结构力学龙驭球版 桁架习题

合集下载

龙驭球《结构力学Ⅰ》(第3版)章节题库-虚功原理与结构位移计算(中册)(圣才出品)

龙驭球《结构力学Ⅰ》(第3版)章节题库-虚功原理与结构位移计算(中册)(圣才出品)

8(b)所示,结点 K 处的竖向位移为

4 / 25
圣才电子书

十万种考研考证电子书、题库视频学习平台
图 5-8
【答案】
【解析】此结构为二次超静定,要求结点 K 的位移,可以取其一静定基本结构(图 5-
9(a)),在此基本结构上 K 处虚设一竖向单位力,画出其弯矩图(图 5-9(b)),再与已知
的原结构的弯矩图图乘即可求得 K 点竖向位移.
图 5-9
此题选取的基本结构可以有多种形式,相应的 图也不一样,与 M 图图乘时的计算量 就不同.所以在选择基本结构时应尽量使图乘时的计算量小(弯矩图分布范围小且简单).
4.已知图 5-10(a)所示弯矩图,图 5-10(b)中由 (已知)产生的 C 截面竖向位
MA=0 有
(拉).
要求铰 C 处的竖向位移,需要画出此结构的弯矩图(图 5-13(c));然后在结构上 C 处
虚设一竖向单位力(图 5-13(d)),求出此时 AC 杆弯矩和 EG 杆轴力,然后图乘得 C 点竖
向位移为
7 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台

挠度大

【答案】
图 5-18
10 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台

【解析】(1)结构为静定,图 5-18(a)、(b)两图的唯一区别是在图 5-18(a)中竖 向支座链杆处会有变形,而图 5-18(b)中没有,静定结构的支座移动不会引起内力,所以 两结构的弯矩图完全一样.
移等于

5 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 5-10 【答案】 【解析】(1)选一基本结构,在 C 处虚设一竖向单位力,作 图(图 5-11).

结构力学(高等教育出版社 龙驭球)考研模拟题.doc

结构力学(高等教育出版社 龙驭球)考研模拟题.doc

结构力学(高等教育出版社 龙驭球)考研模拟题专业课复习资料(最新版)封面1结构力学模拟试题一 1、 、(20 分)计算图示结构。

绘出梁式杆的弯矩图,并求二力杆的轴力。

已知:030 ,045 。

题 题 1 图 题 题 2 图 2、 、(18 分)计算图示刚架。

绘制弯矩图和剪力图。

3、 、(20 分)用力矩分配法计算图示刚架。

绘弯矩图,并求 C 支座的反力。

题 题 3 图 4、 、(18 分)连续梁的支座 A 和 B 均发生了支座位移如图。

试列出力法方程,求出方程中的系数和常数项。

(注意:不解方程) 题 题 4 图 5、 、(20 分)用位移法计算图示刚架。

绘出弯矩图。

2EI = 08题 题 5 图 图 6、 、(18 分)做图示梁 A 截面的弯矩 M A 、剪力 F QA 及 k 截面的弯矩 M k 影响线;已知可任意分布均布荷载集度 q=10kN/m,计算 F QA 的最大值,并注出相应的最不利荷载位置。

题 题 6 图 图7、 、(18 分)只考虑图示体系质点在铅垂方向振动。

计算质点的最大竖向位移和刚架顶铰 C 处的最大竖向位移。

已知: 0.4 ( 为结构自振频率),8.4kN F P ,3al4EIk , 38kN W ,各杆 EI 相同均为常数。

EIEIEI = 08m =3m 1EIm =m 2 题 题 7 图 题 题 8 图 8、 、(18 分)计算图示振动体系的自振频率和振型,并绘出振型图。

3结构力学模拟题二 一、是非题,对的画 ,错的打(( 每小题 1 分) 1. 除荷载外,其他因素例如温度变化、支座位移等会使超静定结构产生位移, 因而也就有可能使静定结构产生内力 。

( ) 2. 刚架中所有的结点都为刚结点。

( ) 3. 几何不变体系都为静定结构。

( ) 4. 力法中的基本结构为超静定结构。

( ) 5. 二元体是指由两根链杆联结一个新结点的装置( ) 6. 静定多跨梁由基本部分和附属部分组成。

结构力学龙驭球第三版课后习题答案课件

结构力学龙驭球第三版课后习题答案课件

根据空间力矩的定义和性质,计算力对点 的矩和力对轴的矩。
03 材料力学部分习题答案
材料力学基 础
总结词
掌握材料力学的基本概念、原理和公 式。
详细描述
这部分习题答案将提供关于材料力学 基础知识的详细解释,包括应力和应 变的概念、胡克定律、弹性模量等, 以便学生更好地理解材料力学的基本 原理和公式。
振动分析
总结词:掌握振动分析的基本原理和方 法
掌握振动分析中常用的计算方法和技巧, 如模态分析和谱分析。
熟悉振动分析中常用的数学模型和方程, 如单自由度系统和多自由度系统的振动 方程。
详细描述
理解振动分析的基本概念和原理,包括 自由振动和受迫振动。
05 弹性力学部分习题答案
弹性力学基础
总结词
详细描述了弹性力学的基本概念、假设、基本方程和解题方法。
详细描述
这部分内容主要介绍了弹性力学的基本概念,包括应力和应变、胡克定律等。同时,也介绍了弹性力 学的基本假设,如连续性、均匀性、各向同性等。此外,还详细阐述了弹性力学的基本方程,包括平 衡方程、几何方程和物理方程,并给出了相应的解题方法。
平面问题
总结词
针对平面问题的解题技巧和思路进行了 深入探讨。
这部分习题答案将针对剪切与扭转的受力分析、应力和应变计算进行详细的解析,包括剪切与扭转的受力分析、 应力和应变计算等,帮助学生理解剪切与扭转的基本概念和计算方法。
04 动力学部分习题答案
动力学基础
详细描述
总结词:掌握动力学基本概 念和原理
01
掌握牛顿第二定律、动量定
理、动量矩定理等基本原理。
02
VS
详细描述
该部分内容主要针对平面问题进行了深入 的探讨,包括平面应力问题和平面应变问 题。对于平面应力问题,介绍了如何利用 应力函数和叠加原理求解;对于平面应变 问题,则介绍了如何利用格林函数和积分 变换等方法进行求解。此外,还对平面问 题的基本假设和简化方法进行了阐述。

龙驭球《结构力学》(第3版)配套模拟试题及详解【圣才出品】

龙驭球《结构力学》(第3版)配套模拟试题及详解【圣才出品】
5.温度变化、支座移动等因素,在超静定结构处于弹性阶段时会产生内力,但这些因
8 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台

3.图 16 所示组合结构,FP=1 在 ACB 段移动,链杆 DE 轴力的影响线在 C 点处的竖标
值为

图 16
【答案】1 【解析】根据影响线定义,本题实际是求将 FP=1 移至 C 点时 DE 的轴力。
4.图 17 所示结构按矩阵位移法计算,则不结点位移 1、2(正方向见图虚线标示)对
应的等效结点荷载向量为:[
, ]T。
图 17
【答案】 ql 2 ; ql 2 24 2
【解析】将 B 处固结,画出相应荷载下的弯矩图,取 B 结点进行受力分析,可得 F1P, F2P,直接根据相应荷载下的受力图得到。
8.图 11 所示单自由度动力体系,质量 m 在杆件中点,各杆 EI、l 相同,其自振频率 的大小排列次序为( )。
A.(a)>(b)>(c) B.(c)>(b)>(a) C.(b)>(a)>(c) D.(a)>(c)>(b)
【答案】C 【解析】解法一:由
图 11 ,δ11 小者 ω 大。
6 / 22
图9
7.图 10(a)所示弹性支承刚性压杆体系,其临界荷载 FPcr 圣才电子书

C.FPcr=2kl
D.FPcr= kl 2
十万种考研考证电子书、题库视频学习平台
图 10 【答案】B 【解析】结构失稳形式如图 10(b)所示,由∑MB=0 得 kyl×2-FPcry×2=0 FPcr= kl。
1 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台

龙驭球《结构力学Ⅰ》(配套题库【名校考研真题】(静定结构的受力分析)

龙驭球《结构力学Ⅰ》(配套题库【名校考研真题】(静定结构的受力分析)

第3章静定结构的受力分析一、判断题1.图3-1所示桁架杆件AB、AF、AG内力都不为零。

()[厦门大学2007研]图3-1【答案】错【解析】本题为静定结构,根据静定结构的性质:在荷载作用下,如果仅靠结构某一局部就能够平衡外荷载时,则仅此局部受力,其余部分没有内力。

知杆件AB、AF、AG内力都为零。

2.图3-2所示桁架,各杆EA为常数,仅AB杆有轴力,其他杆的轴力为零。

()[天津大学2007研]图3-2【答案】错【解析】本题是一对平衡力作用在超静定部分ADBC 上,故整个超静定部分ADBC 都会产生内力。

倘若本题为静定桁架,则只有AB 杆受力。

3.若某直杆段的弯矩为0,则剪力必定为0;反之,若剪力为0,则弯矩必定为0。

( )[中南大学2005研]【答案】错【解析】由弯矩和剪力的微分关系Q dMF dx可知,剪力为零,但弯矩不一定必为零。

比如,受纯弯曲的杆段。

二、选择题1.如图3-3所示结构在所示荷载作用下,其支座A 的竖向反力与支座B 的反力相比为( )。

[郑州大学2010研、哈尔滨工业大学2008研]A .前者大于后者B.二者相等,方向相同C.前者小于后者D.二者相等,方向相反图3-3【答案】B【解析】直接对C点列力矩方程∑M C=0即可判断。

2.图3-4所示结构,当高度h增加时,杆件1的内力()。

[南京理工大学2012研]A.增大B.减小C.不确定D.不变【答案】D【解析】根据K形结点的特性,因结构是对称的,荷载也是对称的,所以各杆件的内力是对称的,所以杆件1、2均为零杆,与结构高度h增加与否无关。

图3-43.图3-5所示对称三铰拱截面C的轴力已知为F NC=48kN(压),则矢高f应等于()。

[清华大学2003研]A.4m B.4.5m C.4.8m D.5m图3-5【答案】D【解析】先求得B支座竖向反力为50kN,后求出相应简支梁跨中弯矩为240kN·m,再用相应简支梁跨中弯矩除以轴力(水平推力)48kN,于是得到矢高f应等于5m。

龙驭球结构力学Ⅱ(第3版)知识点笔记课后答案

龙驭球结构力学Ⅱ(第3版)知识点笔记课后答案

第11章静定结构总论11.1复习笔记一、几何构造分析与受力分析之间的对偶关系1.从计算自由度W的力学含义和几何含义看对偶关系(1)W的几何含义W=各部件的自由度总数-全部约束数。

(2)W的力学含义W=各部件的平衡方程总数-未知力总数。

(3)根据W的数值,可对体系的静力特性得出下列结论①W>0,平衡方程个数大于未知力个数,体系不是都能维持平衡,体系为几何可变;②W<0,平衡方程个数小于未知力个数,体系如能维持平衡,体系有多余约束,是超静定的;③W=0,平衡方程个数等于未知力个数,考虑方程组的系数行列式D当D≠0,方程组有唯一解,体系几何不变且无多余约束;当D=0,方程组无解或有无穷多解,体系几何可变且有多余约束。

2.从W=0的一个简例看对偶关系(1)几何构造分析(图11-1(a))图11-1①α≠0(链杆1和2不共线)时,体系为几何不变,且无多余约束;②α=0(链杆1和2为共线)时,体系为几何可变(瞬变),且有多余约束。

(2)受力分析取结点C为隔离体(图11-1c),可写出两个投影平衡方程:F1cosα-F2cosα=F xF1sinct+F2sinoc=F y下面分为两种情况讨论①α≠0时(两根链杆1和2不共线)②α=0时(两根链杆共线)当荷载F y≠0时,方程组无解;如果考虑F y=0而只有水平荷载F x作用的特殊情况,此时解为:F1=F2+F x=任意值。

二、零载法1.零载法的作法表述对于W=0的体系,如果是几何不变的,则在荷载为零的情况下,它的全部内力都为零;反之,如果是几何可变的,则在荷载为零的情况下,他的某些内力可不为零。

2.零载法适用体系零载法是针对W=0的体系,用静力法来研究几何构造问题,用平衡方程的解的唯一性来检验其几何不变性的方法。

3.从虚功原理角度看零载法由于载荷为零,因此虚功方程左边只有一项Fx•△x=0(1)与F x相应的约束是非多余约束,△≠0,解得F=0;(2)与F x相应的约束是多余约束,△=0,则F等于任意值。

龙驭球《结构力学Ⅱ》(第3版)课后习题-第十五章至第十八章【圣才出品】

龙驭球《结构力学Ⅱ》(第3版)课后习题-第十五章至第十八章【圣才出品】

解:采用刚度法求解
图 15-3
2 / 72
圣才电子书 十万种考研考证电子书、题库视频学习平台

由振动控制方程,

可得,1 49,2 245,3 588










即三层刚架的主振型为
Y(1) (0.333,0.667,1.000)T Y(2) (0.667,0.667,1.000)T
图 15-7 解:(1)图中为静定结构,所以采用柔度法,先求柔度系数。 施加单位位移,得到弯矩图 15-8 如下
9 / 72
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 15-8
图乘得到, 1P
3FPl3 24EI
,
2P
FPl3 32EI
11
3l3 24EI
, 22
l3 48EI
,
12
21
l3 32EI
(2)计算 D 值
16EI ml 3
m1 2

m2 2
m
16EI ml 3
16EI l3
3m
16EI ml 3
48EI l3
10 / 72
圣才电子书 十万种考研考证电子书、题库视频学习平台

(3)计算位移幅值 (4)计算惯性力 (5)叠加做弯矩图,如图 15-8(d)所示 15-9 图示桁架,杆分布质量不计,各杆 EA 为常数,质量上作用竖向简谐荷载
1 m
2
21I1 (22
) I1 12 I2
1 m
2
)I2
1 P 2 P
0 0
解得 I1 0.16F , I2 0.66F

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(静定结构的受力分析)【圣才出品】

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(静定结构的受力分析)【圣才出品】

第3章静定结构的受力分析3.1 复习笔记本章详细论述了各类静定结构的受力分析过程与步骤,包括静定平面桁架、静定多跨梁、静定平面刚架、组合结构和三铰拱,介绍了隔离体的最佳截取方法,以及静定结构内力计算的虚位移法。

重视静定结构的基本功训练,有助于培养驾驭基本原理解决复杂问题的能力,为超静定结构的分析与求解打下坚实基础。

一、静定平面桁架桁架由杆件铰接而成,其杆件只承受轴力,杆件截面上应力分布均匀,主要承受轴向拉力和压力,因而能够充分发挥材料的作用,经常使用于大跨度结构中。

1.桁架的类别与组成规律(见表3-1-1)表3-1-1 桁架的类别与组成规律2.桁架杆件内力的求解方法(见表3-1-2)表3-1-2 桁架杆件内力的求解方法二、梁的内力计算的回顾1.截面内力分量符号规定如图3-1-1(图中所示方向为正方向)所示:(1)轴力以拉力为正;(2)剪力以绕微段隔离体顺时针转向为正;(3)在水平杆件中,当弯矩使杆件下部受拉(上部受压)时,弯矩为正。

图3-1-12.截面法(见表3-1-3)表3-1-3 截面法3.荷载与内力之间的微分关系(1)在连续分布的直杆段内,取微段dx为隔离体,如图3-1-2所示。

图3-1-2(2)由平衡条件导出微分关系为(Ⅰ)4.荷载与内力之间的增量关系(1)在集中荷载处,取微段为隔离体,如图3-1-3所示。

图3-1-3(2)由平衡条件导得增量关系为5.荷载与内力之间的积分关系如图3-1-4所示,结合式(Ⅰ)可得梁的内力积分公式,积分公式及其几何意义见表3-1-4。

图3-1-4表3-1-4 内力的积分公式及几何意义6.分段叠加法作弯矩图(1)分段叠加法步骤①求支反力:根据整体受力平衡求出支座反力;②选取控制截面:集中力作用点、集中力偶作用点的左右两侧、分布荷载的起点和终点都应作为控制截面;③求弯矩值:通过隔离体平衡方程求出控制截面的弯矩值;④分段画弯矩图:控制截面间无荷载作用时,用直线连接即可;控制截面间有分布荷载作用时,在直线连接图上还需叠加这一段分布荷载按简支梁计算的弯矩图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Na =
5 5 =Ya P 2 3
返回
求图示桁架中AD、BE杆的轴力。
⑴ 取ⅠⅠ截面以上
D F

E
a

G
X =0 N
FC
=0
⑵取ⅡⅡ截面ቤተ መጻሕፍቲ ባይዱ上

P
C

a a
Y =0 NAD = -P
⑶取ⅠⅠ截面以上
A
B
a
a
a
M
C
=Pa + N AD 2a - N BE a = 0
N BE = - P
5m
1
解: ①找出零杆如图示; ②由D点
Y =Y
F 2×3m K
1
G
H 0
I 0 M 0
D P B
J
- P = 0, Y2 = P, 13 N2 = P 3
2
③1-1以左
2
0
C P E 24×4m 1
M
0
2A
= N CE 6 - 4P = 0, 2 N CE = P 3
F
F N1
0
④2-2以下
X = N
N CE =
CE
- X 1 = 0,
NCE
C P
P
2 P 3
2 P, 3 5 N1 = P 6 X1 =
求 a、b 杆轴力
解:1、由内部X形结点知: 位于同一斜线上的腹杆内力 相等。 2、由周边上的K形结点 知各腹杆内力值相等,但正 负号交替变化。所有右上斜 杆同号(设为N),所有右 下斜杆同号(设为-N)。 3、取图示分离体:
a
P d —N N —N —N d N 2d β N N N Na N N N
F N
E
—N
N —N
—N
D
N N —N —N N H
N —N —N
N b
2d
d
sin = 1/ 5, cos = 2 / 5
X = P - 5 N cos = 0
4、取F点为分离体
5 N= P 10
N F —N
2d
由截面- 右 Y = 0
P
D
N DG = -1.25P
由截面 - 上
C
MF = 0
Na = 0.05 2P
F
Na
1.25P
桁架的比较
1.平行弦桁架 内力分布不均匀
2.三角形桁架 两端内力大,夹角小
3.抛物线形桁架 内力分布均匀, 构造复杂
桁架中的零杆
9根 0 0 0 0 0 0 0 0 0
8根 0 0 0 0 0 0 0 0 0 0 0 0
返回
7根 0
0
0

0
0
A
0 0
在右图所示桁架中,设AC为 B
0 0 0
C
拉力,由A点投影平衡AB为压
力;由B点投影平衡BC为拉力 ;C点将不满足平衡条件,故
0
A
0 C 0
B
AB、BC、CA均为零杆。
进一步找出其它零杆。
0
返回
0
求图示桁架指定杆轴力。
为了使计算简捷应注意:
1)选择一个合适的出发点; 2)选择合适的隔离体;
1.3P
0.5P
T
C a

D
P d d G
3)选择合适的平衡方程 例: 计算桁架中a杆的内力。
由结点T
0.5P T
E

F
K

H 2d
A 2d
P 1.3P 0.5P T
B
N DT
2 =P 4
2 P 4 D
N DG
NTD
2d
X = Na + 2N cos = 0 2 Na = - P 5
5、取H点为分离体 2 X =0 N b = P 5
返回
静定平面桁架
力矩法 • 矩心:除所求力外的其他个未知力的均 交于一点,取其交点为矩心。
投影法
• 投影轴:除所求力外的其它个未知力均 平行,取其垂线为投影轴。
求桁架中a杆件的轴力。
E 3d a
E
A
P
C Ⅰ 3d
P
B Ⅰ
A
C
B
Xa
Na
P Ya
= P×2d +Ya × d = 0 Ya = - 2 P 3 M A 3
相关文档
最新文档