【精修版】物理(选修3-4):第11章《机械振动》精选试题第十一章 单元测试题
选修3-4第11章《机械振动》单元测试

第11章《机械振动》单元测试题一、选择题1.质点做简谐运动时( )A .加速度的大小与位移成正比,方向与位移的方向相反B .加速度的大小与位移成正比,方向与位移的方向相同C .速度的大小与位移成反比,方向与位移的方向相反D .速度的大小与位移成反比,方向与位移的方向相同2.关于弹簧振子的简谐运动,下列说法中正确的是( )A .位移的方向总是由平衡位置指向振子所在的位置B .加速度的方向总是由振子所在的位置指向平衡位置C .振子由位移最大的位置向平衡位置运动时,做的是匀加速运动D .振子的加速度最大时速度为零,速度最大时加速度为零3.关于简谐运动的有关物理量,下列说法中正确的是( )A .回复力方向总是指向平衡位置B .向平衡位置运动时,加速度越来越小,速度也越来越小C .加速度和速度方向总是跟位移方向相反D .速度方向有时跟位移方向相同,有时相反4.如图所示,弹簧振子由平衡位置O 向位移最大处B 运动的过程中,( )A .回复力减小B .位移变小C .速度增大D .加速度增大5.如图,弹簧振子在A 、B 之间做简谐运动,O 为平衡位置,则( )A .当振子从O 向A 运动时,位移变小B .当振子从A 向O 运动时,速度变大C .当振子从O 向B 运动时,加速度变小D .当振子从B 向O 运动时,回复力变大6.弹簧振子在振动过程中,每一次经过同一位置时,都具有相同的( )A .位移、速度B .速度、加速度C .动能、速度D .回复力、势能7.单摆在振动过程中,当摆球的重力势能增大时,摆球的( )A .位移一定减小B .回复力一定减小C .速度一定减小D .加速度一定减小8.一弹簧振子的振动周期为0.25S ,从振子由平衡位置向右运动时开始计时,则经过0.17S ,振子的振动情况是( )A .正在向右做减速运动B .正在向右做加速运动C .正在向左做加速运动D .正在向左做减速运动9.图示是做简谐运动的质点的位移-时间图象,在t = 4s 时,质点的( )A .加速度为零,速度为正方向的最大值B .加速度为零,速度为负方向的最大值C .速度为零,加速度为正方向的最大值D .速度为零,加速度为负方向的最大值10.某一单摆的位移-时间如图所示,则该单摆的( )A .振幅是0.2mB .周期为1.25sC .频率为1HzD .摆长为1m11.关于单摆,下列说法中正确的是( )A .摆球运动中的回复力是摆线拉力和重力的合力B .摆球在运动过程中,经过轨迹上的同一点时,加速度是相同的C .摆球在运动过程中,加速度的方向始终指向平衡位置D .摆球经过平衡位置时,加速度为零12.将秒摆(周期为2s )改装成频率为1Hz 的单摆,应采取的措施是( )A .摆长减为原来的41B .振幅增为原来的2倍C .摆长增为原来的4倍D .摆球质量减为原来的一半13.在走时准确的摆钟,搬到XX 岛后走时将( )A .变慢,调准时应增加摆长B .变快,调准时应增加摆长C .变慢,调准时应减小摆长D .变快,调准时应减小摆长14.一质点做简谐运动,先后以相同的速度依次通过A 、B 两点,历时1s ,质点通过B 点后,再经过1s ,第二次通过B 点,在这2s 内,质点的总路程是12cm ,则质点振动的周期和振幅分别为( )A .2s ,6cmB .4s ,6cmC .4s ,9cmD .2s ,8cm15.卡车在水平路面上行驶,货物随车厢底板上下振动而不脱离底板,设货物做简谐运动,则货物对车厢底板压力最小的时刻是( )A .货物通过平衡位置向上运动时B .货物通过平衡位置向下运动时C .货物向上达到最大位移时D .货物向下达到最大位移时16.如图,在一根X 紧的绳上挂几个单摆,其中C 、E 两个摆的摆长相等,先使C 摆振动,其余几个摆在C 摆的带动下也发生了振动,则( )A .只有E 摆的振动周期与C 摆相同B .B 摆的频率比A 、D 、E 摆的频率小C .E 摆的振幅比A 、B 、D 摆的振幅大D .B 摆的振幅比A 、D 、E 摆的振幅大17.单摆在振动过程中,摆动幅度越来越小这是因为( )A .能量正在逐渐消灭B .动能正在转化为势能C .机械能守恒D .总能量守恒,减少的动能转化为内能二、填空题18.弹簧振子在振动过程中的两个极端位置(即弹簧压缩得最短和拉得最长)间的距离是5cm ,振动的频率是 2.5Hz ,则它的振幅是___________cm ,2s 内振子通过的路程是___________cm 。
人教版选修3-4第11章机械振动单元测试1

第十一章机械振动单元检测(时间:90分钟满分:100分)一、选择题(每小题5分,共50分)1•单摆通过平衡位置时,小球受到的回复力()A •指向地面B •指向悬点C •数值为零D •垂直于摆线解析做简谐运动的质点,只有在离开平衡位置时才受到回复力,“平衡位置”的意义就是回复力为零的位置,此处的合力却不一定为零. 答案 C 2•简谐运动属于()A •匀变速直线运动B •匀速直线运动C •曲线运动D •变速运动解析简谐运动的加速度大小不断变化,选项 A、B错误;简谐运动可能是直线运动,也可能是曲线运动,简谐运动的速度不断变化,是变速运动,选项D正确.答案 D3•如图所示为某质点在0〜4 s内的振动图象,贝U ()+ x/mA •质点振动的振幅是4mB •质点振动的频率为4 HzC.质点在4 s末的位移为8 mD.质点在4 s内的路程为8 mE.质点在t= 1 s到t= 3 s的时间内,速度先沿x轴正方向后沿x轴负方向,且速度先增大后减小1 解析由图可知振动的振幅A=2 m,周期T= 4 s,则频率f =〒二0.25 Hz,选项A、B错误;振动质点的位移是质点离开平衡位置的位移, 4s末的位移为零,选项C错误;路程s= 4A= 8 m,选项D正确;质点从t= 1 s到t = 3 s 的时间内,一直沿x轴负方向运动,选项E错误.答案 D4 •做简谐运动的单摆摆长不变,若摆球质量增加为原的4倍,摆球经过平衡位1置时速度减小为原的2,则单摆振动的()A •频率、振幅都不变B •频率、振幅都改变C.频率不变,振幅改变 D •频率改变,振幅不变解析单摆振动的频率与摆长和所在地的重力加速度有关,与质量、振幅大小无关,题中单摆振动的频率不变;单摆振动过程中机械能守恒,振子在平衡位置的动能等于其在最大位移处的势能,因此,题中单摆的振幅改变,选项C正确.答案 C5•如图所示,在光滑水平面上的弹簧振子,弹簧形变的最大限度为20 cm,图示P位置是弹簧振子处于自然伸长的位置,若将振子m向右拉动5 cm后由静止释放,经0.5 s振子m第一次回到P位置,关于该弹簧振子,下列说法正确的是()专 ---PA •该弹簧振子的振动频率为1 HzB.若向右拉动10 cm后由静止释放,经过1 s振子m第一次回到P位置C •若向左推动8 cm后由静止释放,振子m两次经过P位置的时间间隔是2sD.在P位置给振子m任意一个向左或向右的初速度,只要位移不超过20 cm,总是经0.5 s速度就降为0解析本题考查简谐运动的周期性.由题意知,该弹簧振子振动周期为T=0.5X 4 s= 2 s,且以后不再变化,即弹簧振子固有周期为 2 s,振动频率为0.5Hz,所以B选项中应经过0.5 s第一次回到P位置,A、B选项错误;C选项中两次经过P位置的时间间隔为半个周期,是1 s, C选项错误,D选项正确. 答案 D 6.—个弹簧振子在光滑的水平面上做简谐运动,其中有两个时刻弹簧对振子的弹力大小相等,但方向相反,那么这两个时刻弹簧振子的()A .速度一定大小相等,方向相反B.加速度一定大小相等,方向相反C.位移一定大小相等,方向相反D •以上三项都不对解析由弹簧振子的运动规律知,当弹簧弹力大小相等、方向相反时,这两时刻振子的位移大小相等、方向相反,加速度大小相等、方向相反,B、C 正确;由于物体的运动方向在两时刻可能为同向,也可能为反向,故A错误•故正确答案为B、C.答案 BC7.某同学在研究单摆的受迫振动时,得到如图所示的共振曲线.横轴表示驱动力的频率,纵轴表示稳定时单摆振动的振幅.已知重力加速度为g,下列说法中正确的是()A .由图中数据可以估算出摆球的摆长B.由图中数据可以估算出摆球的质量C.由图中数据可以估算出摆球的最大动能D.如果增大该单摆的摆长,则曲线的峰将向右移动解析从单摆的共振曲线可以得出单摆的固有频率,单摆的固有频率等于振幅最大时的驱动力的频率,根据单摆的频率可以计算出单摆的周期,根据单摆的周期公式可以算出单摆的摆长,选项 A正确;从单摆的周期无法计算出单摆的摆球质量和摆球的最大动能,选项 B、C错误;如果增大单摆的摆长,单摆的周期增大,频率减小,曲线的峰将向左移动,选项D错误.答案 A8.A、B两个单摆,A摆的固有频率为f,B摆的固有频率为4f,若让它们在频率为5f的驱动力作用下做受迫振动,那么 A、B两个单摆比较()A.A摆的振幅较大,振动频率为fB.B摆的振幅较大,振动频率为5fC.A摆的振幅较大,振动频率为5fD.B摆的振幅较大,振动频率为4f解析 A、B两摆均做受迫振动,其振动频率应等于驱动力的频率即 5f,因B 摆的固有频率接近驱动力的频率,故 B摆的振幅较大,B正确,A、C、D错误.答案 B 9.如图所示是甲、乙两个单摆做简谐运动的图象,则下列说法中正确的是()f x/cm 乙图4A•甲、乙两摆的振幅之比为 2 : 1B.t = 2 s时,甲摆的重力势能最小,乙摆的动能为零C•甲、乙两摆的摆长之比为4 : 1D •甲、乙两摆摆球在最低点时向心加速度大小一定相等解析由图知甲、乙两摆的振幅分别为 2 cm、1 cm,故选项A正确;t = 2 s时,甲摆在平衡位置处,乙摆在振动的最大位移处,故选项 B正确;由单摆的周期公式T= 2n ,g,得到甲、乙两摆的摆长之比为1 : 4,故选项C错误;因摆球摆动的最大偏角未知,故选项 D错误.答案 AB10.一简谐振子沿x轴振动,平衡位置在坐标原点.t二0时刻振子的位移x=—40.1 m; t= 3 s时刻x= 0.1 m; t=4 s时刻x= 0.1 m .该振子的振幅和周期可能为()8A. 0.1 m,3 sB. 0.1 m,8 s8C.0.2 m,3 sD. 0.2 m,8 s一8 4解析若振幅A= 0.1 m,T= 3 s,则3 s为半周期,从—0.1 m处运动到0.1 m4 8处,符合运动实际,4 s—4s= 3 s为一个周期,正好返回0.1 m处,所以A8 4 T动到正的最大位移处,所以B错;若A= 0.2 m, T=3 s, 4 s= 2,振子可以一 4 8由一0.1 m处运动到对称位置,4 s — 3 s= 3 s= T,振子可以由0.1 m处返回0.1 m 处,所以 C 对;若 A= 0.2 m, T= 8 s, 4 s= 2X g,而 sin 罕召=2, T 8即乜时间内,振子可以从平衡位置运动到0.1 m处,再经3 s又恰好能由0.1 m 处运动到0.2 m处后,再返回0.1 m处,所以D对.故正确答案为ACD.答案 ACD二、填空题(每小题5分,共10分)11 .某实验小组在利用单摆测定当地重力加速度的实验中:(1)用游标卡尺测定摆球的直径,测量结果如图所示,则该摆球的直径为cm.(2)小组成员在实验过程中有如下说法,其中正确的是的字母).(填选项前A .把单摆从平衡位置拉开30 °勺摆角,并在释放摆球的同时开始计时B.测量摆球通过最低点100次的时间t,则单摆周期为盅C.用悬线的长度加摆球的直径作为摆长,代入单摆周期公式计算得到的重力加速度值偏大D.选择密度较小的摆球,测得的重力加速度值误差较小解析(1)由标尺的0”刻线在主尺上的位置读出摆球直径的整厘米数为0.9 cm,标尺中第7条线与主尺刻度对齐,所以应为 0.07 cm,所以摆球直径为0.9 cm+ 0.07 cm= 0.97 cm.(2)单摆应从最低点计时,故 A错;因一个周期内,单摆有2次通过最低点,故B错;由T = 2n : g得,g=旱,若用悬线的长度加摆球的直径作为摆长,则g偏4 1项正确;若A= 0.1 m,T= 8 s,3 s只是T的6不可能由负的最大位移处运大,C对;因空气阻力的影响,选密度小的摆球,测得的 g值误差大, D 错.答案 (1)0.97 (2)C12•—砝码和一轻弹簧构成弹簧振子,如图6甲所示,该装置可用于研究弹簧振子的受迫振动•匀速转动把手时,曲杆给弹簧振子以驱动力,使振子做受迫振动•把手匀速转动的周期就是驱动力的周期,改变把手匀速转动的速度就可以改变驱动力的周期•若保持把手不动,给砝码一向下的初速度,砝码便做简谐运动,振动图线如图乙所示•当把手以某一速度匀速运动,受迫振动达到稳定时,砝码的振动图象如图丙所示.若用T o表示弹簧振子的固有周期,T表示驱动力的周期,A 表示受迫振动达到稳定后砝码振动的振幅,则:⑴稳定后,物体振动的频率f= Hz.(2)欲使物体的振动能量最大,需满足什么条件?答:(3)利用上述所涉及的知识,请分析某同学所提问题的物理依据.“某同学考虑,我国火车第六次大提速时,需尽可能的增加铁轨单节长或者是铁轨无接头”.答: ___________________1 1解析⑴由题目中丙图可知,f=〒=4 Hz= 0.25 Hz.(2)物体的振动能量最大时,振幅最大,故应发生共振,所以应有T = T o = 4 s.(3)若单节车轨非常长,或无接头,则驱动力周期非常大,从而远离火车的固有周期,使火车的振幅较小,以便提高火车的车速.答案(1)0.25 ⑵、(3)见解析三、计算题(共4小题,共40分)13.(8分)如图所示为一弹簧振子的振动图象,求:(1)该振子简谐运动的表达式;(2)在第2 s末到第3 s末这段时间内,弹簧振子的加速度、速度、动能和弹性势能各是怎样变化的?(3)该振子在前100 s的总位移是多少?路程是多少?解析(1)由振动图象可得:A = 5 cm, T=4 s, ©= 02 n n贝U 3=〒=2 rad/sn故该振子做简谐运动的表达式为:x= 5sin /(cm).(2)由题图可知,在t = 2 s时振子恰好通过平衡位置,此时加速度为零,随着时间的延续,位移值不断加大,加速度的值也变大,速度值不断变小,动能不断减小,弹性势能逐渐增大.当t = 3 s时,加速度的值达到最大,速度等于零,动能等于零,弹性势能达到最大值.(3)振子经过一个周期位移为零,路程为 5X 4 cm = 20 cm,前100 s刚好经过了25个周期,所以前100 s振子位移x= 0,振子路程s= 20X 25 cm= 500 cm =5 m.n答案 (1)x= 5sin 2t(cm)⑵见解析⑶0 5 m14.(10分)弹簧振子以0点为平衡位置在B、C两点之间做简谐运动,B、C相距20cm.某时刻振子处于B点,经过0.5 s,振子首次到达C点,求:(1)振动的周期和频率;(2)振子在5 s内通过的路程及5 s末的位移大小;(3)振子在B点的加速度大小跟它距 O点4 cm处P点的加速度大小的比值.解析(1)由题意可知,振子由B-C经过半个周期,即舟=0.5 s,故T= 1.0 s,(2)振子经过1个周期通过的路程s i = 0.4 m.振子5 s内振动了五个周期,回到B点,通过的路程:s= 5s i = 2 m.位移大小x= 10 cm= 0.1 m.a g⑶由F —kx可知:在B点时F g— kx O.h在P点时F P— kx 0.04,故丛F Bm==5 : 2.F Pm答案 (1)1.0 s 1 Hz (2)2 m 0.1 m (3)5 : 215.(10分)如图8所示是一个单摆的共振曲线.(1)若单摆所处环境的重力加速度 g取9.8 m/s2,试求此摆的摆长;(2)若将此单摆移到高山上,共振曲线的“峰”将怎样移动?解析(1)由图象知,单摆的固有频率f= 0.3 Hz.由 f= 2n 仲得 I = 4"^?= , —9食 c 以 m~ 2.8 m2 n Y l 4 nf 4x 3.14 X 0.3⑵由f=2n/^知,单摆移动到高山上,重力加速度g减小,其固有频率减小,故共振曲线的“峰”将向左移动.答案 (1)2.8 m (2)向左移动16.(12分)一个摆长为2 m的单摆,在地球上某地振动时,测得完成100次全振动所用的时间为284 s.(1)求当地的重力加速度g;(2)把该单摆拿到月球上去,已知月球上的重力加速度是 1.60 m/s2,则该单摆振动周期是多少?t 284 l~i 4 TT I 解析(1)周期T= n =五s= 2.84 s.由周期公式T= 2n ;g得g ==2;4昇2m/s2" 9.78m/W.(2)T' 答案 (1)9.78 m/s2s~ 7.02 s.(2)7.02 s。
最新人教版高中物理选修3-4第十一章《机械振动单元检测附答案》

物理人教版选修3-4第十一章机械振动单元检测(时间:60分钟 满分:100分)一、选择题(每小题5分,共计50分)1.关于做简谐运动的物体完成一次全振动的意义有以下几种说法,其中正确的是( )。
A .回复力第一次恢复原来的大小和方向所经历的过程B .速度第一次恢复原来的大小和方向所经历的过程C .动能或势能第一次恢复原来的大小和方向所经历的过程D .速度和加速度第一次同时恢复原来的大小和方向所经历的过程2.做简谐运动的物体,由最大位移处向平衡位置运动的过程中,速度越来越大,这是由于( )。
A .加速度越来越大B .物体的加速度和运动方向一致C .物体的势能转变为动能D .回复力对物体做正功3.一质点做简谐运动的图象如图所示,下列说法中正确的是( )。
A .质点振动频率是4 HzB .在10 s 内质点经过的路程是20 cmC .第4 s 末质点的速度为零D .在t =1 s 和t =3 s 两时刻,质点位移大小相等、方向相同4.一根弹簧原长为l 0,挂一质量为m 的物体时伸长x 。
当把这根弹簧与该物体套在一光滑水平的杆上组成弹簧振子,且其振幅为A 时,物体振动的最大加速度为( )。
A.0Ag lB.Ag xC.0xgl D.0l g A 5.在水平方向上做简谐运动的质点其振动图象如图所示,假设向右为正方向,则物体加速度向右且速度向右的时间是( )。
A .0~1 s 内B .1~2 s 内C .2~3 s 内D .3~4 s 内 6.设人自然步行时的跨步频率与手臂自然摆动的频率一致(人手臂自然摆动的频率与臂长的关系,类似于单摆固有频率与摆长的关系),人的臂长正比于身高,且人的步幅与身高成正比,由此估测人的步行速度v 与身高h 的关系为( )。
A .v ∝h 2B .v ∝hC .vD .v7.一个弹簧振子在A 、B 间做简谐运动,O 为平衡位置,如图甲所示,以某一时刻作为计时起点(t 为0),经14T ,振子具有正方向最大的加速度,那么在图乙所示的几个振动图象中,正确反映振子振动情况(以向右为正方向)的是( )。
人教版高中物理选修3-4第十一章机械振动测试含答案及详细解析

绝密★启用前人教版高中物理选修3-4 第十一章机械振动测试本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分第Ⅰ卷一、单选题(共15小题,每小题 4.0分,共60分)1.水平放置的弹簧振子先后以振幅A和2A振动,振子从左边最大位移处运动到右边最大位移处过程中的平均速度分别为v1和v2,则()A.v1=2v2B. 2v1=v2C.v1=v2D.v1=v22.有一个在y方向上做简谐运动的物体,其振动曲线如图所示,关于此图的下列判断正确的是()A.图①可作为该物体的速度v-t图象B.图②可作为该物体的回复力F-t图象C.图③可作为该物体的回复力F-t图象D.图④可作为该物体的加速度a-t图象3.如图所示,BOC是半径为R的光滑弧形槽,O点是弧形槽的最低点,半径R远大于BOC的弧长,一小球由静止从B点开始释放,小球就在弧形槽内来回运动,欲增大小球的运动周期,可采取的方法是()A.小球开始释放处靠近O点一些B.换一个密度大一些的小球C.换一个半径R大一些的弧形槽D.换一个半径R小一些的弧形槽4.下列说法中正确的是()A.若t1、t2两时刻振动物体在同一位置,则t2-t1=TB.若t1、t2两时刻振动物体在同一位置,且运动情况相同,则t2-t1=TC.若t1、t2两时刻振动物体的振动反向,则t2-t1=D.若t2-t1=,则在t1、t2时刻振动物体的振动反向5.如图甲所示,小球在内壁光滑的固定半圆形轨道最低点附近做小角度振动,其振动图象如图乙所示,以下说法正确的是()A.t1时刻小球速度为零,轨道对它的支持力最小B.t2时刻小球速度最大,轨道对它的支持力最小C.t3时刻小球速度为零,轨道对它的支持力最大D.t4时刻小球速度为零,轨道对它的支持力最大6.甲、乙两人观察同一单摆的振动,甲每经过 3.0 s观察一次摆球的位置,发现摆球都在其平衡位置处;乙每经过 4.0 s观察一次摆球的位置,发现摆球都在平衡位置右侧的最高处,由此可知该单摆的周期不可能的是()A. 0.5 sB. 1.0 sC. 1.5 sD. 2.0 s7.如图为一振子做简谐运动的图象,在t1和t2时刻,振子的()A.位移相同B.速度相同C.回复力相同D.加速度相同8.如图所示,一质点在A、B间做简谐运动,从A第一次运动到B,历时 2 s,路程为12 cm,则质点的振动周期和振幅分别为()A. 4 s,6 cmB. 6 s,6 cmC. 6 s,9 cmD. 4 s,8 cm9.如图所示为某质点做简谐运动的振动图象.则关于该质点的振动情况,下列说法正确的是()。
人教版高中物理选修3-4第十一章《机械振动》单元检测题(解析版)

《机械振动》单元检测题一、单选题1.下列运动中可以看作机械振动的是( )A.声带发声B.音叉被移动C.火车沿斜坡行驶D.秋风中树叶落下2.关于单摆,下列说法中正确的是( )A.单摆摆球所受的合外力指向平衡位置B.摆球经过平衡位置时加速度为零C.摆球运动到平衡位置时,所受回复力等于零D.摆角很小时,摆球所受合力的大小跟摆球相对平衡位置的位移大小成正比3.在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议,可行的是( ) A.适当加长摆线B.质量相同,体积不同的摆球,应选用体积较大的C.单摆偏离平衡位置的角度要适当大一些D.当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期4.弹簧振子做简谐振动,若某一过程中振子的加速度在增加,则此过程中,振子的( )A.速度一定在减小B.位移一定在减小C.速度与位移方向相反D.加速度与速度方向相同5.如图所示,质量分别为mA =2 kg和mB=3 kg的A、B两物块,用劲度系数为k的轻弹簧相连后竖直放在水平面上,今用大小为F=45 N的力把物块A向下压使之处于静止状态,然后突然撤去压力,则(g取10 m/s2) ( )A.物块B有可能离开水平面B.物块B不可能离开水平面C.只要k足够小,物块B就可能离开水平面D.只要k足够大,物块B就可能离开水面6.做简谐运动的物体,它所受到的回复力F、振动时的位移x、速度v、加速度a,那么在F、x、v、a中,方向有可能相同的是( )A.F、x、a B.F、v、a C.x、v、a D.F、x、v7.曾因高速运行时刹不住车而引发的“丰田安全危机”风暴席卷全球,有资料分析认为这是由于当发动机达到一定转速时,其振动的频率和车身上一些零部件的固有频率接近,使得这些零部件就跟着振动起来,当振幅达到一定时就出现“卡壳”现象.有同学通过查阅资料又发现丰田召回后的某一维修方案,就是在加速脚踏板上加一个“小铁片”.试分析该铁片的作用最有可能的是( )A.通过增加质量使整车惯性增大B.通过增加质量使得汽车脚踏板不发生振动C.通过增加质量改变汽车脚踏板的固有频率D.通过增加质量改变汽车发动机的固有频率8.做简谐运动的物体,当其位移为负时,以下说法正确的是( )A.速度一定为正值,加速度一定为负值B.速度一定为负值,加速度一定为正值C.速度不一定为负值,加速度不一定为正值D.速度不一定为负值,加速度一定为正值9.一个弹簧振子,第一次用力把弹簧压缩x后开始振动,第二次把弹簧压缩2x后开始振动,则两次振动的周期之比和最大加速度的大小之比分别为( )A.1∶21∶2 B.1∶11∶1 C.1∶11∶2 D.1∶21∶1 10.关于机械振动,下列说法正确的是( ) A.往复运动就是机械振动B.机械振动是靠惯性运动的,不需要有力的作用C.机械振动是受回复力作用D.回复力是物体所受的合力11.甲、乙两个单摆的摆长相等,将两单摆的摆球由平衡位置拉起,使摆角θ甲<θ乙<5°,由静止开始释放,则( )A.甲先摆到平衡位置B.乙先摆到平衡位置C.甲、乙两摆同时到达平衡位置D.无法判断二、多选题12. 如图所示,乙图图象记录了甲图单摆摆球的动能、势能和机械能随摆球位置变化的关系,下列关于图象的说法正确的是 ( )A.a图线表示势能随位置的变化关系B.b图线表示动能随位置的变化关系C.c图线表示机械能随位置的变化关系D.图象表明摆球在势能和动能的相互转化过程中机械能不变13. 振动着的单摆,经过平衡位置时( )A.回复力指向悬点 B.合力为0C.合力指向悬点 D.回复力为014. 两个简谐振动的曲线如图所示.下列关于两个图象的说法正确的是( )A.两个振动周期相同 B.两个振动振幅相同C.两个振动初相相同 D.两个振动的表达式相同15. 下列运动中属于机械振动的是( )A.小鸟飞走后树枝的运动B.爆炸声引起窗子上玻璃的运动C.匀速圆周运动D.竖直向上抛出物体的运动三、实验题16.在利用单摆测定重力加速度的实验中:(1)实验中,应选用的器材为______.(填序号)①1米长细线②1 米长粗线③10厘米细线④泡沫塑料小球⑤小铁球⑥秒刻度停表⑦时钟⑧厘米刻度米尺⑨毫米刻度米尺(2)实验中,测出不同摆长对应的周期值T,作出T2-L图象,如图所示,T2与L的关系式是T2=____________,利用图线上任两点A、B的坐标(x1,y1)、(x2,y2)可求出图线斜率k,再由k可求出g=____________.(3)在实验中,若测得的g值偏小,可能是下列原因中的______.A.计算摆长时,只考虑悬线长度,而未加小球半径B.测量周期时,将n次全振动误记为n+1次全振动C.计算摆长时,将悬线长加小球直径D.单摆振动时,振幅偏小四、计算题17.光滑水平面上的弹簧振子的质量m=50 g,若在弹簧振子处于偏离平衡位置的最大位移处开始计时(t=0),在t=1.8 s时,振子恰好第五次通过平衡位置,此时振子的速度大小v=4 m/s.求:(1)弹簧振子的振动周期T;(2)在t=2 s时,弹簧的弹性势能E p.18.如图所示,质量为M=0.5 kg的框架B放在水平地面上.劲度系数为k=100 N/m的轻弹簧竖直放在框架B中,轻弹簧的上端和质量为m=0.2 kg的物体C连在一起.轻弹簧的下端连在框架B的底部.物体C在轻弹簧的上方静止不动.现将物体C竖直向下缓慢压下一段距离x=0.03 m后释放,物体C就在框架B中上下做简谐运动.在运动过程中,框架B始终不离开地面,物体C始终不碰撞框架B的顶部.已知重力加速度大小为g=10 m/s2.试求:当物体C运动到最低点时,物体C的加速度大小和此时物体B对地面的压力大小.19.如图所示有一下端固定的轻弹簧,原长时上端位于O0点,质量为m的小物块P(可视为质点)与轻弹簧上端相连,且只能在竖直方向上运动.当物体静止时,物体下降到O点,测得弹簧被压缩了x0.现用一外力将物体拉至O0点上方O2点,轻轻释放后,物1块将开始做简谐运动,已知O0、O2两点间距离x0,当地重力加速度为g.求:(1)物块过O1点时的速度v1是多大?(2)若物块达到O3点(图中没有标出)时,物块对弹簧的压力最大,则最大压力是重力的几倍?(3)从O2点到O3点过程中弹性势能变化了多少?答案解析1.【答案】A【解析】物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动;声带的振动发出声音是在其平衡位置附近的振动,故A正确;音叉被移动、火车沿斜坡行驶都是单方向的运动,不是在其平衡位置附近的振动,故B、C错误;秋风中树叶落下不是在其平衡位置附近作往复运动,故D错误.2.【答案】C【解析】单摆既是简谐运动也是竖直面内的圆周运动,沿圆心方向和切线方向均有合力,A项错误;在平衡位置时,单摆具有竖直向上的合力,加速度不为零,B项错误,但是此时回复力为零,C项正确;摆角很小时,摆球的回复力与摆球相对平衡位置的位移成正比,D项错误.3.【答案】A【解析】单摆的摆长越长,周期越大,适当加长摆长,便于测量周期,故A正确.要减小空气阻力的影响,应选体积较小的摆球,故B错误.单摆在摆角很小的情况下才做简谐运动,则单摆偏离平衡位置的角度不能太大,一般不超过5°,故C错误.单摆周期较小,把一次全振动的时间作为周期,测量误差较大,应采用累积法,测多个周期的时间取平均值作为单摆的周期,故D错误.4.【答案】A【解析】简谐运动中,根据a=-x可知振子的加速度增大时,则位移增大,振子从平衡位置正向最大位移处运动,所以速度逐渐减小,故A正确,B错误;振子从平衡位置正向最大位移处运动,速度与位移方向相同,故C错误;振子的速度在减小,做减速运动,则运动的加速度的方向一定与速度的方向相反,故D错误.5.【答案】B【解析】先假设物块B是固定的,A将做简谐运动,在释放点(最低点)F回=F=45 N,由对称性知,物块A在最高点的回复力大小F回′=F回=45 N,此时F回=GA+F弹,所以F弹=25 N<GB,故物块B不可能离开水平面,选项B正确.6.【答案】B【解析】回复力F=-kx,故回复力和x方向一定不同;但是位移和加速度,在向平衡位置运动过程中,方向相同,速度的方向也可能相同.故A、C、D错误,B正确.7.【答案】C【解析】惯性的大小与质量有关,加一个小铁片,对整车的惯性影响不大,A错误;振动是不可避免的,B错误;通过增加质量改变汽车脚踏板的固有频率,以免发生共振,C正确,D错误;故选:C.8.【答案】D【解析】若位移为负,由a=-可知加速度a一定为正,因为振子每次通过同一位置时,速度可能有两种不同的方向,所以速度可正可负,故D正确,A、B、C错误.9.【答案】C【解析】弹簧振子的周期由振动系统本身的特性决定,与振幅无关.所以两次振动的周期之比为1∶1;由简谐运动的特征:a=-得:最大加速度的大小之比a m1∶a m2=x∶2x=1∶2,故选C.10.【答案】C【解析】机械振动应该是以某一点为中心对称的运动,不是所有的往复运动都是机械振动,A错误;机械振动是需要力来维持的,B项错误、C项正确;回复力不一定是合力,也可能是合力的一部分,D项错误.11.【答案】C【解析】两个单摆的摆长相等,则两个单摆的周期相等,单摆从最大位移摆到平衡位置所用的时间相等,选项C正确.12.【答案】CD【解析】A点摆球的重力势能最大,动能最小,所以a是摆球重力势能随位置的变化关系,b是摆球动能随位置的变化关系,整个过程中摆球机械能保持不变,所以c是摆球机械能随位置变化的关系,故答案为C、D.13.【答案】CD【解析】单摆经过平衡位置时,位移为0,由F=-kx可知回复力为0,故A错误,D 正确;单摆经过平衡位置时,合力提供向心力,所以其合力指向圆心(即悬点),故B错误,C正确.14.【答案】AB【解析】从振动图象可以看出两个振动的周期相同,离开平衡位置的最大位移即振幅相同,A、B对.两个振动的零时刻相位即初相不同,相位不同,表达式不同,C、D错.15.【答案】AB【解析】物体所做的往复运动是机械振动,A、B正确;圆周运动和竖直向上抛出物体的运动不是振动,C、D错误.16.【答案】(1)①⑤⑥⑨(2)(3)A【解析】(1)摆线选择1 m左右的长细线,摆球选择质量大一些,体积小一些的铁球,测量时间用秒表,测量摆长用毫米刻度尺,故选①⑤⑥⑨.(2)根据单摆的周期公式T=2π得,T2=,可知图线的斜率k==,解得g=.(3)根据T=2π得,g=,计算摆长时,只考虑悬线长度,而未加小球半径,则摆长的测量值偏小,导致重力加速度测量值偏小,故A正确.测量周期时,将n次全振动误记为n+1次全振动,则周期测量值偏小,导致重力加速度测量值偏大,故B错误.计算摆长时,将悬线长加小球直径,则摆长的测量值偏大,导致重力加速度的测量值偏大,故C错误.单摆振动时,振幅偏小,不影响重力加速度的测量,故D错误.17.【答案】(1)0.8 s (2)0.4 J【解析】(1)在t=1.8 s时,振子恰好第五次通过平衡位置,则有:2T=1.8 s振子振动周期为:T=0.8 s(2)由题意可知,弹簧振子做简谐运动,根据对称性,从最大位移处释放时开始计时,在t=1.8 s时,振子通过平衡位置时弹性势能为零,动能为:E=mv2=×0.05×42J=0.4 J,k则振子的机械能为:E=E k+E p=0+0.4 J=0.4 J.t=2 s=2.5T,则在t=2 s末到达最大位移处,弹簧的弹性势能为最大,动能为零,此时弹簧的弹性势能即为0.4 J;18.【答案】15 m/s210 N【解析】物体C放上之后静止时:设弹簧的压缩量为x0,对物体C,有:mg=kx0解得:x0=0.02 m当物体C从静止向下压缩x后释放,物体C就以原来的静止位置为中心上下做简谐运动,振幅A=x=0.03 m当物体C运动到最低点时,对物体C,有:k(x+x0)-mg=ma解得:a=15 m/s2当物体C运动到最低点时,设地面对框架B的支持力大小为F,对框架B,有:F=Mg+k(x+x0)解得:F=10 N由牛顿第三定律知框架B对地面的压力大小为10 N.19.【答案】(1)2(2)最大压力是重力的3倍(3)4mgx0【解析】(1)因为O1、O2两点与O0点距离相同,所以弹性势能相同,故:mg(2x)=mv-mv其中:v2=0解得:v1=2(2)最高点合力为2mg,最低点合力也为2mg,故在最低点,有:F-mg=2mgN解得:F=3mgN即得弹力是重力的3倍;(3)由动能定理可知:+W N=mv-mvWGE=-W Np又因为初末状态速度为零,所以:ΔE p=-W N=WG=4mgx0.。
人教版高中物理选修34第十一章《机械振动》单元检测题(解析版)

人教版高中物理选修34第十一章《机械振动》单元检测题(解析版)《机械振动》单元检测题一、单选题1.关于简谐运动,下列说法正确的是()A.简谐运动一定是水平方向的运动B.所有的振动都可以看作是简谐运动C.物体做简谐运动时的轨迹线一定是正弦曲线D.只要振动图象是正弦曲线,物体一定做简谐运动2.一个做简谐运动的物体,每次有相同的动能时,下列说法正确的是()A.具有相同的速度B.具有相同的势能C.具有相同的回复力D.具有相同的位移3.下列说法中正确的是()A.若t1、t2两时刻振动物体在同一位置,则t2-t1=TB.若t1、t2两时刻振动物体在同一位置,且运动情况相同,则t2-t1=T C.若t1、t2两时刻振动物体的振动反向,则t2-t1=D.若t2-t1=,则在t1、t2时刻振动物体的振动反向4.如图所示,两段光滑圆弧轨道半径分别为R1和R2,圆心分别为O1和O2,所对应的圆心角均小于5°,在最低点O平滑连接.M 点和N点分别位于O点左右两侧,距离MO小于NO.现分别将位于M点和N点的两个小球A和B(均可视为质点)同时由静止释放.关于两小球第一次相遇点的位置,下列判断正确的是()A.恰好在O点B.一定在O点的左侧C.一定在O点的右侧D.条件不足,无法确定5.如图所示为某质点做简谐运动的振动图象.则关于该质点的振动情况,下列说法正确的是()A.周期T=0.1 sB.振幅A=0.4 mC. 0.1 s末质点运动速度为0D. 0.2 s末质点回到平衡位置6.关于机械振动的位移和平衡位置,以下说法中正确的是()A.平衡位置就是物体振动范围的中心位置B.机械振动的位移总是以平衡位置为起点的位移C.机械振动的物体运动的路程越大,发生的位移也越大D.机械振动的位移是指振动物体偏离平衡位置最远时的位移7.如图所示,一升降机在箱底装有若干弹簧,设在某次事故中,升降机吊索在空中断裂,忽略摩擦力,则升降机在从弹簧下端触地后直到最低点的运动过程中()A.升降机的速度不断减小B.升降机的加速度不断变大C.升降机的加速度最大值等于重力加速度值D.升降机的加速度最大值大于重力加速度值8.如图所示为一个水平方向的弹簧振子,小球在MN间做简谐运动,O是平衡位置.关于小球的运动情况,下列描述正确的是() A.小球经过O点时速度为零B.小球经过M点与N点时有相同的加速度C.小球从M点向O点运动过程中,加速度增大,速度增大D.小球从O点向N点运动过程中,加速度增大,速度减小9.如图所示为一弹簧振子做简谐运动的振动图象,根据图象可以判断()A.t1时刻和t2时刻振子位移大小相等、方向相同,且(t2-t1)一定等于B.t2时刻和t3时刻速度大小相等、方向相反C.t2时刻和t4时刻加速度大小相等、方向相反D.t1时刻和t3时刻弹簧的长度相等10.如图甲是演示简谐运动图象的装置,当盛沙漏斗下面的薄木板N被匀速地拉出时,摆动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系,板上直线OO′代表时间轴.图乙是一次实验中用同一个摆长不变的摆做出的两组操作形成的曲线,若板N1和N2拉动速度用v1和v2表示,板N1和N2上曲线所代表的摆动周期用T1和T2表示,则() A.T1=2T2 B.2T1=T2 C.v1=2v2 D. 2v1=v211.下列几种说法中正确的是()A.只要是机械振动,就一定是简谐运动B.简谐运动的回复力一定是物体在振动方向所受的合力C.简谐运动物体所受的回复力总是对物体做正功D.简谐运动物体所受的回复力总是对物体做负功12.如图所示,处于竖直向下的匀强电场中的摆球,质量为m,半径为r,带正电荷,用长为L的细线把摆球吊在悬点O处做成单摆,则这个单摆的周期为()A.T=2πB.T=2πC.大于T=πD.小于T=2π二、多选题13. 如图所示,A、B分别为单摆做简谐振动时摆球的不同位置.其中,位置A为摆球摆动的最高位置,虚线为过悬点的竖直线,以摆球最低位置为重力势能的零点,则摆球在摆动过程中() A.位于B处时动能最大B.位于A处时势能最大C.在位置A的势能大于在位置B的势能D.在位置B的机械能大于在位置A的机械能14. 利用如图所示的单摆测定重力加速度的实验中,周期为T.以下说法正确的是()A.测量摆长的方法:用刻度尺量出从悬点到摆球间细线的长B.把摆球质量增加一倍,则测出的周期T变小C.此摆由O→B运动的时间为D.如测出的摆长l=1.00 m、周期T=2.00 s,则该地的重力加速度g=9.86 m/s215. 单摆测重力加速度实验中,测得的g值偏大,可能的原因是() A.先测出摆长l,后把单摆悬挂起来B.摆线上端未牢固地系于悬点,振动中出现松动,使摆线长度增加了C.摆球不在同一竖直平面内运动,成为圆锥摆运动D.测周期时,当摆球通过最低点时启动秒表并数“1”,数到摆球第40次通过平衡位置时按下秒表,读出时间t,得周期T=16. 如图所示是某质点做简谐运动的振动图象,试根据图象判断下列说法正确的是()A.该质点的振幅为10 cmB.质点振动在P时,振动方向沿y轴负向C.质点振动在Q时,振动的加速度方向沿y轴正向D.质点振动从P至Q过程中,路程大于9.5 cm17. 用两根完全一样的弹簧和一根细线将甲、乙两滑块连在光滑的水平面上.线上有张力,甲的质量大于乙的质量,如图所示,当线突然断开后,两滑块都开始做简谐运动,在运动过程中( )A.甲的振幅一定等于乙的振幅B.甲的振幅一定小于乙的振幅C.甲的最大速度一定大于乙的最大速度D.甲的最大速度一定小于乙的最大速度三、实验题18.某同学在“用单摆测重力加速度”的实验中进行了如下的操作;(1)用游标上有10个小格的游标卡尺测量摆球直径如图甲所示,摆球直径为______cm.把摆球用细线悬挂在铁架台上,测量摆线长,通过计算得到摆长L.(2)用秒表测量单摆的周期,当单摆摆动稳定且到达最低点时开始计时并记为n=0,单摆每经过最低点记一次数,当数到n=60时秒表的示数如图乙所示,该单摆的周期T=______s(结果保留三位有效数字).(3)测量出多组周期T、摆长L数值后,画出T2-L图象如图丙,此图线斜率的物理意义是______.A.g B. C. D.(4)与重力加速度的真实值比较,发现测量结果偏大,分析原因可能是________.A.振幅偏小B.在单摆未悬挂之前先测定其摆长C.将摆线长当成了摆长D.开始计时误记为n=119.为了研究弦的振动频率,设计了下面的实验:将n根相同的弦一端固定,在另一端系着不同质量的小物体,让其自然下垂,使弦绷紧,做成如图(a)所示的装置.用工具拨动弦A、B的中点,使其振动,进行实验,研究其振动频率f与小物体质量m及弦的长度L的关系.具体做法是:只让m或只让L变化,测定振动频率f,得到图(b)所示的两个图象.(1)上面实验所采用的实验方法是________.A.对比实验法 B.物理模型法C.等效替代法 D.控制变量法(2)根据上面的实验及两个图象,你认为表示频率f的式子应该如写?请从下面四个选项中(k为常数),选出最可能的为________.(填字母代号) A.f=k·B.f=k·C.f=k·D.f=k·.四、计算题20.如图所示,将质量为mA=100 g的平台A连接在劲度系数k =200 N/m 的弹簧上端,弹簧下端固定在地上,形成竖直方向的弹簧振子,在A的上方放置mB=mA的物块B,使A、B一起上下振动,弹簧原长为5 cm.A的厚度可忽略不计,g取10 m/s2求:(1)当系统做小振幅简谐振动时,A的平衡位置离地面C多高?(2)当振幅为0.5 cm时,B对A的最大压力有多大?(3)为使B在振动中始终与A接触,振幅不能超过多大?为什么?21.“嫦娥二号”载人飞船的成功发射,标志着我国航天技术新的突破.如果宇航员将在地面上校准的摆钟拿到月球上去.(已知g月=)(1)若此钟在月球上记录的时间是1 h,那么实际的时间是多少?(2)若要在月球上使该钟与在地面上时一样准,摆长应如何调节?答案解析1.【答案】D【解析】物体的简谐运动并不一定只在水平方向发生,各个方向都有可能发生,A错;简谐运动是最简单的振动,B错;物体做简谐运动时的轨迹线并不一定是正弦曲线,C错;若物体振动的图象是正弦曲线,则其一定做简谐运动,D对.2.【答案】B【解析】在一个周期内动能相同的时刻有四个,但是由于速度和力还有位移具有矢量性,所以三项可能方向会不同,故只有B选项正确.3.【答案】D【解析】若t1、t2如图所示,则t2-t1≠T,故A错误.如图所示,与t1时刻在同一位置且运动情况相同的时刻有t2、t2′……等.故t2-t1=nT(n=1、2、3……),故B错误.同理可判断C 错误,D 正确.4.【答案】C【解析】据题意,两段光滑圆弧所对应的圆心角均小于5°,把两球在圆弧上的运动看做等效单摆,等效摆长等于圆弧的半径,则M、N两球的运动周期分别为:TM=2π,TN=2π,两球第一次到达O点的时间分别为:tM=TM=,tN=TN=,由于R1<R2,则tM<tN,故两小球第一次相遇点的位置一定在O点的右侧.5.【答案】D【解析】6.【答案】B【解析】平衡位置是物体原来静止时的位置,所以应与受力有关,与是否为振动范围的中心位置无关,A错误;振动位移是以平衡位置为起点指向质点所在位置的有向线段,振动位移随时间而变,振子偏离平衡位置最远时,振动物体的振动位移最大,B正确,C、D错误.7.【答案】D【解析】从弹簧接触地面开始分析,升降机做简谐运动(简化为如图中小球的运动),在升降机从A→O的运动过程中,速度由v1增大到最大v m,加速度由g减小到零,当升降机运动到A的对称点A′(OA=OA′)时,速度也变为v1(方向竖直向下),加速度为g(方向竖直向上),升降机从O→A′的运动过程中,速度由最大v m减小到v1,加速度由零增大到g,从A′点运动到最低点B的过程中,速度由v1减小到零,加速度由g增大到a(a>g),故答案为D.8.【答案】D【解析】小球经过O点时速度最大,A错;小球在M点与N点的加速度大小相等、方向相反,B错;小球从M向O点运动时,速度增大,加速度减小,C错;小球从O向N运动时,速度减小,加速度增大,D对.9.【答案】C【解析】由图象可知t1、t2两时刻振子所处的位置相同,位移大小相等、方向相同,但(t2-t1)<,故A错;t2、t3两时刻振子所处的位置关于平衡位置对称,速度相等、方向也相同,B错;t2、t4两时刻和t1、t3两时刻振子所处的位置都关于平衡位置对称,t2、t4两时刻加速度大小相等,方向相反,C对;而t1、t3两时刻回复力的大小相等,但弹簧一次伸长,一次压缩,长度不相等,D错.10.【答案】C【解析】同一单摆的周期是一定的,则T1=T2;设单摆的周期为T,板长为L,则有:T=,2T=根据题意,有:v1=2v2.11.【答案】B【解析】简谐运动是最基本也是最简单的机械振动,故A错误;简谐运动的回复力一定是物体在振动方向所受的合力,满足F=-kx 规律,故B正确;简谐运动物体所受的回复力总是指向平衡位置,有时做正功,有时做负功,故C、D错误.12.【答案】D【解析】处于竖直向下的匀强电场中的摆球,竖直方向受到的合力:F合=mg+qE摆球在摆动的过程中切线方向的分力:F切=(mg+qE)·sinθ>mg sinθ由于切线方向的分力增大,所以单摆的周期减小,T′<T=2π.13.【答案】BC【解析】摆球在摆动过程中总机械能守恒,只是动能和重力势能之间的转化,故D错.位置A是摆动的最高点,动能为零,势能最大,B对.在B 处,总机械能为动能与势能之和,在A处势能为总机械能,故C对.摆球在平衡位置时势能为零,动能最大,故A错.14.【答案】CD【解析】测量摆长的方法:用刻度尺量出从悬点到摆球球心的距离即线长加球的半径,故A错误;由单摆周期公式T=2π可知,单摆的周期T 与摆球质量m无关,故B错误;由平衡位置O运动到左端最大位移处需要的时间是四分之一周期,故C正确;由单摆周期公式T=2π,代入摆长l=1.00 m、周期T=2.00 s,得g=9.86 m/s2,故D 正确.15.【答案】CD【解析】由单摆周期公式:T=2π可知,重力加速度:g=,周期T=,N为全振动的次数;先测出摆长l,后把单摆悬挂起来,所测摆长偏小,所测重力加速度偏小,故A错误;摆线上端未牢固地系于悬点,振动中出现松动,使摆线长度增加了,所测摆长偏小,所测重力加速度偏小,故B错误;摆球不在同一竖直平面内运动,成为圆锥摆运动,圆锥摆的周期:T=2π,有效摆长为L cosθ变短,而实际摆长偏大,所测重力加速度偏大,故C正确;测周期时,当摆球通过最低点时启动秒表并数“1”,数到摆球第40次通过平衡位置时按下秒表,读出时间t,得周期T=,所测周期偏小,所测重力加速度偏大,故D正确.16.【答案】BC【解析】由图知,该质点的振幅为5 cm,故A错误;质点振动在P时后,位移逐渐减小,向平衡位置靠近,所以此时质点的振动方向沿y轴负向,故B正确;质点振动在Q时,位移沿y轴负向,根据简谐运动特征可知,加速度方向与位移方向相反,则振动的加速度方向沿y 轴正向,故C正确;质点振动从P至Q过程中,路程是2.5 cm+5 cm+2 cm=9.5 cm,故D 错误.17.【答案】AD【解析】线未断开前,两根弹簧伸长的长度相同,离开平衡位置的最大距离相同,即振幅一定相同,故A正确,B错误;当线断开的瞬间,弹簧的弹性势能相同,到达平衡后,甲、乙的最大动能相同,由于甲的质量大于乙的质量,甲的最大速度一定小于乙的最大速度,故C错误,D正确.18.【答案】(1)2.06(2)2.24(3)C(4)D【解析】(1)由图示游标卡尺可知,其示数为:20 mm+0.1 mm×6=20.6 mm=2.06 cm.(2)由图示秒表可知,秒表示数为:t=1 min+7.2 s=67.2 s,单摆的周期:T===2.24 s;(3)由单摆周期公式:T=2π可得:T2=L,则T2-L图象的斜率:k =,故选C;(4)由单摆周期公式:T=2π可得:g=,重力加速度与单摆的振幅无关,振幅偏小不会影响重力加速度的测量值,故A错误;在单摆未悬挂之前先测定其摆长,所测摆长偏小,由g=可知,所测重力加速度偏小,故B错误;将摆线长当成了摆长,所测摆长偏小,由g=可知,所测重力加速度偏小,故C错误;开始计时误记为n=1,所测周期T偏小,由g=可知,所测重力加速度偏大,故D正确.19.【答案】(1)D(2)B【解析】(1)控制一个变量,研究另外两个变量的关系叫做控制变量法;(2)由图(b)可以看出:L一定时,f与成正比;m一定时,f随着L的增加而减小,f与L成反比;故表达式为:f=k.20.【答案】(1)4 cm(2)1.5 N(3)1 cm【解析】(1)振幅很小时,A,B间不会分离,将A与B整体作为振子,当它们处于平衡位置时,根据平衡条件得:kx0=(mA+mB)g得形变量:x0=1 cm平衡位置距地面高度:h=l0-x0=4 cm(2)当A、B运动到最低点时,有向上的最大加速度,此时A、B间相互作用力最大,设振幅为A,最大加速度:a m===5 m/s2取B为研究对象,有:F N-mBg=mBa m得A,B间相互作用力:F N=mB(g+a m)=1.5 N由牛顿第三定律知,B对A的最大压力大小为1.5 N(3)为使B在振动中始终与A接触,在最高点时相互作用力应满足:F N≥0取B为研究对象,根据牛顿第二定律,有:mBg-F N=mBa当F N=0时,B振动的加速度达到最大值,且最大值:a m=g=10 m/s2(方向竖直向下)因a mA=a mB=g,表明A、B仅受重力作用,此刻弹簧的弹力为零,弹簧处于原长:A=x0=1 cm,振幅不能大于1 cm.21.【答案】(1)h(2)摆长应调节为在地球上摆长的【解析】(1)根据单摆的周期公式:T=2π,解得:T月=2π=T地此钟在月球上记录的时间是地球上记录的时间的倍,所以若此钟在月球上记录的时间是1 h,那么实际的时间是h.(2)将单摆的周期公式变形得:L=.根据该公式知所以若要在月球上使该钟与在地面上时一样准,摆长应调节为在地球上摆长的.。
最新人教版高中物理选修3-4第十一章《机械振动》单元检测

第十一章机械振动单元检测(时间:90分钟满分:100分)一、选择题(每小题6分,共60分,每题至少有一个选项符合题意,多选、错选者不得分,选对但是选不全者得3分)1.有一弹簧振子做简谐运动,则()。
A.加速度最大时,速度为零B.速度最大时,位移最大C.位移最大时,回复力最大D.回复力最大时,加速度最大2.单摆做简谐运动时,下列说法正确的是()。
A.摆球质量越大、振幅越大,则单摆振动的能量越大B.单摆振动能量与摆球质量无关,与振幅有关C.摆球到达最高点时势能最大,摆线弹力最大D.摆球通过平衡位置时动能最大,摆线弹力最大3.关于做简谐运动的物体的位移、加速度和速度间的关系,下列说法中正确的是()。
A.位移减小时,加速度减小,速度也减小B.位移的方向总跟加速度的方向相反,跟速度的方向相同C.物体的运动方向指向平衡位置时,速度方向跟位移方向相反D.物体的运动到平衡位置时,加速度为零4.如图所示,为某质点沿x轴做简谐振动的图象,下面说法中正确的是()。
A.在t=4 s时质点速度最大,加速度为0B.在t=1 s时,质点速度和加速度都达到最大值C.在0到1 s时间内,质点速度和加速度方向相同D.在t=2 s时,质点的位移沿x轴负方向,加速度也沿x轴负方向5.劲度系数为20 N/cm的弹簧振子,它的振动图象如图所示,在图中A点对应的时刻()。
A.振子所受的弹力大小为0.5 N,方向指向x轴的负方向B.振子的速度方向指向x轴的正方向C.在0~4 s内振子做了1.75次全振动D.在0~4 s内振子通过的路程为0.35 cm,位移为06.一弹簧振子的振动周期是0.025 s,当振子从平衡位置开始向右运动,经过0.17 s时,振子的运动情况是()。
A.向右做减速运动B.向右做加速运动C.向左做减速运动D.向左做加速运动7.质量为m带有小孔的小球和劲度系数为k的弹簧穿在光滑的水平杆上,组成了一个弹簧振子,如图所示。
现将振子从平衡位置O拉至其右方的B点,此时拉力的大小为F,然后轻轻释放振子,振子从静止开始运动,经过时间t第一次回到平衡位置O,这时振子的速度为v。
人教版高中物理选修3-4第十一章《机械振动》检测题(含答案解析)

第十一章《机械振动》检测题一、单选题(每小题只有一个正确答案)1.弹簧振子作简谐振动的周期是4 s,某时刻该振子的速度为v,要使该振子的速度变为-v,所需要的最短时间是( )A. 1 s B. 2 s C. 4 s D.无法确定2.小球做简谐运动,则下述说法正确的是( )A.小球所受的回复力大小与位移成正比,方向相同B.小球的加速度大小与位移成正比,方向相反C.小球的速度大小与位移成正比,方向相反D.小球速度的大小与位移成正比,方向可能相同也可能相反3.弹簧振子沿直线作简谐运动,当振子连续两次经过相同位置时下列说法不正确的( ) A.回复力相同 B.加速度相同 C.速度相同 D.机械能相同4.任何物体都有自己的固有频率.研究表明,如果把人作为一个整体来看,在水平方向上振动时的固有频率约为5 Hz.当工人操作风镐、风铲、铆钉机等振动机械时,操作者在水平方向将做受迫振动.在这种情况下,下列说法正确的是( )A.操作者的实际振动频率等于他自身的固有频率B.操作者的实际振动频率等于机械的振动频率C.为了保证操作者的安全,振动机械的频率应尽量接近人的固有频率D.为了保证操作者的安全,应尽量提高操作者的固有频率5.水平放置的弹簧振子先后以振幅A和2A振动,振子从左边最大位移处运动到右边最大位移处过程中的平均速度分别为v1和v2,则( )A.v1=2v2 B. 2v1=v2 C.v1=v2 D.v1=v26.如图所示为某质点在0~4 s内的振动图象,则( )A.质点在3 s末的位移为2 m B.质点在4 s末的位移为8 mC.质点在4 s内的路程为8 m D.质点在4 s内的路程为零7.如图所示是单摆做阻尼运动的位移—时间图线,下列说法中正确的是( )A.摆球在P与N时刻的势能相等 B.摆球在P与N时刻的动能相等C.摆球在P与N时刻的机械能相等 D.摆球在P时刻的机械能小于N时刻的机械能8.某同学在用单摆测重力加速度的实验中,用的摆球密度不均匀,无法确定重心位置,他第一次量得悬线长为L1,测得周期为T1,第二次量得悬线长为L2,测得周期为T2,根据上述数据,重力加速度g的值为( )A. B. C. D.无法判断9.如图所示为演示简谐振动的沙摆,已知摆长为l,沙筒的质量为m,沙子的质量为M,沙子逐渐下漏的过程中,摆的周期( )A.不变 B.先变大后变小 C.先变小后变大 D.逐渐变大10.关于简谐运动周期、频率、振幅说法正确的是( )A.振幅是矢量,方向是由平衡位置指向最大位移处B.周期和频率的乘积不一定等于1C.振幅增加,周期必然增加,而频率减小D.做简谐运动的物体,其频率固定,与振幅无关11.将一个电动传感器接到计算机上,就可以测量快速变化的力,用这种方法测得的某单摆摆动时悬线上拉力的大小随时间变化的曲线如图所示.某同学由此图线提供的信息做出了下列判断①t=0.2 s时摆球正经过最低点.②t=1.1 s时摆球正经过最低点.③摆球摆动过程中机械能减少.④摆球摆动的周期是T=0.6 s.上述判断中,正确的是( )A.①③ B.②③ C.③④ D.②④12.如图为某质点做简谐运动的图象.下列说法正确的是( )A.t=0时,质点的速度为零B.t=0.1 s时,质点具有y轴正向最大加速度C.在0.2 s~0.3 s内质点沿y轴负方向做加速度增大的加速运动D.在0.5 s~0.6 s内质点沿y轴负方向做加速度减小的加速运动13.如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M点,与竖直墙相切于A点,竖直墙上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的最高点,D是圆环上与M靠得很近的一点(DM远小于).已知在同一时刻:a、b两球分别由A、B两点从静止开始沿光滑倾斜直轨道运动到M点,c球由C点自由下落到M点,d球从D点静止出发沿圆环运动到M点.则下列关于四个小球运动时间的关系,正确的是( )A.tb>tc>ta>td B.td>tb>tc>ta C.tb>tc=ta>td D.td>tb=tc=ta14.如图所示,一轻弹簧上端固定,下端系在甲物体上,甲、乙间用一不可伸长的轻杆连接,已知甲、乙两物体质量均为m,且一起在竖直方向上做简谐振动的振幅为A(A>).若在振动到达最高点时剪断轻杆,甲单独振动的振幅为A1,若在振动到达最低点时间剪断轻杆,甲单独振动的振幅为A2.则( )A.A2>A>A1 B.A1>A>A2 C.A>A2>A1 D.A2>A1>A二、多选题(每小题至少有两个正确答案)15.利用传感器和计算机可以测量快速变化的力.如图是用这种方法获得的弹性绳中拉力随时间的变化图线.实验时,把小球举高到绳子的悬点O处,然后让小球自由下落.从此图线所提供的信息,判断以下说法中正确的是( )A.t1时刻小球速度最大 B.t2时刻绳子最长C.t3时刻小球动能最小 D.t3与t4时刻小球速度大小相同16.物体做简谐运动时,下列叙述正确的是( )A.平衡位置就是回复力为零的位置B.处于平衡位置的物体,一定处于平衡状态C.物体到达平衡位置,合力一定为零D.物体到达平衡位置,回复力一定为零17.在“探究单摆周期与摆长的关系”的实验中,以下说法正确的是( )A.测量摆长时,应用力拉紧摆线B.单摆偏离平衡位置的角度不能太大C.要保证单摆自始至终在同一竖直面内摆动D.应从摆球通过最低位置时开始计时18.(多选)如图所示为半径很大的光滑圆弧轨道上的一小段,小球B静止在圆弧轨道的最低点O处,另有一小球A自圆弧轨道上C处由静止滚下,经t秒与B发生正碰.碰后两球分别在这段圆弧轨道上运动而未离开轨道,当两球第二次相碰时( )A.相间隔的时间为4t B.相间隔的时间为2tC.将仍在O处相碰 D.可能在O点以外的其他地方相碰19.如图所示,物体A与滑块B一起在光滑水平面上做简谐运动,A、B之间无相对滑动,已知轻质弹簧的劲度系数为k,A、B的质量分别为m和M,下列说法正确的是( )A.物体A的回复力是由滑块B对物体A的摩擦力提供B.滑块B的回复力是由弹簧的弹力提供C.物体A与滑块B(看成一个振子)的回复力大小跟位移大小之比为kD.物体A的回复力大小跟位移大小之比为k E.若A、B之间的最大静摩擦因数为μ,则A、B间无相对滑动的最大振幅为三、实验题20.某同学做“用单摆测定重力加速度”的实验,实验步骤如下:Ⅰ.选取一个摆线长约1 m的单摆,把线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自由下垂.Ⅱ.用米尺量出悬线长度,精确到毫米,作为摆长.Ⅲ.放开小球让它来回摆动,用停表测出单摆做30~50次全振动所用的时间,计算出平均摆动一次的时间.Ⅳ.变更摆长,重做几次实验,根据单摆的周期公式,计算出每次实验测得的重力加速度并求出平均值.(1)上述实验步骤有两点错误,请一一列举:Ⅰ.________________________________________________________________________;Ⅱ.________________________________________________________________________;(2)按正确的实验步骤,将单摆全部浸入水中做实验,测得的重力加速度变______.已知测得的单摆周期为T,摆长为L,摆球质量为m,所受浮力为F,当地的重力加速度的真实值g =____________.21.在探究单摆的振动周期T和摆长L的关系实验中,某同学在细线的一端扎上一个匀质圆柱体制成一个单摆.(1)如图,该同学把单摆挂在力传感器的挂钩上,使小球偏离平衡位置一小段距离后释放,电脑中记录拉力随时间变化的图象如图所示.在图中读出N个峰值之间的时间间隔为t,则重物的周期为____________.(2)为测量摆长,该同学用米尺测得摆线长为85.72 cm,又用游标卡尺测量出圆柱体的直径(如图甲)与高度(如图乙),由此可知此次实验单摆的摆长为______cm.(3)该同学改变摆长,多次测量,完成操作后得到了下表中所列实验数据.请在坐标系中画出相应图线(4)根据所画的周期T与摆长L间的关系图线,你能得到关于单摆的周期与摆长关系的哪些信息.四、计算题22.如图所示是一个质点做简谐运动的图象,根据图象回答下面的问题:(1)振动质点离开平衡位置的最大距离;(2)写出此振动质点的运动表达式;(3)在0~0.6 s的时间内质点通过的路程;(4)在t=0.1 s、0.3 s、0.5 s、0.7 s时质点的振动方向;(5)振动质点在0.6 s~0.8 s这段时间内速度和加速度是怎样变化的?(6)振动质点在0.4 s~0.8 s这段时间内的动能变化是多少?答案解析1.【答案】D【解析】要使该振子的速度变为-v,可能经过同一位置,也可能经过关于平衡位置对称的另外一点;由于该点与平衡位置的间距未知,故无法判断所需要的最短时间,故选D.2.【答案】B【解析】简谐运动的回复力与位移关系为:F=-kx,方向相反,A、C、D错;a=,所以加速度与位移成正比,方向相反,B正确.3.【答案】C【解析】弹簧振子在振动过程中,两次连续经过同一位置时,位移、加速度、回复力、动能、势能、速度的大小均是相同的.但速度的方向不同,故速度不同.故选C.4.【答案】B【解析】物体在周期性驱动力作用下做受迫振动,受迫振动的频率等于驱动力的频率,与固有频率无关,可知操作者的实际频率等于机械的振动频率,故A错误,B正确;当驱动力频率等于物体的固有频率时,物体的振幅最大,产生共振现象,所以为了保证操作者的安全,振动机械的频率应尽量远离人的固有频率,故C错误;有关部门作出规定:拖拉机、风镐、风铲、铆钉机等各类振动机械的工作频率必须大于20 Hz,操作者的固有频率无法提高,故D错误.5.【答案】B【解析】弹簧振子做简谐运动,周期与振幅无关,设为T,则从左边最大位移处运动到右边最大位移处所用的时间为;第一次位移为2A,第二次位移为4A,即位移之比为1∶2,根据平均速度的定义式=,平均速度之比为1∶2.6.【答案】C【解析】振动质点的位移指的是质点离开平衡位置的位移.位移是矢量,有大小,也有方向.因此3 s末的位移为-2 m,4 s末位移为零.路程是指质点运动的路径的长度,在4 s内应该是从平衡位置到最大位置这段距离的4倍,即为8 m,C正确.7.【答案】A【解析】由于摆球的势能大小由其位移和摆球质量共同决定,P、N两时刻位移大小相同,关于平衡位置对称,所以势能相等,A正确;由于系统机械能在减少,P、N时刻势能相同,则P处动能大于N处动能,故B、C、D错.8.【答案】B【解析】设摆球的重心到线与球结点的距离为r,根据单摆周期的公式T=2π得T1=2π;T2=2π;联立解得g=,故选B.9.【答案】B【解析】在沙摆摆动、沙子逐渐下漏的过程中,沙摆的重心逐渐下降,即摆长逐渐变大,当沙子流到一定程度后,摆的重心又重新上移,即摆长变小,由周期公式可知,沙摆的周期先变大后变小,故选B.10.【答案】D【解析】振幅是振动物体离开平衡位置的最大距离,是标量,A错;周期和频率互为倒数,B错;做简谐运动的物体的频率和周期由振动系统本身决定,C错误,D正确.11.【答案】A【解析】摆球经过最低点时,拉力最大,在0.2 s时,拉力最大,所以此时摆球经过最低点,故①正确;摆球经过最低点时,拉力最大,在1.1 s时,拉力最小,所以此时摆球不是经过最低点,是在最高点,故②错误;根据牛顿第二定律知,在最低点F-mg=m,则F=mg+m,在最低点的拉力逐渐减小,知是阻尼振动,机械能减小,故③正确;在一个周期内摆球两次经过最低点,根据图象知周期:T=2×(0.8 s-0.2 s)=1.2 s,故④错误.12.【答案】D【解析】由图可知,在t=0时,质点经过平衡位置,所以速度最大,故A错误;当t=0.1 s时,质点的位移为正向最大,速度为零,由加速度公式a=-y,知加速度负向最大.故B错误;在0.2 s时,质点经过平衡位置,0.3 s时质点的位移为负向最大,质点沿y轴负方向做加速度增大的减速运动,故C错误;在0.5 s时,质点的位移为正向最大,速度为零,0.6 s时,质点经过平衡位置,速度负向最大,可知在0.5 s~0.6 s内质点沿y轴负方向做加速度减小的加速运动,故D正确.13.【答案】C【解析】对于AM段,位移x1=R,加速度a1==g,根据x1=a1t得,t1=2.对于BM段,位移x2=2R,加速度a2=g sin 60°=g,根据x2=a2t得,t2=. 对于CM段,位移x3=2R,加速度a3=g,由x3=gt得,t3=2.对于D小球,做类单摆运动,t4==.故C正确.14.【答案】A【解析】未剪断轻杆时,甲、乙两物体经过平衡位置时,弹簧的伸长量为x0=;当剪断轻杆时,甲物体经过平衡位置时,弹簧的伸长量为x=,可知,平衡位置向上移动.则在振动到达最高点时剪断轻杆,A1<A;在振动到达最低点时间剪断轻杆,A2>A;所以有:A2>A>A1.15.【答案】BD【解析】把小球举高到绳子的悬点O处,让小球自由下落,t1时刻绳子刚好绷紧,此时小球所受的重力大于绳子的拉力,小球向下做加速运动,当绳子的拉力大于重力时,小球才开始做减速运动,所以t1时刻小球速度不是最大,故A错误;t2时刻绳子的拉力最大,小球运动到最低点,绳子也最长,故B正确;t3时刻与t1时刻小球的速度大小相等,方向相反,小球动能不是最小,应是t2时刻小球动能最小,故C错误;t3与t4时刻都与t1时刻小球速度大小相同,故D正确.16.【答案】AD【解析】平衡位置是回复力等于零的位置,但物体所受合力不一定为零,A、D对.17.【答案】BCD【解析】测量摆长时,要让摆球自然下垂,不能用力拉紧摆线,否则使测量的摆长产生较大的误差,故A错误.单摆偏离平衡位置的角度不能太大,否则单摆的振动不是简谐运动,故B正确.要保证单摆自始至终在同一竖直面内摆动,不能形成圆锥摆,故C正确.由于摆球经过最低点时速度最大,从摆球通过最低位置时开始计时,测量周期引起的误差最小,故D 正确.18.【答案】BC【解析】因为它是一个很大的光滑圆弧,可以当作一个单摆运动.所以AB球发生正碰后各自做单摆运动.T=2π,由题目可知A球下落的时间为t=T,由此可见周期与质量、速度等因素无关,所以碰后AB两球的周期相同,所以AB两球向上运动的时间和向下运动的时间都是一样的.所以要经过2t的时间,AB两球同时到达O处相碰.19.【答案】ACE【解析】A做简谐运动时的回复力是由滑块B对物体A的摩擦力提供,故A正确;物体B作简谐运动的回复力是弹簧的弹力和A对B的静摩擦力的合力提供,故B错误;物体A与滑块B(看成一个振子)的回复力大小满足F=-kx,则回复力大小跟位移大小之比为k,故C正确;设弹簧的形变量为x,根据牛顿第二定律得到整体的加速度为:a=,对A:F f=ma =,可见,作用在A上的静摩擦力大小F f,即回复力大小与位移大小之比为:,故D错误;据题知,物体间达到最大摩擦力时,其振幅最大,设为A.以整体为研究对象有:kA=(M+m)a,以A为研究对象,由牛顿第二定律得:μmg=ma,联立解得:A=,故E正确.20.【答案】(1)Ⅱ.测量摆球直径,摆长应为摆线长加摆球半径Ⅲ.在细线偏离竖直方向小于5°位置释放小球,经过最点时进行计时(2)小+【解析】(1)上述实验步骤有两点错误Ⅱ.测量摆球直径,摆长应为摆线长加摆球半径;Ⅲ.在细线偏离竖直方向小于5°位置释放小球,经过最点时进行计时.(2)按正确的实验步骤,将单摆全部浸入水中做实验,等效的重力加速度g′=,所以测得的重力加速度变小.已知测得的单摆周期为T,摆长为L,摆球质量为m,所受浮力为F,由单摆的周期公式得出T=2πg=+.21.【答案】(1)(2)88.10 (3)如图所示(4)摆长越长,周期越大,周期与摆长呈非线性关系【解析】(1)摆球做简谐运动,每次经过最低点时速度最大,此时绳子拉力最大,则两次到达拉力最大的时间为半个周期,所以t=(N-1)T解得:T=(2)图乙游标卡尺的主尺读数为47 mm,游标读数为0.1×5 mm=0.5 mm,则最终读数为47.5 mm=4.75 cm.所以圆柱体的高度为h=4.75 cm,摆长是悬点到球心的距离,则摆长l=85.72 cm+=88.10 cm(3)根据描点法作出图象,如图所示:(4)由图象可知,摆长越长,周期越大,周期与摆长呈非线性关系.22.【答案】(1)5 cm (2)x=5sin(2.5πt) cm(3)15 cm (4)正方向负方向负方向正方向(5)速度越来越大加速度的方向指向平衡位置越来越小(6)零【解析】(1)由振动图象可以看出,质点振动的振幅为5 cm,此即质点离开平衡位置的最大距离.(2)由图象可知A=5 cm,T=0.8 s,φ=0.所以x=A sin(ωt+φ)=A sin(t)=5sin(t) cm=5sin(2.5πt) cm.(3)由振动图象可以看出,质点振动的周期为T=0.8 s,0.6 s=3×,振动质点是从平衡位置开始振动的,故在0~0.6 s的时间内质点通过的路程为s=3×A=3×5 cm=15 cm.(4)在t=0.1 s时,振动质点处在位移为正值的某一位置上,但若从t=0.1 s起取一段极短的时间间隔Δt(Δt→0)的话,从图象中可以看出振动质点的正方向的位移将会越来越大,由此可以判断得出质点在t=0.1 s时的振动方向是沿题中所设的正方向的.同理可以判断得出质点在t=0.3 s、0.5 s、0.7 s时的振动方向分别是沿题中所设的负方向、负方向和正方向.(5)由振动图象可以看出,在0.6 s~0.8 s这段时间内,振动质点从最大位移处向平衡位置运动,故其速度是越来越大的;而质点所受的回复力是指向平衡位置的,并且逐渐减小的,故其加速度的方向指向平衡位置且越来越小.(6)由图象可以看出,在0.4 s~0.8 s这段时间内质点从平衡位置经过半个周期的运动又回到了平衡位置,尽管初、末两个时刻的速度方向相反,但大小是相等的,故这段时间内质点的动能变化为零.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档▪人教版物理
第十一章单元测试题
一、选择题
1、简谐运动中的平衡位置是指()
A.速度为零的位置B.回复力为零的位置
C.加速度最大的位置D.位移最大的位置
2、关于简谐运动,下列说法中正确的是()
A.回复力总指向平衡位置
B.加速度和速度方向总跟位移的方向相反
C.做简谐运动的物体如果位移越来越小,则加速度越来越小,速度也越来越小
D.回复力是根据力的效果命名的
3、关于单摆做简谐运动的过程中,下列说法中正确的是()
A.在平衡位置摆球的动能和势能均达到最大值
B.在最大位移处势能最大,而动能最小
C.在平衡位置绳子的拉力最大,摆球速度最大
D.摆球由最大位移到平衡位置运动时,动能变大,势能变小
4、卡车在水平面上行驶,货物随车厢底板上下振动而不脱离底板,设货物做简谐运动,货物对底板的压力最大的时刻是()
A.货物通过平衡位置向上时
B.货物通过平衡位置向下时
C.货物向上达到最大位移时
D.货物向下达到最大位移时
5、关于简谐运动的位移、加速度和速度的关系,正确的说法是()
A.位移减小时,加速度增大,速度增大
B.物体的速度增大时,加速度一定减小
C.位移方向总和加速度方向相反,和速度方向相同
D.物体向平衡位置运动时,速度方向和位移方向相同
6、一质点做简谐运动,先后以相同的速度依次通过A、B两点,历时1 s;质点
通过B点后再经过1 s又第二次通过B点.在这2 s内质点通过的总路程为12 cm,则质点的振动周期和振幅分别是()
A.3 s,6 cm B.4 s,6 cm
C.4 s,9 cm D.2 s,8 cm
7、振动着的单摆的摆球,通过平衡位置时,它受到的回复力()
A.指向地面B.指向悬点
C.数值为零D.垂直摆线,指向运动方向
8、如图1所示为弹簧振子P在0 ~ 4 s内的运动图象,从t = 0开始()
A.再过1 s,该振子的位移是正的最大
B.再过1 s,该振子的速度沿正方向
C.再过1 s,该振子的加速度沿正方向
D.再过1 s,该振子的加速度最大
9、惠更斯利用摆的等时性发明了带摆的计时器,叫摆钟.摆钟运行
时克服摩擦所需的能量由重锤的势能提供,运行的速率由钟摆控制.旋转钟摆下端的螺母可以使摆上的圆盘沿摆杆上下移动,如图2所示.则下面操作正确的是()
A.当摆钟不准确时需要调整圆盘位置
B.摆钟快了应使圆盘沿摆杆上移
C.由冬季到夏季时应使圆盘沿摆杆上移
D.把摆钟从武汉移到北京应使圆盘沿摆杆上移
10、如图3所示,五个摆系于同一根绷紧的水平绳上,A是质量较大的摆,E与A等高,先使A振动从而带动其余各摆随后也跟着振动起来,则下列说法正确的是()
A.其他各摆振动的周期跟A摆相同
B.其他各摆振动的振幅大小相等
C.其他各摆振动的振幅不同,E摆振幅最大
D.B、C、D三摆振动的振幅大小不同,B摆的振幅最小
11、如图4所示,一水平弹簧振子在光滑水平面上的B、C两点间做简
谐运动,O为平衡位置.已知振子由完全相同的P、Q两部分组成,彼此图 2
图 3
图 1
图 4
拴在一起.当振子运动到B 点的瞬间,将P 拿走,则以后Q 的运动和拿走P 之前相比有( )
A .Q 的振幅不变,通过O 点的速率减小
B .Q 的振幅不变,通过O 点的速率增大
C .Q 的振幅增大,通过O 点的速率增大
D .Q 的振幅减小,通过O 点的速率减小
12、如图5所示,是一个单摆的共振曲线(取g = 10 m/s 2)( )
A .此单摆的摆长约为2.8 cm
B .此单摆的周期约为0.3 s
C .若摆长增大,共振曲线的峰将向上移动
D .若摆长增大,共振曲线的峰将向左移动 13、一个水平弹簧振子做简谐运动的周期是0.025 s ,当振子从平衡位置开始向右运动,经过0.17 s 时,振子的运动情况是( )
A .正在向右做减速运动
B .正在向右做加速运动
C .正在向左做减速运动
D .正在向左做加速运动
14、一质点做简谐运动的图象如图6所示,下列说法正确的是( )
A .质点振动频率是4 Hz
B .在10 s 内质点经过的路程是20 cm
C .第4 s 末质点的速度是零
D .在t = 1 s 和t = 3 s 两时刻,质点位移大小相等、方向相
同
15、如图7所示,弹簧振子在A 、B 之间做简谐运动,O 为平衡位置,A 、B 间的距离为20 cm ,由A 运动到B 的最短时间为1 s ,则下述说法正确
的是( )
A .从O 到A 再到O 振子完成一次全振动
B .振子的周期是1 s ,振幅20 cm
C .振子完成两次全振动所通过的路程是40 cm
D .从O 开始经过2 s 时,振子对平衡位置的位移为零
二、填空题 图 5
图 7
图 6
图 8
16、在大塑料瓶的底部扎一个小孔,灌上水,手提水瓶向前走,同时使瓶
左右摇摆,这样就能在地上大致画出简谐运动图.如图9为某同学画出的图象的一部分,今测得AB 两点间距离是1.0 m ,如果这位同学以1 m/s 的速度向前运动,则此瓶振动的频率为______________Hz .
17、一质点做简谐运动,其图象如图10所示,那么在0 ~ 4 s 内,
_________时刻速度为正向最大值,但加速度为零;________时刻速
度为零,加速度为正向最大值;在P 时刻质点速度方向为
____________,加速度方向为_____________.
18、有两个简谐运动的位移方程为:)44sin(31ππ+=bt a x 和)28sin(92ππ+=bt a x 。
则它们的振幅之比是________,频率分别是_______和________,t = 0时相位差是________。
19、弹簧振子做简谐运动,当振子的位移大小为最大位移大小的一半时,振子的回复力大小为f ,加速度大小为a ,则当振子在最大位移时,振子的回复力大小为__________,加速度大小为____________.
20、汽车的车身是装在弹簧上的,如果这个系统的固有周期是1.5 s ,汽车在一条起伏不平的路上以6 m/s 的速度行驶时车身上下颠簸得最剧烈,由此司机可以估算出路上凸起处的相距间隔。
你估算的这个间距应该是_____ m 。
三、计算题
21、一弹簧振子的小球的质量m = 5 kg ,弹簧的劲度系数为k = 4.9
N/m .振子的振动图象如图12所示.该弹簧振子在t = 0.5 s 时,
速度和加速度的方向如何?在t = 1.25 s 时,速度和加速度有多大?
在0.75 s ~ 1.25 s 时间内,回复力做正功还是做负功?
22、如图13所示,水平桌面上的木质框架质量为M ,悬挂在框架上的轻质弹簧劲度系数为k ,铁球质量为m .让铁球上下振动起来.试分析计算:铁球的振幅多大时,木质框架才不会离开桌面?
23、如图14所示,长为l 单摆,周期为T .如果在悬点O 的正下方的B 点固定一个光滑的钉子,O 、B 两点的距离为l /4,使摆球A 通过最低点向左摆动,悬线被钉子挡住成为一个新的单摆,这样,单摆在整个振动过程中的周期将为多少?
图 9 A B 图 12
图 13 图 14 图 10
参考答案
一、选择题
1.B 2.AD 3.BCD 4.D 5.B 6.B 7.C 8.AD 9.AC 10.ACD
11.B 12.D 13.B 14.B 15.D
二、填空题
16.2.5
17.3 s ;2 s ;负向;负向
18.1∶3;2b ;4b ;π/4
19.2f ;2a
20.9
三、计算题
21.解析 在0.5 s 时振子的位移为正且向平衡位置运动,故v 和a 均为负向.在0.25 s 时,振子位于负向最大位移处,即x = -0.6 m ,故v = 0,a =)6.0(5
9.4-⨯-=-x m k m/s 2 = 0.588 m/s 2.在0.75 s ~ 1.25 s 时间内振子由平衡位置向负向最大位移处运动,回复力做负功. 22.只要不大于
k g M m )(+即可 解析:框架的重力为Mg ,只有铁球处在最高位置、弹簧被压缩、框架受到竖直向上的弹力等于Mg 时,框架对桌面的压力恰好减小到零.
根据胡克定律这时弹簧被压缩Δl =
k Mg ,铁球静止(平衡)时,弹簧被拉长Δl 0 = k
mg . 振幅是离平衡位置的最大距离,最大振幅为A m = Δl +Δl 0 =
k g M m )(+,可见,铁球的振幅只要不大于k
g M m )(+,框架就不会离开桌面. 23. 解析 单摆摆长为l 时,摆动时间为t 1 = 2T =g
l π,摆线碰到B 点后,来回一次的摆动时间为t 1 = g
l 43π,成为新的单摆后,摆动周期为
g l t t T π)231(21+=+=',即4)23(T T +='。