.AB CD【答案】B .试题分析:在Rt △ABC 中,根据勾股定理求得BC=12,所以sinA=1213BC AB =,故选B . 考点:锐角三角函数的定义.10. (2017江苏宿迁第8题)如图,在Rt C ∆AB 中,C 90∠=o ,C 6A =cm ,C 2B =cm .点P 在边C A 上,从点A 向点C 移动,点Q 在边C B 上,从点C 向点B 移动,若点P 、Q 均以1cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接Q P ,则线段Q P 的最小值是 A .20cm B .18cm C.25cm D .32cm【答案】C.11. (2017山东菏泽第5题)如图,将t ABC ∆R 绕直角顶点C 顺时针旋转90o ,得到''A B C ∆,连接'AA ,若125∠=o ,则'BAA ∠的度数是( )A .55oB .60o C.65o D .70o 【答案】C.【解析】试题分析:根据旋转的性质可得∠BAC=∠B 'A 'C,AC=CA ', ∠A 'CA=90°,即可得△ACA '是等腰直角三角形,∴所以∠BAC=∠B 'A 'C=45°-25°,即可得'BAA ∠=65o ,故选C.12. (2017浙江金华第3题)下列各组数中,不可能成为一个三角形三边长的是( ) A .2,3,4 B .5,7,7 C .5,6,12 D .10,8,6 【答案】C. 【解析】试题分析:根据三角形的三边关系:三角形任意两边的和大于第三边,可得:选项A ,2+3>4,能组成三角形;选项B ,5+7>7,能组成三角形;选项C ,5+6<12,不能组成三角形;选项D ,6+8>10,能组成三角形,故选C.13. (2017浙江湖州第3题)如图,已知在Rt C ∆AB 中,C 90∠=o ,5AB =,C 3B =,则cos B 的值是( ) A .35 B .45 C .34 D .43【答案】A 【解析】试题分析:根据根据余弦的意义cosB=B ∠的邻边斜边,可得conB=BC AB =35.故选:A 考点:余弦14. (2017浙江舟山第2题)长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( ) A .4 B .5 C .6 D .9 【答案】C. 【解析】试题分析:根据三角形的两边之大于第三边,两边这差小于第三边,可得7-2<x<2+7,即5<x<9,所以x 可以取6.故选C.考点:三角形的三边关系.15. (2017浙江金华第4题)在t ABC ∆R 中,90,5,3C AB BC ∠===o,则tan A 的值是( ) A .34 B .43 C.35 D .45【答案】A. 【解析】试题分析:在△ABC 中,∠C=90°,AB=5,BC=3, 根据勾股定理可求得AC=4, 所以tanA=34BC AC =,故选A.16. (2017浙江台州第5题)如图,点P 是AOB ∠平分线OC 上一点,PD OB ⊥,垂足为D .若2PD =,则点P 到边OA 的距离是 ( )A .1B . 2 C. 3 D .4 【答案】B 【解析】试题分析:过P 作PE ⊥OA 于点E ,根据角平分线上的点到角两边的距离相等即可得到PE=PD.从而得出点P 到OA 的距离是2cm. 故选:B.考点:角平分线的性质17. (2017浙江湖州第6题)如图,已知在Rt C ∆AB 中,C 90∠=o ,C C A =B ,6AB =,点P 是Rt C ∆AB 的重心,则点P 到AB 所在直线的距离等于( ) A .1 B .2 C.32D .2【答案】A考点:1、三角形的重心,2、等腰直角三角形,3、相似三角形的判定与性质18. (2017浙江台州第8题)如图,已知等腰三角形,ABC AB AC =,若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE EC =B .AE BE = C. EBC BAC ∠=∠D .EBC ABE ∠=∠ 【答案】C 【解析】试题分析:根据AB=AC,BE=BC ,可以得出∠ABC=∠C,∠BEC=∠C,从而得出∠ABC=∠BEC,∠A=∠EBC. 故选:C.考点:1、三角形的外角性质,2、等腰三角形的性质19. (2017浙江湖州第9题)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )【答案】C 【解析】试题分析:根据勾股定理,可判断边长之间的关系,可知构不成C 图案,能构成A 、B 、D 图案. 故选:C 考点:勾股定理 二、填空题1.(2017北京第13题)如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S ∆=,则ABNM S =四边形 .【答案】3.考点:相似三角形的性质.2.(2017福建第12题)如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .【答案】6【解析】∵E 、F 分别是AB 、AC 的中点,∴BC=2EF=6.3.(2017河南第15题)如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MBC ∆为直角三角形,则BM 的长为 .【答案】1或21+. 【解析】试题分析:在Rt ABC ∆中,90A ∠=︒,AB AC =,可得∠B=∠C=45°,由折叠可知,BM='MB ,若使'MBC ∆为直角三角形,分两种情况:①0'90MB C ∠=,由∠C=45°可得'MB ='CB ,设BM=x ,则'MB ='CB =x ,MC=2x ,所以x+2x =21BC =+,解得x=1,即BM=1;②0'90B MC ∠=,此时点B 和点C 重合,BM=12122BC +=.所以BM 的长为1或212+. 考点:折叠(翻折变换).4.(2017广东广州第14题)如图7,Rt ABC ∆中,01590,15,tan 8C BC A ∠===,则AB = .【答案】17 【解析】试题分析:因为1515,tan 8BC BC A AC ===,所以,AC =8,由勾股定理,得:AB =17. 考点: 正切的定义.5.(2017山东临沂第16题)已知AB CD ∥,AD 与BC 相交于点O .若23BO OC =,10AD =,则AO = .【答案】4 【解析】试题分析:根据平行线分线段成比例定理,由AB ∥CD 可得BO OAOC OD=,然后根据AD=10,可知OD=10-OA ,代入可得2103BO OA OC OA ==-,解得OA=4. 故答案为:4考点:平行线分线段成比例定理6.(2017四川泸州第16题)在ABC ∆中,已知BD 和CE 分别是边,AC AB 上的中线,且BD CE ⊥,垂足为O ,若2,4OD cm OE cm ==,则线段AO 的长为 cm . 【答案】5【解析】试题分析:如图,由BD 和CE 分别是边,AC AB 上的中线,可得DE ∥BC ,且12DE OD OE BC OB OC === , 因BD CE ⊥,2,4OD cm OE cm ==,根据勾股定理可得5,又因12DE OD OE BC OB OC ===,可得5AO 并延长AO 交BC 于点M ,由BD 和CE 分别是边,AC AB 上的中线交于点M ,可知AM 也是△ABC 的边BC 上的中线,在Rt △BOC 中,根据斜边的中线等于斜边的一半可得OM= 125三角形重心的性质可得57. (2017江苏宿迁第12题)如图,在C ∆AB 中,C 90∠A B =o ,点D 、E 、F 分别是AB 、C B 、C A 的中点.若CD 2=,则线段F E的长是 .【答案】2. 【解析】试题分析:因在C ∆AB 中,C 90∠A B =o ,点D 是AB 的中点,CD 2=,根据直角三角形中斜边的中线等于斜边的一半可得AB=4,又因,点E 、F 分别是C B 、C A 的中点,根据三角形的中位线定理可得EF=12AB=2. 8. (2017江苏苏州第17题)如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60o 的方向,在码头B 北偏西45o 的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).2【解析】试题分析:作CD AB ⊥ ,垂足为D6302AC CAB CD =∠=︒∴=Q ,,在Rt BCD ∆ 中,45CBD ∠=︒ ,22BC ∴=Q 开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等, ∴12v v =222=D.考点:特殊角三角函数的应用 .9. (2017浙江湖州第14题)如图,已知在C ∆AB 中,C AB =A .以AB 为直径作半圆O ,交C B 于点D .若C 40∠BA =o ,则»D A的度数是 度.【答案】140考点:圆周角定理10. (2017湖南湘潭第14题)如图,在ABC ∆中,D E 、分别是边AB AC 、的中点,则ADE ∆与ABC ∆的面积比:ADE ABC S S ∆∆= .【答案】41【解析】试题分析:已知D E 、分别是边AB AC 、的中点,即可得DE 是三角形的中位线,所以DE ∥BC,即可判定ADE ∆∽ABC ∆,根据相似三角形的性质可得:ADE ABCS S ∆∆=412122=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛AB AD .11. (2017湖南湘潭第15题)如图,在Rt ABC ∆中,90C ∠=°,BD 平分ABC ∠交AC 于点D ,DE 垂直平分AB ,垂足为E 点,请任意写出一组相等的线段 .【答案】BC=BE 或DC=DE【解析】试题分析:已知90C ∠=°,BD 平分ABC ∠,DE 垂直平分AB ,利用角平分线性质定理可知DC=DE ;根据已知条件易证BCD ∆≌BED ∆,根据全等三角形的性质可得BC=BE.12. (2017浙江舟山第16题)一副含030和045的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,cm EF BC 12==(如图1),点G 为边)(EF BC 的中点,边FD 与AB 相交于点H ,现将三角板DEF 绕点G 按顺时针方向旋转(如图2),在CGF ∠从00到060的变化过程中,观察点H 的位置变化,点H 相应移动的路径长为 (结果保留根号).【答案】123-18. 【解析】试题分析:如图2和图3,在 ∠ C G F 从 0 ° 到 60 ° 的变化过程中,点H 先向AB 方向移,在往BA 方向移,直到H 与F 重合(下面证明此时∠CGF=60度),此时BH 的值最大,如图3,当F 与H 重合时,连接CF ,因为BG=CG=GF ,所以∠BFC=90度,∵∠B=30度,∴∠BFC=60度,由CG=GF 可得∠CGF=60度.∵BC=12cm ,所以BF=3BC=63;如图2,当GH ⊥DF 时,GH 有最小值,则BH 有最小值,且GF//AB ,连接DG ,交AB 于点K ,则DG ⊥AB ,∵DG=FG ,∴∠DGH=45度,则KG=KH=22GH=22×(12×62)=3,BK=3KG=33,则BH=BK+KH=33+3则点H运动的总路程为63-(33+3)+[12(3-1)-(33+3)]=123-18(cm ).考点:旋转的性质. 三、解答题1.(2017北京第19题)如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D . 求证:AD BC =.【答案】见解析. 【解析】考点:等腰三角形性质.2. (2017北京第28题)在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M . (1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.考点:全等三角形判定,等腰三角形性质 .3. (2017天津第22题)如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数). 参考数据:05.264tan ,44.064cos ,90.064sin 0≈≈≈,2取414.1.【答案】BP=153;BA=161. 【解析】试题分析:如图,过点P 作PC ⊥AB ,垂足为C ,由题意可知,∠A=64°,∠B=45°,PA=120,在Rt △APC 中,求得PC 、AC 的长;在Rt △BPC 中,求得BP 、BC 的长,即可得BA 的长. 试题解析:如图,过点P 作PCAB ,垂足为C , 由题意可知,∠A=64°,∠B=45°,PA=120, 在Rt △APC 中,sin ∠A=,cos PC ACA PA PA=, ∴PC=PA ·sin ∠A=120×sin64°, AC=PA ×cos ∠A=120×cos64°, 在Rt △BPC 中,sin ∠B=,tan PC PC B BP BC=,∴BP=0 120sin64153sin sin452PCB⨯=≈≈BC=0120sin64tan tan45PC PCPCB===⨯∴BA=BC+AC=120×sin64°+120×cos64°≈120×0.90+120×0.44≈161.答:BP的长约有153海里,BA的长约有161海里.4.(2017福建第18题)如图,点,,,B EC F在一条直线上,,,AB DEAC DF BE CF===.求证:A D∠=∠.【答案】证明见解析.【解析】试题分析:利用SSS证明△ABC与△DEF全等即可得.试题解析:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中AB DEAC DFBC EF=⎧⎪=⎨⎪=⎩,∴△ABC≌△D EF(SSS),∴∠A=∠D.5. (2017福建第19题)如图,ABC∆中,90,BAC AD BC∠=⊥o,垂足为D.求作ABC∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)【答案】作图见解析;证明见解析. 【解析】6. (2017河南第19题)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45︒方向,B 船测得渔船C 在其南偏东53︒方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:4sin 535︒≈,3cos535︒≈,4tan 533︒≈,2 1.41≈)【答案】C 船至少要等待0.94小时才能得到救援. 【解析】试题分析:过点C作CD AB⊥交AB的延长线于点D,可得∠CDA=90°,根据题意可知∠CDA=45°,设CD=x,则AD=CD=x,在Rt△BDC中,根据三角函数求得CD、BC的长,在Rt△ADC中,求得AC的长,再分别计算出B船到达C船处约需时间和A船到达C船处约需时间,比较即可求解.试题解析:过点C作CD AB⊥交AB的延长线于点D,则∠CDA=90°已知∠CDA=45°,设CD=x,则AD=CD=x∴BD=AD-AB=x-5在Rt△BDC中,CD=BD·tan53°,即x=(x-5)·tan53°∴455tan533204tan53113x⨯=≈=--∴BC=0042025sin53sin535CD x=≈÷=∴B船到达C船处约需时间:25÷25=1(小时)在Rt△ADC中,AC=2x≈1.41×20=28.2∴A船到达C船处约需时间:28.2÷30=0.94(小时)而0.94<1,所以C船至少要等待0.94小时才能得到救援.考点:解直角三角形的应用.7. (2017河南第22题)如图1,在Rt ABC∆中,90A∠=︒,AB AC=,点D,E分别在边AB,AC上,AD AE=,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把ADE∆绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断PMN∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN ∆面积的最大值. 【答案】(1)PM=PN ,PM PN ⊥;(2)等腰直角三角形,理由详见解析;(3)492. 【解析】试题分析:(1)已知 点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得11,22PM EC PN BD ==,//PM EC ,//PN BD ,根据平行线的性质可得∠DPM=∠DCE ,∠NPD=∠ADC ,在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE =,可得BD=EC ,∠DCE+∠ADC=90°,即可得PM=PN ,∠DPM+∠NPD=90°,即PM PN ⊥;(2)PMN ∆是等腰直角三角形,根据旋转的性质易证△BAD ≌△CAE ,即可得BD=CE ,∠ABD=∠ACE ,根据三角形的中位线定理及平行线的性质(方法可类比(1)的方法)可得PM=PN, ∠MPD=∠ECD ,∠PNC=∠DBC ,所以∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD ,∠DPN=∠PNC+∠PCN =∠DBC+∠PCN ,即可得∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN 为等腰直角三角形;(3)把ADE ∆绕点A 旋转到如图的位置,此时PN=12(AD+AB)=7, PM=12(AE+AC)=7,且PN 、PM 的值最长,由(2)可知PM=PN ,PM PN ⊥,所以PMN ∆面积的最大值为1497722⨯⨯= .试题解析:(1)PM=PN ,PM PN ⊥; (2)等腰直角三角形,理由如下: 由旋转可得∠BAD=∠CAE , 又AB=AC,AD=AE ∴△BAD ≌△CAE ∴BD=CE ,∠ABD=∠ACE ,∵点M ,P 分别为DE ,DC 的中点 ∴PM 是△DCE 的中位线∴PM=12CE ,且//PM CE , 同理可证PN=12BD ,且//PN BD ∴PM=PN, ∠MPD=∠ECD ,∠PNC=∠DBC ,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD ,∠DPN=∠PNC+∠PCN =∠DBC+∠PCN ,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN 为等腰直角三角形.(3)492. 考点: 旋转和三角形的综合题.8. (2017广东广州第18题)如图10,点,E F 在AB 上,,,AD BC A B AE BF =∠=∠=.求证:ADF BCE ∆≅∆ .【答案】详见解析【解析】试题分析:先将AE BF =转化为AF =BE ,再利用SAS 证明两个三角形全等试题解析:证明:因为AE =BF ,所以,AE +EF =BF +EF ,即AF =BE ,在△ADF 和△BCE 中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩所以,ADF BCE ∆≅∆考点:用SAS 证明两三角形全等9. (2017广东广州第20题) 如图12,在Rt ABC ∆中,0090,30,3B A AC ∠=∠==(1)利用尺规作线段AC 的垂直平分线DE ,垂足为E ,交AB 于点D ;(保留作图痕迹,不写作法)(2)若ADE ∆的周长为a ,先化简()()211T a a a =+--,再求T 的值.【答案】(1)详见解析;(2)3310+【解析】试题分析:(1)尺规作图——作线段的垂直平分线;(2)化简求值,利用三角函数求其余两边的长度。

2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年河南省中考数学试卷
一、选择题(每小题3分,共30分)
1.(3分)下列各数中比1大的数是()
A.2B.0C.﹣1D.﹣3
2.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()
A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015
3.(3分)某几何体的左视图如图所示,则该几何体不可能是()
A.B.C.D.
4.(3分)解分式方程﹣2=,去分母得()
A.1﹣2(x﹣1)=﹣3B.1﹣2(x﹣1)=3C.1﹣2x﹣2=﹣3D.1﹣2x+2=3 5.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()
A.有两个相等的实数根B.有两个不相等的实数根
C.只有一个实数根D.没有实数根
7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()
A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2
8.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()
A.B.C.D.
9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()
A.(,1)B.(2,1)C.(1,)D.(2,)
10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()
A.B.2﹣C.2﹣D.4﹣
二、填空题(每小题3分,共15分)
11.(3分)计算:23﹣=.
12.(3分)不等式组的解集是.
13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m 与n的大小关系为.
14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.
15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别
是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.
三、解答题(本题共8个小题,满分75分)
16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.
17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
调查结果统计表
组别分组(单位:元)人数
A0≤x<304
B30≤x<6016
C60≤x<90a
D90≤x<120b
E x≥1202
请根据以上图表,解答下列问题:
(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;
(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.
18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.
(1)求证:BD=BF;
(2)若AB=10,CD=4,求BC的长.
19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)
20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A (m,3)和B(3,1).
(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.
21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.
(1)求这两种魔方的单价;
(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.
22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.
2017年河南省中考数学试卷
参考答案与试题解析
一、
1.
2.
3.
4.
5.
6.
7.
8.
9.
,于是得到结论.
AB=1

10.
×2﹣(=2﹣
二、
11.
12.
13.
可知函数的图象在第二、
14.
×15.
MB′BC=;
+
BM=BM BM=

三、
16.
+y= +﹣
17.
=560 18.
BC==4
19.
,可得

AC=20
=1 20.
y=,
y=
x
y=.21.
22.
CE PN=BD
PM=
PN=
PM=
BD PM=
AM=2
AN=5
=2+=7
MN7.
BD
CE PN=
23.
x
,=
m
=AP=
,解得m=
m m m
m=
m+(﹣
m m。

相关文档
最新文档