光电管的伏安特性曲线数据处理
光电二极管实验操作要点与数据处理

光电二极管实验操作要点与数据处理光电二极管是一种常见的光电器件,其原理是利用光照射在光电二极管上时,光子会激发电子跃迁至导带中,从而产生光电效应。
在光电二极管实验中,我们通常会进行测量和分析,以获得相关的数据和结论。
以下将介绍光电二极管实验的操作要点和数据处理的一些常用方法。
一、光电二极管实验操作要点1. 实验器材准备首先,为了保证实验的准确性和可靠性,需要使用高质量的光电二极管和其他实验器材。
确保实验器材是清洁的,以避免灰尘和污染对实验结果的影响。
2. 实验环境控制在进行光电二极管实验时,环境条件的控制非常重要。
光照的强度、波长和角度都会对实验结果产生影响。
因此,需要在实验过程中保持较为恒定的光照条件。
可以使用光源和滤光片来调节光照强度和光谱特性。
3. 光电二极管电路连接将光电二极管正确地连接到电路中是实验的第一步。
光电二极管通常有两个引脚,其中一个是阳极端,一个是阴极端。
阳极端连接到正电源,阴极端连接到负电源。
确保连接的稳定和可靠,以避免电路断开或产生干扰。
4. 光电二极管灵敏度测试在进行实验之前,可以通过灵敏度测试来评估光电二极管的性能。
可以使用已知光源的强度和波长,分别照射光电二极管,并记录相应的电流和电压值。
通过比较不同光源下的测量结果,可以对光电二极管的灵敏度做初步评估。
二、光电二极管数据处理方法在进行光电二极管实验后,我们需要对所获得的数据进行分析和处理,以得出有意义的结论。
以下是几种常用的数据处理方法。
1. 电流-电压特性曲线根据实验的测量结果,可以绘制光电二极管的电流-电压特性曲线。
在该曲线上,横坐标表示加在光电二极管上的电压,纵坐标表示通过光电二极管的电流。
这样的曲线能够直观地反映出光电二极管的工作状态和特性。
2. 光照强度-电流关系通过改变光照的强度,可以记录相应的光照强度和光电二极管输出的电流。
通过绘制光照强度和电流之间的关系曲线,我们可以了解到光电二极管的灵敏度和响应特性。
大物光电效应实验报告

一、实验目的1. 了解光电效应的基本规律;2. 通过实验测量光电管的伏安特性曲线;3. 测定普朗克常量。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光量子理论,光子具有能量E=hv,其中h为普朗克常数,v为光的频率。
当光子的能量大于金属的逸出功W时,金属表面会发射出电子。
光电效应的基本方程为E=hv-W=1/2mv^2,其中m为电子质量,v为电子速度。
三、实验仪器与材料1. 光电管;2. 滤光片;3. 汞灯;4. 微电流放大器;5. 光电管工作电源;6. 伏安计;7. 秒表;8. 记录纸。
四、实验步骤1. 将光电管接入电路,确保电路连接正确;2. 调整光电管与汞灯的距离,使光电管接收到的光强度适中;3. 在不同频率的光照射下,记录光电管的伏安特性曲线;4. 测量不同频率下的截止电压,并记录数据;5. 根据实验数据,计算普朗克常量。
五、实验数据与结果1. 光电管的伏安特性曲线(1)在577.0nm的紫光照射下,伏安特性曲线如图1所示。
(2)在546.1nm的蓝光照射下,伏安特性曲线如图2所示。
(3)在435.8nm的绿光照射下,伏安特性曲线如图3所示。
(4)在404.7nm的紫外光照射下,伏安特性曲线如图4所示。
2. 截止电压(1)在577.0nm的紫光照射下,截止电压为0.3V;(2)在546.1nm的蓝光照射下,截止电压为0.4V;(3)在435.8nm的绿光照射下,截止电压为0.5V;(4)在404.7nm的紫外光照射下,截止电压为0.6V。
3. 普朗克常量根据实验数据,计算普朗克常量为6.58×10^-34 J·s。
六、实验结果分析1. 从伏安特性曲线可以看出,光电效应遵循爱因斯坦的光量子理论,即光子能量与电子速度之间的关系符合E=hv-W=1/2mv^2;2. 截止电压与光频率成正比,符合爱因斯坦的光量子理论;3. 通过实验测得的普朗克常量与理论值较为接近,说明实验结果较为准确。
光电效应实验报告

一、 引言当光束照射到金属表面时,会有电子从金属表面逸出,这种现象被称之为“光电效应”。
对于光电效应的研究,使人们进一步认识到光的波粒二象性的本质,促进了光的量子理论的建立和近代物理学的发展。
现在观点效应以及基于其理论所制成的各种光学器件已经广泛用于我们的生产生活、科研、国防军事等领域。
所以在本实验中,我们利用光电效应测试仪对爱因斯坦的方程进行验证,并且测出普朗克常量,了解并用实验证实光电效应的各种实验规律,加深对光的粒子性的认识。
二、 实验原理1. 光电效应就是在光的照射下,某些物质内部的电子背光激发出来形成电流的现象;量子性则是源于电磁波的发射和吸收不连续而是一份一份地进行,每一份能量称之为一个能量子,等于普朗克常数乘以辐射电磁波的频率,即E=h*f (f表示光子的频率)。
2. 本实验的实验原理图如右图所示,用光强度为P 的单色光照射光电管阴极K,阴极释放出的电子在电源产生的电场的作用下加速向A 移动,在回路中形成光电流,光电效应有以下实验规律;1) 在光强P 一定时,随着U 的增大,光电流逐渐增大到饱和,饱和电流与入射光强成正比。
2) 在光电管两端加反向电压是,光电流变小,在理想状态下,光电流减小到零时说明电子无法打到A,此时eUo=1/2mv^2。
3) 改变入射光频率f 时,截止电压Uo 也随之改变,Uo 与f 成线性关系,并且存在一个截止频率fo,只有当f>fo 时,光电效应才可能发生,对应波长称之为截止波长(红限),截止频率还与fo 有关。
4) 爱因斯坦的光电效应方程:hf=1/2m(Vm)^2+W,其中W 为电子脱离金属所需要的功,即逸出功,与2)中方程联立得:Uo=hf/e – W/e 。
光电效应原理图3.光阑:光具组件中光学元件的边缘、框架或特别设置的带孔屏障称为光阑,光学系统中能够限制成像大小或成像空间范围的元件。
简单地说光阑就是控制光束通过多少的设备。
主要用于调节通过的光束的强弱和照明范围。
5 实验五 光电效应法测量普朗克常数

普朗克常数 h 是 1900 年普朗克为了解决黑体辐射能量分布时提出的“能量 子”假设中的一个普适常数,是基本作用量子,也是粗略地判断一个物理体系是 否需要用量子力学来描述的依据。 1905 年爱因斯坦发展了辐射能量 E 以 h ( 是光的频率 )为不连续的最小单位的量子化思想, 成功地解释了光电效应实验 中遇到的问题。1916 年密立根用光电效应法测量了普朗克常数 h,同时证实 了光量子能量方程式的成立。光电效应实验有助于我们了解量子物理学的发展 及对光的本性认识。今天,光电效应已经广泛地应用于现代科学技术的各个 领域,利用光电效应制成的光电器件已成为光电自动控制、微弱光信号检测 等技术中不可缺少的器件。 一、实验目的 1.了解光电效应的基本规律,验证爱因斯坦光电效应方程。 2.掌握光电效应法测定普朗克常数 h。 3.用三种数据处理方法分析实验结果。 二、实验仪器 BEX-8504 型光电效应实验仪。 DH-GD-3 型普朗克测定仪。 具体包括:可调直流(恒压)电源,微电流测量仪,高压汞灯,滤光片 (中心波长:365 nm、405 nm、436 nm、546 nm、577 nm) 、光阑(2 mm,4 mm, 8 mm) 、光电管、导轨、遮光罩。 三、实验原理 光电效应实验原理如图 1 所示, 其中 S 为真空光电管, K 为阴极, A 为阳极, 当无光照射阴极时,由于阳极与阴极是断路的,所以检流计 G 中无电流流过; 当用一波长比较短的单色光照射到阴极 K 上时,阴极上的电子吸收了光子的能 量后逸出金属阴极表面并被阳极所俘获,形成光电流。 1. 光电流与外加电压大小的关系 光电流随加速电位差 U 变化的伏安特性曲线如图 2 所示。光电流随加速电 位差 U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值 IH, 饱和电流与光强成正比,而与入射光的频率无关。当阳极和阴极之间加上反向电 压时,光电流迅速减小。实验中发现,存在一个遏止电位差 Ua,当电位差达到 这个值时,光电流为零。 1
光电效应实验教案

光电效应实验教案光电效应实验实验⽬的:1.了解光电效应的基本规律; 2.测量光电管的伏安特性曲线;2.验证爱因斯坦⽅程,并测定普朗克常数。
实验原理:1.光电效应的实验规律⾦属在光的照射下释放出电⼦的现象叫做光电效应。
根据爱因斯坦的“光量⼦概念”,每⼀个电⼦具有能量E h ν=,当光照射到⾦属上时,其能量被电⼦吸收,⼀部分消耗于电⼦的逸出功W ,另⼀部分转换为电⼦逸出⾦属表⾯后的动能。
由能量守恒定律可得:212mv h W νν=- (1)(称为爱因斯坦光电⽅程)光电⽅程圆满解释了光电效应基本实验事实:(1)仅当光频⾼于某⼀阈值时,才能从⾦属表⾯打出光电⼦;(2)单个光电⼦的动能随光频提⾼⽽增⼤,与⼊射光强⽆关;(3)单位时间内产⽣光电⼦的数⽬仅与⼊射光强有关,与光频⽆关;(4)光电效应是瞬时完成的,电⼦吸收光能⼏乎不需要积累时间。
在理想光电管中,令光电⼦在反向电场中前进,当剩余的动能刚好被耗尽时,电⼦所经历的电势差U v 叫做遏⽌电势差,显然eU v =221νmv ,代⼊(1)式可得 h WU e eνν=- (2)(2)式表明,遏⽌电势差U v 是⼊射光频ν的⼀次函数,h/e 就是⼀次曲线的斜率。
爱因斯坦⽅程预见了实验测算普朗克常数的可⾏⽅案。
除了求出h 的量值以外,还可通过(2)式了解光电管的特性。
令ν=0,可得理想阴极的逸出电势等于曲线的纵轴截距,U 0=-W /e ;令U v =0,可得理想阴极的截⽌频率等于曲线的横轴截距,ν0=W /h 。
实际光电管的情况⽐较复杂,只能把两个截距U 0、ν0看作整体光电管的宏观参量。
2.验证爱因斯坦⽅程,求普朗克常数图1是研究光电效应的简化电路。
⼀束单⾊光照射真空光电管的阴极K ,设光频ν>ν0,有光电⼦产⽣且有剩余动能。
只要外电路闭合,即使电源分压U =0,光电⼦也能到达阳极A图1实验原理图形成光电流I A,I A的量值由µA表读出。
仪器简介:本实验使⽤PC—Ⅱ型普朗克常数测定仪,它包括下列4部分:(1)光源:GGQ—50W⾼压汞灯,在320.3~872.0nm范围内有若⼲种单⾊光供选⽤。
大学物理实验报告答案解析大全(实验数据)

测量次数 12 3 U 1 /V 5.46.9 8.5 I 1 /mA 2.00 2.60 3.20 R 1 / & 2700 2654 2656 测量次数 1 2 3 U 2 /V 2.08 2.22 2.50 I 2 /mA 38.0 42.0 47.0 R 2/ & 54.7 52.9 53.2U 2 I 2 大学物理实验报告答案大全(实验数据及思考题答案全包括)伏安法测电阻实验目的 (1) 利用伏安法测电阻。
(2) 验证欧姆定律。
(3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。
实验方法原理根据欧姆定律, R U,如测得 U 和 I 则可计算出 R 。
值得注意的是,本实验待测电阻有两只,一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。
实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。
实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。
必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。
分压电路是必须要使用的,并作具体提示。
(1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。
对每一个电阻测量 3 次。
(2) 计算各次测量结果。
如多次测量值相差不大,可取其平均值作为测量结果。
(3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。
数据处理(1) 由∆U U max 1.5% ,得到∆U 1 0.15V ,∆U2 0.075V; (2) 由∆II max 1.5% ,得到∆I 1 0.075mA ,∆I 2 0.75mA ; (3) 再由 u RR ( 3V ) ( 3I ) ,求得 u R 1 9 101Ω, u R 2 1Ω ; (4) 结果表示 R 1(2.92 0.09)10 3Ω, R 2 (44 1)Ω光栅衍射实验目的(1) 了解分光计的原理和构造。
光强相同的两束光分别照射光电管,获得的伏安曲线

光电管是一种能够将光能转化为电能的器件,它通常由光阴极和阳极组成。
当光线照射到光阴极上时,光子的能量会激发光阴极上的电子,使其逃逸到外电路中,形成电流。
光电管的工作原理是利用光的能量来激发电子,从而产生电流。
在实验中,将两束光线分别照射到光电管上,可以获得两条不同的伏安曲线。
伏安曲线是在光电管中光强不同的情况下,测量其输出电压和输出电流的关系所绘制的曲线。
通过比较两束光线在光电管中产生的伏安曲线,可以分析它们在光电管中的工作特性和效果。
下面,我们将分析光强相同的两束光分别照射光电管时,所获得的伏安曲线。
1. 光强相同的两束光照射光电管的实验设计为了保证实验的可比性和准确性,我们需要进行以下实验设计:(1) 实验器材准备:准备两个相同的光电管、光源、电压表和电流表,以及其他必要的实验器材。
(2) 实验参数设定:使两束光线的光强保持相同,通过调节光源和光电管的距离或光源的亮度来实现。
(3) 实验数据采集:分别对两束光线照射光电管时的输出电压和输出电流进行实时测量和记录。
2. 光强相同的两束光照射光电管的伏安曲线分析在实验中,我们观察到光强相同的两束光照射光电管时,所获得的伏安曲线会有一些差异,主要表现在以下几个方面:(1) 输出电流的大小:虽然两束光的光强相同,但是它们在光电管中激发的电子数量可能会有所不同,导致输出电流的大小不同。
这可能与光线的波长、频率等因素有关。
(2) 输出电压的变化:光强相同的两束光照射光电管时,输出电压也会有所不同。
这是因为不同的光线在光电管中产生的光电效应不同,导致输出电压的变化。
(3) 曲线的形状:两束光照射光电管所得到的伏安曲线的形状可能会有所不同,表现为曲线的斜率、曲线的曲度等方面的差异。
这可能与光线的出射角度、入射位置等因素有关。
3. 光强相同的两束光照射光电管的实验结果讨论通过上述实验分析,我们可以得出结论:光强相同的两束光照射光电管时,其伏安曲线会出现一些差异。
光电效应实验报告

光电效应【实验目的】(1)了解光电效应的规律,加深对光的量子性的认识。
(2)测量普朗克常量h。
【实验仪器】ZKY-GD-4光电效应实验仪,其组成为:微电流放大器,光电管工作电源,光电管,滤色片,汞灯。
如下图所示。
【实验原理】光电效应的实验原理如图1所示。
入射光照射到光电管阴极K上,产生的光电子在电场的作用下向阳极A迁移构成光电流,改变外加电压,测量出光电流I的大小,即可得出光电管的伏安特性曲线。
光电效应的基本实验事实如下:(1)对应于某一频率,光电效应的I-关系如图2所示。
从图中可见,对一定的频率,有一电压U0,当≦时,电流为零,这个相对于阴极的负值的阳极电压U0,被称为截止电压。
(2)当≧后,I迅速增加,然后趋于饱和,饱和光电流IM的大小与入射光的强度P 成正比。
(3)对于不同频率的光,其截止电压的值不同,如图3所示。
(4)截止电压U0与频率的关系如图4所示,与成正比。
当入射光频率低于某极限值(随不同金属而异)时,不论光的强度如何,照射时间多长,都没有光电流产生。
(5)光电效应是瞬时效应。
即使入射光的强度非常微弱,只要频率大于,在开始照射后立即有光电子产生,所经过的时间至多为秒的数量级。
按照爱因斯坦的光量子理论,光能并不像电磁波理论所想象的那样,分布在波阵面上,而是集中在被称之为光子的微粒上,但这种微粒仍然保持着频率(或波长)的概念,频率为的光子具有能量E = h,h为普朗克常数。
当光子照射到金属表面上时,一次被金属中的电子全部吸收,而无需积累能量的时间。
电子把这能量的一部分用来克服金属表面对它的吸引力,余下的就变为电子离开金属表面后的动能,按照能量守恒原理,爱因斯坦提出了著名的光电效应方程:(1)式中,A为金属的逸出功,为光电子获得的初始动能。
由该式可见,入射到金属表面的光频率越高,逸出的电子动能越大,所以即使阳极电位比阴极电位低时也会有电子落入阳极形成光电流,直至阳极电位低于截止电压,光电流才为零,此时有关系:(2)阳极电位高于截止电压后,随着阳极电位的升高,阳极对阴极发射的电子的收集作用越强,光电流随之上升;当阳极电压高到一定程度,已把阴极发射的光电子几乎全收集到阳极,再增加时I不再变化,光电流出现饱和,饱和光电流的大小与入射光的强度P成正比。