等差数列习题课_PPT课件-课件ppt

合集下载

第二课时等差数列的性质课件-高二数学人教A版(2019)选择性必修第二册

第二课时等差数列的性质课件-高二数学人教A版(2019)选择性必修第二册
(3)



(m, ∈ ∗ ,且m ≠
2.等差中项:由三个数a , A , b组成等差数列,则称A叫做a与b的等差中项.
(1)条件:如果a , A , b成等差数列.
(2)结论:那么A叫做a与b的等差中项.
(3)满足的关系式是: a + b =2 A
1.等差数列实际问题
求证: + = +
分析:利用等差数列的中的两个基本量 1 , ,再根据等差数列的定义
写出 , , , ,即可得证.
证明:设数列 的公差为,则
= 1 +(p − 1) ,
= 1 +(q − 1) ,
= 1 +(s − 1) ,
∴ = 2+(n − 1) 2=2n
所以数列 的通项公式是 =2n
典例
例4. 已知等差数列{an} 的首项a1=2, = 8,在{an} 中每相邻两项之间都插入3
个数,使它们和原数列的数一起构成一个新的等差数列{ }.
(1)求数列{ } 的通项公式.
(2) b29是不是数列{an} 的项?若是,它是{an} 的第几项?若不是 ,请说明理由.
典例
例4. 已知等差数列{an} 的首项a1=2, = 8,在{an} 中每相邻两项之间都插入3
个数,使它们和原数列的数一起构成一个新的等差数列{ }.
(1)求数列{ } 的通项公式.
(2) b29是不是数列{an} 的项?若是,它是{an} 的第几项?若不是 ,请说明理由.
问题1:求数列的通项公式需要知道哪些量? 首项,公差
3.在等差数列{an}中,a1+a5=2,a3+a7=8,则a11+a15=________.

等差数列求和公式课件PPT资料(正式版)

等差数列求和公式课件PPT资料(正式版)
等差数列求和公式课 件
一、巩固与预习
1. {an}为等差数列 an+1- an=d an=a1+(n-1)d
an=an+b a、b为常数, 更一般的,an=am+(n-m)d ,d=
an am
nm .
2. a、b、c成等差数列b为a、c 的 等差中项
b ac
2
2b= a+c .
下一页
3.
若 m n p q 则 a m + a n = a p + a q
三、公式的应用:
Sn
n(a1 2
an
)
....(1)
Sn
na1
n(n 1) 2
d ...(2)
例1.根据下列各题中的条件,求相应的等差数列{an} 的Sn
(1)a1=5,an=95,n=10
S10=500
(2)a1=100,d=-2,n=50 S50=2550
例2. 等差数列-10,-6, -2,2,…前 多少项和是54?
2.若d=S0n,an=naa,1 则nS(nn=2_1_)_nd_a__ (2)
3.推导公式的方法是用倒序相加法
思考:若Sn=an2+bn,则{an}是等差数 列吗?
作业:习题2.3. 2.
谢谢观看
练习:
(1)等差数列5,4,3,2,…前多少
项的和 是-30?
15项
(2)求等差数列13,15,17,…81的各
项和
1645
(3)在等差数列{an}中,
已知 a2a5a12a1536 求S16
(4)已知 a6=20 ,你能求出S11吗?
课堂小结:
1.会用两公式
Sn

等差数列补充题课件-2023-2024学年高二下学期数学人教B版(2019)选择性必修第三册

等差数列补充题课件-2023-2024学年高二下学期数学人教B版(2019)选择性必修第三册

习题C
12.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中, 后人称为“三角垛”.“三角垛”的最上层有 1 个球,第二层有 3 个球, 第三层有 6 个球……设各层球数构成一个数列{an}. (1)写出数列{an}的一个递推公式; (2)根据(1)中的递推公式,写出数列{an}的一个通项公式.


例 9 已知等差数列{an}的前 n 项和为 Sn,若 a1=10,公差 d= – 2,则 Sn 是否存在最大值? 若存
在,求 Sn 的最大值及取得最大值时 n 的值;若不存在,请说明理由.


例 9 已知等差数列{an}的前 n 项和为 Sn,若 a1=10,公差 d= – 2,则 Sn 是否存在最大值? 若存


例 3 某公司购置了一台价值为 220 万元的设备,随着设备在使用过程中老化,其价值会逐年
减少,经验表明,每经过一年其价值就会减少 d(d 为正常数)万元已知这台设备的使用年限为 10 年,超过 10 年,它的价值将低于购进价值的 5%,设备将报废,请确定 d 的取值范围.


例 4 已知等差数列{an}的首项 a1=2,公差 d=8,在{an}中每相邻两项之间都插入 3 个数,使它


例 4 已知等差数列{an}的首项 a1=2,公差 d=8,在{an}中每相邻两项之间都插入 3 个数,使它
们和原数列的数一起构成一个新的等差数列{bn}. (1)求数列{bn}的通项公式. (2) b29 是不是数列{an}的项?若是,它是{an}的第几项? 若不是,说明理由.


例 5 已知数列{an}是等差数列,p,q,s,t∈N*,且 p+q=s+t. 求证 ap+aq=as+at.

高二数学必修5第二章 数列2-3课件(共22张PPT)

高二数学必修5第二章 数列2-3课件(共22张PPT)
第二章 数列
2.3 等差数列前n项和公式
第一页,编辑于星期一:一点 二十分。
本节主要学习等差数列前n项和公式及其简单应用。以泰姬陵中的 宝石数为引子,研究求和公式。用高斯小时候的故事来讲解求和公式。 问题探究一:用倒序相加法得出公式并总结变形公式。用例1加以巩 固。问题探究二:公式的灵活应用,知三求二,用变式2、3加以巩固。
第十一页,编辑于星期一:一点 二十分。
第十二页,编辑于星期一:一点 二十分。
(II)在等差数列 an中,已知: d 4 , n 20 , sn 460

a1

a 20
.
解: 利用 公式2
Sn
na1
n(n 1) 2
d
a1= -15
再根据
a20= 61
第十三页,编辑于星期一:一点 二十分。
例2 2000年11月14日教育部下发了《关于在中小学实施“校校 通”工程的通知》。某市据此提出了实施“校校通”工程的总目 标:从2001年起用10年的时间,在全市中小学建成不同标准的 校园网。据测算,2001年该市用于“校校通”工程的经费为500 万元。为了保证工程的顺利实施,计划每年投入的资金都比上一 年增加50万元。那么从2001年起的未来10年内,该市在“校校
通”工程中的总投入是多少?
第十四页,编辑于星期一:一点 二十分。
解:根据题意,从2001~2010年,该市每年投入“校校通”工程的经 费都比上一年增加50万元。所以,可以建立一个等差数列{an},表示从 2001年起各年投入的资金,其中 那么,到2010年(n=10),投入的资金总额为
答:从2001~2010年,该市在“校校通”工程中的总投入是7250万元。
问题1:图案中,第1层到第21层一共有多少颗宝石?

2.3等差数列前n项和公式课件-高二下学期数学人教A版必修5

2.3等差数列前n项和公式课件-高二下学期数学人教A版必修5

(1)当n为偶数时
Sn a1 an 1 an 1 an
2
2
设等差数列{an}前n项和为Sn ,则
Sn a1 a2 an1 an
(2)当n为奇数时
Sn a1 an11 an1 an11 an
2
2
2
1.推导公式:
又 又
① +②

① ②
(算法:倒序相加求和; 用到了等差数列的性质)
2. 等差数列的前 项和 何时有最大值,
最小值?如何求 ?有哪些方法?

3. 教材例4还有其它解法吗?
小结:
• 回顾从特殊到一般,一般到特殊的研究方法; • 体会等差数列的基本元表示方法,倒序相加的 算法,及数形结合的数学思想; • 掌握等差数列的两个求和公式及简单应用。 • 学会用函数的观点分析数列。
1.推导公式(教材):

② ① +②
2.记忆公式
a1
an
n
an a1
公式1
Sn
n(a1 2
an )
2.记忆公式
3.剖析公式:
通项公式 共5个量,由三个公式联系 ,知三可求二.
4. 公式的应用
例1、计算:
(1)1+2+3+…+n (2)1+3+5+…+(2n-1) (3)2+4+6+…+2n (4)1-2+3-4+5-6+…+(2n-1)-2n
法2.
原式=-1-1-…-1=-n
例2.等差数列-10,-6,-2,2,…的前
多少项的和是54 ?

思路:由
代入 化简得

高教版中职数学拓展模块一下册:7.2.2等差数列前n项和公式课件(共12张PPT)

高教版中职数学拓展模块一下册:7.2.2等差数列前n项和公式课件(共12张PPT)
因为一共有12排花盆,所以这个花坛的花盆总数为
7.2.2等差数列前n项和
情境导入
情境导入
探索新知
典型例题
巩固练习
一般地,数列{an}的前n项和记为Sn ,于是有
Sn=a1 + a2 + a3 + …+an-1+an,
(1)
(1)式也可以写为
Sn=an+an-1+an-2+…+a2+a1.
(2)
将(1)式与(2)式相加,可得
花坛一共用了多少盆鲜花.
布置作业
7.2.2等差数列前n项和
情境导入
探索新知
典型例题
巩固练习
归纳总结
布置作业
要计算一共用了多少盆鲜花,就是要计算等差列10,12,14,⋯,32各项的和.设想将
等腰梯形倒过来,与原来的等腰梯形合并在一起,如图所示,可以发现每一排的花盆数
都是42,即
10+32=12+30=14+28=…=32+10.
归纳总结Βιβλιοθήκη 布置作业7.2.2等差数列前n项和
情境导入
情境导入
探索新知
典型例题
由此得到等差数列的前n项和公式
因为an=a1+(n -1)d,所以上面的公式又可写成
巩固练习
归纳总结
布置作业
7.2.2等差数列前n项和
情境导入
探索新知
例4 在等差数列{an}中,a1=5,a9=85,求S9.

根据等差数列的前n项和公式
情境导入
探索新知
典型例题
小 结
巩固练习
情境导入
归纳总结
布置作业

全国通用四年级上册奥数培训精品课件等差数列求和共35张PPT

全国通用四年级上册奥数培训精品课件等差数列求和共35张PPT
分析:首项=2 公差=3
解:(1)第10项: (2)第98项:
2+3 ×(10-1)=29 2+3 ×(98-1)=293
例2 已知数列2、5、8、11、14、 17,......122,这个数列有多少项。
规律:末项比首项多的公差的个数,再加上1,就得到 这个数列的项数。
等差数列的项数= 公差个数 + 1 =(末项-首项)÷公差 + 1
这个数列的项数= (122-2)÷3+1=41
小结:
等差数列项的有关规律
等差数列的某一项=首项+公差×(项数-1) 等差数列的每1项除以它的公差,余数相同。 等差数列的项数=(末项-首项)÷公差+1
练习
1、一串数:1、3、5、7、9、……49。 (1)它的第21项是多少? (2)这串数共有多少个?
解:原数列之和=(6+38)×9÷2 =44×9÷2 =198
等差数列的和=(首项+末项)×项数÷2
例2:计算1 + 6+ 11 + 16 + 21+ 26 +......+ 276
等差数列的和=(首项+末项)×项数÷2 ?
等差数列的项数=(末项-首项)÷公差+1
解:等差数列的项数: (276-1)÷5+1=56(项)
原数列之和=(1+276)×56÷2 = 277×28 =7756
等差数列二
复习
1、计算
(1)7+10+13+16+...+37 (2)7+11+15+19+......+403 (3)9+19+29+39+......+99 (4)1+3+5+7+......+99

人教版高中数学选择性必修第二册4.3.1(第2课时)等差数列的性质及应用 课件

人教版高中数学选择性必修第二册4.3.1(第2课时)等差数列的性质及应用 课件
am+an=ap+aq
新知导入 问题:
等比中项与等差中项的区别? 提示: (1)只有当两个数同号且不为0时,才有等比中项 (2)两个数 a,b 的等差中项只有一个,两个同号且不为0的数的等 比中项有两个
新知讲解 拓展
两个等比数列合成数列的性质
若数列{an},{bn }均为等比数列,c 为不等于0的常数,则数列
(2)若{an}等比数列,公比为
,证明数列{log₃an} 为等差数列.
证明:
( 1 ) 由a₁=3,d=2,
得{an}的通项公式为an=2n+1.
设bn=3an,


b所₁=以3³,=2{73an}是以27为首项,9为公比的等比数列.
合作探究
例5已知数列{an}的首项a₁=3. (1)若{an}为等差数列,公差d=2, 证明数列{3an}为等比数列;
合作探究 解:设从今年1月起,各月的产量及不合格率分别构成数列{an},{bn}.
由题意,知 an=1050×1.05n-1
bn=1-[90%+0.4%(n-1)] =0.104—0.004n
其 中 ,n=1,2,..,24,
则从今年1月起,各月不合格产品的数量是
anbn=1050×1.05n-1×(0.104-0.004n)
设BA=a₁,AA₁=a₂,A₁A₂=a₃,…,A₅A₆=a₇ ,

解: 等腰直角三角形ABC 中,斜边BC=2, 所 以
AB=BA=a₁=2
同理 故数列{an}是首项a₁=2, 公 比 的等比数列,
课堂总结
1复习 2拓展 3例题 4课堂练习
板书设计
1温故知新 2拓展
3例4~6
4课堂练习
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档