智能变电站技术发展关键
智能变电站的发展及现状

智能变电站的发展及现状智能变电站的发展及现状一、引言智能变电站是指利用先进的信息通信技术和自动化控制技术,对传统的变电站进行升级改造,实现设备互联互通、自动化运维和智能化管理的一种新型变电站。
随着电力系统的发展和技术的进步,智能变电站已经成为电力行业的重要发展任务。
本文将对智能变电站的发展历程及现状进行详细阐述。
二、智能变电站的发展历程⒈传统变电站的局限性传统变电站存在着设备信息孤立、运维成本高、响应速度慢等问题。
随着电力行业的快速发展,传统变电站已经无法满足现代电力系统的需求。
⒉智能变电站的概念提出为了解决传统变电站存在的问题,智能变电站的概念应运而生。
智能变电站利用先进的信息通信技术和自动化控制技术,实现设备之间的互联互通,并通过高效的智能化管理系统,提高运维效率,降低运维成本,实现变电站的可靠运行。
⒊智能变电站的发展进程智能变电站的发展经历了几个阶段:网络互联阶段、数据采集与分析阶段、自主决策与控制阶段。
目前,智能变电站已经进入智能运营与维护阶段,实现了从传统变电站到智能变电站的转型。
三、智能变电站的主要特点⒈互联互通智能变电站通过网络连接,实现了设备之间的信息互通和数据共享。
这使得变电站的运行更加高效可靠,并且便于对变电站进行远程监控和运维。
⒉自动化运维智能变电站采用自动化控制技术,实现对设备的自动巡检、故障诊断和维护。
这大大降低了人工巡检的工作量,提高了运维效率。
⒊智能化管理智能变电站依靠智能化管理系统,对变电站进行综合管理和优化调度。
通过数据分析和决策支持,可以及时发现问题并采取相应的措施,提高变电站的运行效率。
四、智能变电站的应用现状⒈国内智能变电站的应用情况我国电力行业在智能变电站的建设方面取得了一定的成果,各地区相继建设了多个智能变电站。
目前,智能变电站在我国的应用逐渐普及,但与发达国家相比,仍有一定差距。
⒉国际智能变电站的发展情况国际上,智能变电站已经得到广泛应用,并取得了显著的成果。
智能变电站发展现状

智能变电站发展现状智能变电站在能源领域的发展备受关注。
随着能源技术的不断进步和智能化的推动,智能变电站作为能源系统的关键环节,面临着一系列的变革和发展。
目前,智能变电站的发展现状如下:首先,智能变电站的技术和设备不断升级。
传统的变电站主要依靠人工操作和控制,存在运行不够灵活和效率低下的问题。
而智能化的变电站引入了先进的自动化设备和智能化技术,可以实现对电力系统的实时监测和远程控制。
通过数字化、网络化和智能化的手段,智能变电站具备了更高效、更安全、更可靠的运行能力。
其次,智能变电站的运行管理得到了改善。
智能化的变电站可以实现对电网负荷的智能调控,通过预测和分析电力需求情况,提前做好电力调配工作,从而避免电网的过载和供电不足的问题。
同时,智能变电站还可以实现对电力故障的自动检测和智能切换,提高了电力系统的可靠性和安全性。
第三,智能变电站的可持续发展受到重视。
随着可再生能源的不断发展和推广应用,智能变电站需要适应并融合更多的可再生能源接入。
通过智能化的技术手段,智能变电站可以实现对可再生能源的优化调度和管理,提高可再生能源的利用效率和电力系统的稳定性。
最后,智能变电站的建设和改造正在加速推进。
政府和能源公司纷纷加大对智能变电站的投入和支持力度,推动智能变电站的建设和改造工作。
在新建变电站方面,智能化的设备和技术得到了广泛应用;在旧有变电站改造方面,智能化改造工作也取得了一定进展。
这些举措有助于提升智能变电站的整体水平和能源系统的发展。
综上所述,智能变电站在技术、运行管理、可持续发展和建设改造等方面都取得了积极的发展。
随着技术的进一步成熟和应用的推广,智能变电站的发展前景仍然十分广阔,将为能源领域的可持续发展提供强力支撑。
智能变电站的发展及现状[1]
![智能变电站的发展及现状[1]](https://img.taocdn.com/s3/m/1f9276fb6037ee06eff9aef8941ea76e58fa4a8b.png)
智能变电站的发展及现状智能变电站的发展及现状一、引言智能变电站是指利用先进的信息技术和通信技术,实现对变电站设备和电力系统的智能控制、监测、维护和管理的一种新型电力设施。
智能变电站的出现对电力系统的运行和管理带来了革命性的变化。
本文将从以下几个方面来详细介绍智能变电站的发展和现状。
二、智能变电站的概念与特征2.1 智能变电站的概念智能变电站是指在传统的变电站基础上,引入先进的信息技术和通信技术,集成各类传感器、监测装置和智能终端设备,通过智能化的控制系统实现对设备和系统的智能化监测、控制和管理。
2.2 智能变电站的特征(1)信息化集成:智能变电站采用现代化信息技术,实现对设备和系统的信息化管理和电力系统的智能化。
(2)数据智能化:智能变电站通过各类传感器采集设备状态和运行数据,并通过智能处理和分析,实现对变电站设备的智能诊断和预测维护。
(3)自动化控制:智能变电站通过自动化控制系统,实现对变电站各个设备和系统的智能化控制和操作。
三、智能变电站的技术应用3.1 智能监测与诊断智能变电站通过传感器和监测装置,实时采集设备的运行状态和数据,并通过智能分析和诊断,实现对设备运行的监测和故障诊断。
3.2 智能维护与管理智能变电站通过综合管理系统,对设备的维护和保养进行智能化管理,包括维修计划的制定、故障处理和设备巡检等。
3.3 智能控制与操作智能变电站通过自动化控制系统,实现对变电站设备和电力系统的智能化控制和操作,包括设备的远程控制、操作的自动化和过程的智能化控制。
四、智能变电站的发展状况4.1 国内智能变电站的发展状况我国智能变电站的发展起步较晚,目前智能变电站的建设和应用仍处于起步阶段,但随着电力系统的发展和智能技术的逐渐成熟,智能变电站在我国的发展前景广阔。
4.2 国际智能变电站的发展状况国际上,智能变电站的发展比较成熟,德国、美国、法国等发达国家在智能变电站的研究和应用方面取得了较大的进展,尤其在智能监测、诊断和维护管理等方面有很多成果和经验可供借鉴。
智能变电站及技术特点分析

智能变电站及技术特点分析摘要:随着科技的进步和电力工业的发展,智能变电站已经成为了未来智能电网建设的重要组成部分,在全国范围内出现了建设和升级改造的热潮。
文章主要结合具体智能变电站改造项目进行分析一些关键技术特点,具有一定的借鉴价值。
关键词:智能变电站;关键技术;特点智能变电站与常规变电站相比,具有稳定性能和多样功能等特征,然而这些能够体现智能变电站特征的实现必然需要一些关键技术的支持,这也是目前智能变电站建设过程中所要面临的现实技术问题。
文章中对110kv智能变电站关键技术的特点进行了介绍分析。
1、智能设备与顺序控制实现智能化的高压设备操作宜采用顺序控制,满足无人值班及区域监控中心站管理模式的要求;可接收执行监控中心、调度中心和当地后台系统发出的控制指令,经安全校核正确后自动完成符合相关运行方式变化要求的设备控制,即应能自动生成不同的主接线和不同的运行方式下的典型操作票;自动投退保护软压板;当设备出现紧急缺陷时,具备急停功能;配备直观的图形图像界面,可以实现在站内和远端的可视化操作。
2、电气主接线电气主接线是变电站电气设计的首要部分,也是智能变电站建设的关键技术,在选择和应用时,简单地说主要考虑可靠性、灵活性、经济性、扩展性及先进性这几项要求。
常用的电气主接线方式主要包括单母线分段接线和桥式接线两种。
该变电站原110kV主接线为单母线分段接线方式(刀闸分段),35kV/lOkV为单母线分段接线方式。
虽然单母线分段接线方式(刀闸分段)清晰、简单、易扩建,且可对母线和母线隔离开关实施分段检修,能够很好地控制母线故障停电影响范围。
但用隔离开关进行分段,总体可靠性不高。
桥式接线突出的优点是断路器使用数量较少,4个回路只需3台断路器,是所有接线中断路器用量最少的,结构简单,投资较小,在110kV电气主接线中的使用较为广泛。
桥式接线又分为内外两种,内桥接线适用于线路较长,变压器小于线路故障概率,变压器又无需经常切除的输电线路。
提升110kV智能化变电站改造可靠性的技术措施

提升110kV智能化变电站改造可靠性的技术措施摘要:智能化变电站是通过对智能设备的应用,在全站信息数字化以及通信平台网络化等技术的支持之下,所构建的具备自动完成信息采集以及测量等各项功能的变电站。
它能够实现对电网运行实时状态的有效控制和智能调节,可以在线完成分析决策和协同互动等各项操作,可以有效提高变电质量,保证电网的运行安全和稳定性。
为更好地开展智能化变电站改造,保证可靠性技术应用效果,需要明确智能变电自动化系统结构的基本情况。
本文对提升110kV智能化变电站改造可靠性的技术措施进行了简要分析。
关键词:110kV智能化变电站;改造可靠性;技术措施1 10kV智能变电站概述110kV智能变电站是指将信息化、智能化以及数字化技术融入变电设备中,实现对变电站的自动化管理。
在网络化、信息化管理方式的支持下,可保证变电设备自主实现数据收集、环境适应,提升其运行效率与稳定性。
智能变电站实现了传统变电站运行模式的技术升级,为数据共享提供保障,同时110kV智能变电站体现出更多的兼容性,进一步达到提高运行效率、降低运行成本、实现提质增效的目的。
2提升110kV智能化变电站改造可靠性的技术措施2.1更换可靠性低的设备就现阶段国内电子式互感器厂家整体情况来看,部分厂家还存在设计能力有限以及工艺控制没有达到标准要求等方面的问题,在进行检测试验装备过程中存在一定缺陷,导致电子式互感器故障率相对较高。
在该项问题没有得到妥善解决前,需要采用对电子组件和常规互感器设备进行智能化以及可视化处理的模式,通过科学设置变电站主变常规互感器与电子组件配置的方法,对可靠性降低的设备进行更换,保证系统整体运行质量,以便实现降低各种故障发生可能性。
变电站智慧运维管控平台变电站智慧运维管控平台整合变电站环境监控、动力监测、检修辅助、运行辅助、资产全寿命周期管理、智能视频管理等功能,为智慧变电站运行、检修及综合管理提供决策支撑。
变电站智慧运维管控平台有效提升智慧变电站运行、检修及远程综合管理自动化、可视化和互动化水平,实现变电站主动监测预警决策,是保证工厂安全供电的基础。
智能变电站二次在线监测系统及关键技术

智能变电站二次在线监测系统及关键技术摘要:近年来,随着社会生产与运行模式的转变,以及科学技术的不断发展,我国电力系统正处于智能化、信息化建设阶段中,逐渐构建起体系化的智能电网。
其中,在智能变电站环节中,则通过构建二次在线监测系统从而优化整体系统的运行效率与运行稳定性,并实现了根据系统各配置设备运行情况来实时调整、更换电力系统的运行模式,其重要性不言而喻。
而本文也对智能变电站的二次在线监测系统与终端技术开展深入分析。
关键词:智能变电站;二次在线监测系统;关键技术上述提及,虽然智能变电站与二次在线监测系统的构建具有极高的应用价值,是智能电网的重要构成部分之一。
但是这一系统的构建不但具有较高的设计难度系数,还需要集成、应用大量的关键技术,这也进一步提高了系统的维护难度,并出现一系列问题。
针对于此,为进一步提高智能变电站二次在线监测系统的运行稳定性与可靠性,本文则选以系统框架设计与各项关键技术应用现状为切入点,开展以下分析。
一、智能变电站二次在线监测系统主体框架结构的设计(一)系统运行原理分析首先,在智能变电站二次在线监测系统运行过程中,主要的运行原理为:系统根据智能变电站与电力系统的设备运行环境状况、服务器状态、保护状态、测控状态、通信设备在线状态等各项具体的情况而综合评估整体系统的实际运行状况,并在其基础上对各类潜在运行故障问题加以诊断与预防、适当调整各类配套电气设备、通信设备的运行模式与运行效率,最后在人机界面中提交系统运行状况、评论结论与操作建议,将电力系统与智能变电站的运行模式、运行效率调节至适当、合理的区间范围内,提高电力系统的稳定性与输电质量。
而值得注意的是,在智能变电站二次在线监测系统运行过程中,也会对整体系统与各配置设备的运行状况、运行过程中参数变化幅度加以汇总整理、记录保存。
(二)系统主体框架设计要点首先,在智能变电站二次在线监测系统主体框架结构设计阶段中,需要借助于智能变电站中所配置的大量的传感器设备对电力系统中各配置设备的实际运行参数加以数据采集与分析作业,随后通过将设备的实时运行参数与以往运行参数加以对照分析,根据对照结果提出相应的评论结论和操作建议。
智能变电站技术标准规范介绍

智能变电站目前制定的标准规范:智能变电站目前制定的标准规范:智能变电站技术导则的地位:性技术指导文件,是总的指导性原则。
是其它智能智能变电站技术导则的主要内容:术语和定义,明确了智能变电站的技术原则和体系智能变电站技术导则定义的核心术语:什么是智能变电站?低碳、环保的智能设备,以全站信息数字化、传统变电站与数字化传统变电站数字化(智能)变电站智能变电站:智能变电站技术导则定义的核心术语:什么是智能设备?有测量数字化、控制网络化、状态可视化、智能变电站技术导则定义的核心术语:什么是智能设备?智能变电站技术导则定义的核心术语:什么是智能组件?设备的测量、控制和监测等基本功能;在满智能变电站的基本技术原则:(化、功能集成化、结构紧凑化、状态可视化。
智能变电站的基本技术原则:(GB/T14285相关要求;后台监控功能参考智能变电站的基本技术原则:(子系统使用统一标准化、规范化的数据访问以及和调度等其它系统进行标准化交互。
智能变电站的基本技术原则:(和《变电站二次系统安全防护方案》的要求,进行安全分区、通信边界安全防护,确保控制功能安全。
传统变电站与智能(数字化)变电站对比:传统变电站智能变电站智能变电站的体系结构:(组件以及独立的智能电子装置。
智能变电站的体系结构的相关要求:(智能变电站的设备功能的新增要求:(控制网络化、状态可视化为基本功能,根据需要可集成计量、保护等。
宜就地安装。
支持顺控和在线智能变电站的设备功能的新增要求:(网络化控制等。
智能变电站的系统功能的新增要求:(作流程切换主接线,投退保护软压板,急停,图形界面可视化操作。
智能变电站的系统功能的新增要求:(障不造成系统问题,方便配置,工况检测报警,记录分析系统实时记录、分析。
智能变电站的系统功能的新增要求:(号保护、相量测量、故障录波等进行数据挖掘、多专业综合分析,将结果以简洁明了的可视化综合展智能变电站的系统功能的新增要求:(判断,实现站内自动控制装置(如备自投、母线分合运行)的协调工作,适应系统运行方式的要求。
智能变电站的发展及现状

智能变电站的发展及现状在当今这个科技飞速发展的时代,电力系统作为支撑现代社会运转的重要基石,也在不断地经历着变革与创新。
智能变电站作为电力系统中的关键组成部分,其发展和现状备受关注。
智能变电站的概念最早可以追溯到上个世纪末。
当时,随着信息技术的快速发展,人们开始思考如何将先进的通信、控制和监测技术应用于传统的变电站,以提高其运行效率、可靠性和安全性。
经过多年的研究和实践,智能变电站逐渐从概念走向了实际应用。
早期的变电站主要依靠人工操作和监控,设备之间的通信相对简单,信息的采集和处理也较为有限。
这种模式不仅效率低下,而且容易出现人为错误,难以满足日益增长的电力需求和对供电质量的高要求。
随着计算机技术、传感器技术和通信技术的不断进步,智能变电站迎来了快速发展的阶段。
在硬件方面,新型的智能化设备如智能变压器、智能断路器等不断涌现,这些设备具有更高的性能和更强的自动化功能。
智能变压器能够实时监测自身的运行状态,对油温、油位等参数进行精确测量,并通过智能控制系统进行自动调节。
智能断路器则可以实现快速准确的故障判断和开断,大大提高了电力系统的故障处理能力。
在软件方面,智能化的监控和管理系统也日益完善。
这些系统能够对变电站内的各种设备进行实时监测和控制,采集大量的运行数据,并通过数据分析和处理,为运行人员提供决策支持。
例如,通过对设备运行数据的分析,可以提前发现潜在的故障隐患,及时进行维护和检修,避免故障的发生。
同时,智能变电站还实现了与上级调度系统的高效通信,能够快速响应调度指令,优化电力资源的配置。
如今,智能变电站已经在全球范围内得到了广泛的应用。
在我国,智能变电站的建设取得了显著的成就。
一大批先进的智能变电站相继建成投运,为保障电力供应的安全可靠发挥了重要作用。
智能变电站的优势是显而易见的。
首先,它提高了电力系统的运行效率。
通过智能化的设备和系统,能够实现自动化的操作和控制,减少了人工干预,降低了运行成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究智能变电站技术发展的关键
摘要:随着我国经济的发展,人口增多,家用电器不断的增多,包括工业的发展。
对电力的需求也在不断增大,在进行电力环境严格监管与国家能源综合调控的前提下,电力网络与电力市场和用户们的关系已经更加密切。
为了可以源源不断的为用户和国家输送电力,而且使电力的输送更快捷,高效和稳定,就需要进行智能变电站的建设。
本文中,笔者将就智能变电站的一些关键技术进行简要阐述。
关键词:智能变电站技术
中图分类号:tm411+.4 文献标识码:a 文章编号:
1 硬件系统集成技术
传统的变电站中,对信息的采集与处理需要借助中央处理器和
外围的芯片或者设备来进行共同工作。
中央处理器的作用是可以实现一些高级的应用功能,比如说大量数据的计算和逻辑的分析过程,所以中央处理器的性能如何,将会对实现各种功能产生制约,会直
接的影响到其速度与质量问题。
通常使用的是dsp,arm或者是cpu 这样的中央处理器 ,不过这种设计存在着自身的缺陷,一是智能变电站对实时信息量需求增大,只能集成较少资源的处理器无法满足智能变电站本身的处理需要,因而限制智能变电站的技术发展。
二是处理器集成的无法满足智能变电站的需求的其他硬件资源被闲
置下来,使得资源被浪费。
三是对于删减嵌入式操作系统的工作十分繁琐,而复杂的系统自身也造成了系统测试中错误率的上升和难
度的加大。
伴随现代的电子科学的发展,出现了对硬件的描述语言,这就使硬件系统在设计中变得模型化,自动化和集成化,更有助于去针对功能进行模块化设计,可以把一些固定的逻辑处理的过程,在智能设备的内部进行固化,使原来的一些依靠软件来实现的功能转变为依靠硬件实现。
这种设计,可以在保证逻辑处理的实时性,准确性与可靠性的同时,对硬件资源的开销进行精简,而且可以解决信息传输的问题,并提高设备的集成度。
除此之外,硬件的集成技术还便于对智能设备进行检修,更换和进行升级。
所以在智能变电站使用硬件系统的集成技术,会打破传统设备的设计理念,会改变变电站中硬件设备的格局布置,为变电站的智能化做好基础。
2 软件构件技术
智能变电站中使用的软件系统,不单单可以实现传统的信息管理与信息监控,还能将pmu与录波功能进行集成处理,以此实现估计站内状态,进行区域集控,远程维护和评估电能质量等智能化的高级管理,还会参照工程配置的文件,来生成系统工程的数据,实现智能变电站系统与设备系统模型的自动重构。
而这样的软件系统,是需要软件的构件技术才可以实现的。
具有一定功能的程序体,可以独立工作或者与其他构件装配起来进行协调工作就是软件构件。
软件构件技术的实质,就是为了完成一个或者是多个功能的特定服务,在不同粒度上对一组代码或者类等进行组合与封装,进而提供接口给用户。
构件技术把系统的抽象程度提高到了一个比面向对象技术更高的层次,分而治之就是构件技术的中心思想。
其中,构建技
术手段之一的复用技术,需要工作人员在实践中不断去探索创新。
软件构件技术,在软件系统实现灵活、弹性以及实时起到关键作用,嵌入式系统软件通过此技术实现功能集成的手段。
3 信息管理存储技术
高级局域网可以进行自动恢复,智能变电站用它来建设数字化
信息平台,而这个可以恢复自愈性故障的信息平台,提供给信息采
集服务给智能变电站。
而且它体现了集中管理信息的设计思想,还为进行信息模型的转换,集成,调用和冗余等诸多功能提供基础,并为电力下放提供信息与技术的支持。
以太网已经无法满足智能变电站的需求,所以进行信息的优先级传输
和信息的就地存储就显得更加重要。
信息的优先级传输可以保证一些重要信息可以及时准确的传输,而一些非关键的信息,就进
行就地存储。
这样可以减少网络传输的负荷,并为系统决策提供数据。
该项技术可以将变电站底层的硬件与网络设备构建成一个共享的资源库,对那些就地存储的信息,可以随时调用。
而其本质就是将信息按照不同的粒度进行细化,来实现信息分层分布与调用,而且
随着智能电网的发展,进行信息安全防护也是需要我们考虑的,而
该技术正好可以弥补这些不足,它可以对信息进行评估分析,按照
安全等级的不同,设计相应的防护策略,在最大限度上,对各级电网的信息提供安全保障。
4 分布式电源保护控制技术
使用分布式电源,可以提高智能电网的效率性,安全性与灵活性,
并改变传统配电中单向潮流的特性,而将其变成一个多源网络。
分布式电源作为一个整体模块,可以进行孤网运行,还可以并网运行。
需要我们对其接入系统时对电网频率,无功以及电压稳定的影响进行关注。
分布式电源保护控制系统与传统的保护策略不同,它主要是针对分布式电源双向潮流流通,电源内部电力电子设备引入的特点,通过阻抗前馈与负荷模型反馈等计算方法,来制定保护策略。
其中包括了全线速动保护,低压保护,反弧岛,高频切机与低频减载等特殊的保护功能。
而控制策略主要是针对并网之后的控制,采用自动同期控制和重合闸控制相互配合的控制策略。
5 信息标准融合技术
智能变电站中通过复杂的信息采集渠道,具有大量不同种类的信息。
每一个智能电网设计一套自己的信息采集理念,运用不同的算法及模型,采集各种不同的信息,是一台电网无法利用别的电网的信息。
因此为了实现和智能电网的无缝通信连接,对智能变电站内各种信息模型进行相互转换与映射就不可避免了,于是就需要使用信息标准的融合技术,而该项技术的基础是信息模型的规范化,标准化和体系化。
对于实现信息模型的规范化与标准化,第一要设立开放的通信架构,使各个元件之间的信息可以通过网络来进行通信,也就是信息网络化;第二更深入的细化处理信息模型,制定模型夸大击垮的原则的标准;第三,制定技术的唯一标准,形成一个具有多功能的规约库,来实现各个应用系统之间的无缝通信。
目
前,iec61850是全面规范智能化变电站中自动化体系的国际电工委
员会最新实施的标准,也是只能变电站内部的统一规约。
智能变电站作为智能电网中重要的部分,需要在发展中将先进的电力电子技术,计算机技术与控制技术进行相互融合,来实现智能变电站易扩展升级,易改造维护的应用需求。