改性壳聚糖的研究进展

合集下载

壳聚糖化学改性研究

壳聚糖化学改性研究

壳聚糖化学改性研究【摘要】壳聚糖是一种天然多糖甲壳素脱去乙酰基的产物,在日用化工,生物工程,水处理和医药,食品等领域应用广范,但它不溶于一般的有机溶剂,因而应用受限,所以壳聚糖的化学改性成为该材料研究的重要方向,本文概述了近几年的壳聚糖化学改性方面的研究情况,着重介绍化学修饰和发展动向。

【关键词】壳聚糖化学方法改性特殊材料衍生物修饰1 壳聚糖壳聚糖,是对甲壳素运用一定程度的脱乙酰化学反应而得到的产物,故称为脱乙酰甲壳素或甲大胺。

分子式(1,4)-2-乙酰氨基-2-脱氧-β-d-萄聚糖。

在海洋,湖泊动物,如虾、蟹的甲壳中大量存在,在一些动植物的细胞壁中亦广泛存在,是大自然第二大纤维素的来源。

壳聚糖是一类氨基多糖,有很多特殊的功能作用和广泛的用途。

其化学性质已开发出50余项专利,在美国专利文献巳超过200余篇。

而我国对壳聚糖开发利用较晚,研究不充分,在最近几年才对壳聚糖的研究利用予以重视。

国内外的许多资料表明,壳聚糖及其衍生物在纺织、印染、造纸、食品、医药、环保、化工等行业有着广阔的应用前景。

2 壳聚糖的主要性能2.1 壳聚糖在人体中的保健作用大幅降低体内胆固醇壳聚糖能吸附胆固醇的前驱物,吸附后直接排出体外,降低胆固醇。

抑制油脂吸收壳聚糖在消化道中降低脂肪吸收的过程主要方式为离子结合,被壳聚糖所吸附的脂肪不能为脂肪酶分解,而全部随粪便排出体外。

已成为发达国家减肥的热门商品。

控制血压上升壳聚糖可吸附食盐中的氯离子,然后排出体外。

从而对血压上升有所抑制。

改进小肠代谢功能壳聚糖对改善小肠的消化功能有极大地促进作用。

2.2 壳聚糖的其他生活应用用作增稠剂,增加冰淇淋、酱类的稠度。

用作防霉和保鲜,壳聚糖在食品防霉和保鲜上有很大作用。

用作液体澄清剂和除臭剂,壳聚糖可作为饮料等液体的澄清改良剂。

3 壳聚糖在医药中的应用缓释剂和药用膜用壳聚糖加工制作的消炎缓释胶囊,经动物试验,表明有较好的缓释效果,在酸性环境中减缓了功能药物的释放。

壳聚糖改性吸附剂的制备及其吸附性能研究

壳聚糖改性吸附剂的制备及其吸附性能研究
环保安全
壳聚糖改性吸附剂制备过程简单,安全环保,不会产生二 次污染。
05
结论
研究成果总结
壳聚糖改性吸附剂的制备方法
本研究成功开发了一种壳聚糖改性吸附剂的制备方法,该方法简单、 高效,适用于大规模生产。
吸附性能显著提高
通过改性处理,壳聚糖吸附剂的吸附容量和吸附速率均得到显著提升, 能够有效去除水中的重金属离子和有机污染物。
拓展应用领域
将壳聚糖改性吸附剂应用于其他领域, 如土壤修复、放射性核素去除等,以 拓展其应用范围。
开发新型改性材料
尝试其他天然高分子材料进行改性处 理,以期获得性能更优异的吸附剂。
加强实际应用研究
进一步验证壳聚糖改性吸附剂在实际 应用中的效果,为其在水处理领域的 推广应用提供有力支持。
THANKS
吸附剂的结构。
扫描电子显微镜分析
观察改性吸附剂的表面形貌、 孔径分布和孔容等结构特征。
X射线衍射分析
用于分析改性吸附剂的晶体结 构和晶格常数。
热重分析
研究改性吸附剂的热稳定性及 失重行为。
03
壳聚糖改性吸附剂的吸附性能研究
吸附机理
01
02
03
物理吸附
通过分子间范德华力吸附 污染物。
化学吸附
通过吸附剂表面的活性基 团与污染物发生化学反应, 形成稳定的化学键。
离子交换吸附
壳聚糖改性吸附剂表面的 氨基和羧基可以与污染物 中的阳离子和阴离子进行 离子交换。
吸附动力学研究
吸附速率
研究吸附过程中不同时间点的吸附量,分析吸附 速率随时间的变化规律。
吸附平衡时间
确定达到吸附平衡所需的时间,为实际应用提供 参考。
动力学模型
建立吸附动力学模型,用于描述吸附速率与污染 物浓度、吸附剂用量等因素之间的关系。

壳聚糖的共混改性及应用研究进展

壳聚糖的共混改性及应用研究进展
201

鑫 3 年月 7 旦 嬲
C h 中 n a 国 C 化 h e m 工贸 i c a l T 易 r a d e
壳聚糖的共混改性及应用研究进展
李小博 崔志萍
4 7 5 0 0 4 ) ( 河 南大学化 学化 工学 院 。河南 开封
舞 塑壅 亚塞
摘 要 :本文介 绍 了通过 共混对壳聚糖进行改性 的研 究新进展 ,主要 讨论 了壳聚糖与淀粉 、葡甘聚糖 、聚 乙烯醇、聚 丙烯腈 、聚 丙烯酰胺共 混 物在各 个领域 中的应 用进展及发展前景。 关键词 :壳聚糖
用 于脱钙 、镁及 水的软 化 。 5 . 壳 聚糖 , 聚丙烯 酰胺 的共混 改性
日 化 、医药 、食 品 、化 工 、农业等 众多领 域得 到广泛 的应用 Ⅲ 。 壳聚 糖 的制 备原 料廉 价 易得 ,环保 无 污染 ,独特 的结构 使其 性 能 优 良 ,具 有很 多 潜在 应用 价值 。但 由于它 只能 溶解 于某 些酸 中这一特 性 ,使 其 在应 用 方面 大 大受 限 ,也 影 响研 究工 作 的深 入 开 展 。 因此 , 对壳 聚糖进 行共 混改性 成为壳 聚糖研 究 中广受关 注的课题 。
有 优于 普通塑料 薄膜 的力学 性能 。
糖一 丙 烯酰胺 一丙烯 酸接枝 共 聚物 的合 成和接 枝 共聚 物对 重金 属离 子
吸 附性能 的研 究 。以壳 聚糖 、丙烯酰 胺 、丙烯 酸 为主要 原 料合 成三 元 接枝 共聚 物 ,发 现 当重金属 浓度 为 1 0 mg / L时 ,接 枝共聚 物对 铜 、锌 、 铅的平衡吸附容量在 2 5 m g / g左 右 , 重 金 属 浓 度 为 5 0 mg / L 和
2 . 壳 聚糖 , 葡甘 聚糖 的共混 改性

壳聚糖的改性研究

壳聚糖的改性研究

壳聚糖的改性研究壳聚糖及其衍是一种天然高分子,随着对其研究的深入发展,涉及的内容和应用范围越来越广泛。

本文综合概述了壳聚糖的结构、性质、富集及其改性的方法,简单介绍了它们的应用领域。

壳聚糖具有许多独特的化学性质,根据其酸化、酉旨化和氧化、接枝与交联、经基化、经烷基化等反应还可制备成多种用途的产品,而且从氨基多糖的特点出发具有比纤维素更为广泛的用途。

对壳聚糖的应用开发研究,自本世纪六十年代以来就十分活跃,近年来国际更是十分重视对它的深入开发和应用。

通过对甲壳质和壳聚糖进行修饰与改性来制备性能独特的衍已经成为当今世界应用开发的一个重要方面。

1、壳聚糖及其改性吸附剂壳聚糖(chitosan)是一种天然化合物,属于碳水化合物中的多糖,是甲壳素n-脱乙酰基的产物,其学名是β(1→4)-2-氨基-2-脱氧-d-葡萄糖。

壳聚糖本身的基本结构就是葡萄糖胺聚合物,与纤维素相似。

但因多了一个胺基,具有正电荷,所以并使其性质较为开朗。

且因其生成分子融合键角度自然改变之故,对于小分子或元素可以出现HGPRT螳螂合作用。

根据甲壳素退乙酰化时的条件相同,壳聚糖的退乙酰度和分子量相同,壳聚糖的分子量通常在几十万左右。

但一般来说n-乙酰基脱下55%以上的就可以称作壳聚糖。

壳聚糖本身性质十分稳定,不会氧化或吸湿。

鉴于壳聚糖及其衍生物具有优良的生理活性,在食品、制药、水处理方面显示出非常诱人的应用价值。

近年来,国内外对壳聚糖的开发研究十分活跃。

由于壳聚糖吸附剂存有以上的优点,学者们对其天然的工艺已经存有了较为深入细致的研究。

李斌,崔慧研究了以壳聚糖作富集柱,稀h2so4为洗脱剂,稀naoh 为再生剂,火焰原子吸收光谱法简便、快速分离富集测定水中痕量cu(ⅱ)的方法,于波长nm 处测定,检出限为20ng·ml-1,线性范围为10~20μg·ml-1。

此法的优点在于简便、快速、选择性好、经济实用、效果良好。

但由于壳聚糖易降解,在实际操作中存在着流速控制难,富集效果不均一,空白大的问题。

壳聚糖的改性研究进展及其应用

壳聚糖的改性研究进展及其应用

壳聚糖的改性研究进展及其应用壳聚糖是一种天然高分子材料,由于其具有良好的生物相容性、生物活性和生物降解性,因此在工业、生物医学等领域得到了广泛的应用。

然而,壳聚糖也存在一些不足之处,如水溶性差、稳定性低等,因此需要对壳聚糖进行改性研究,以提高其性能和应用范围。

壳聚糖的改性方法主要包括化学改性和物理改性。

化学改性是通过化学反应改变壳聚糖的分子结构,从而提高其性能。

例如,通过引入疏水基团可以改善壳聚糖的水溶性和生物相容性。

物理改性则是通过物理手段改变壳聚糖的形态、结构等因素,以达到提高性能的目的。

例如,通过球磨法可以制备壳聚糖纳米粒子,从而提高其在生物医学领域的应用效果。

目前,壳聚糖的改性研究已经取得了显著的进展。

然而,仍存在一些问题和挑战。

其中,如何保持壳聚糖的生物活性是改性过程中面临的重要问题。

改性后的壳聚糖可能会出现新的毒性问题,因此需要进行深入的毒性研究。

未来,随着壳聚糖改性技术的不断发展,相信这些问题将逐渐得到解决。

壳聚糖在工业、生物医学等领域有着广泛的应用。

在工业领域,壳聚糖可用于制备环保材料、化妆品添加剂、印染助剂等。

例如,通过接枝共聚将壳聚糖与聚丙烯酸制成高分子复合材料,可用于制备可生物降解的塑料袋等环保材料。

在生物医学领域,壳聚糖可用于药物传递、组织工程、生物传感器等方面。

例如,利用壳聚糖制备的药物载体能够实现药物的定向传递,提高药物的疗效并降低毒副作用。

在生物医学领域,壳聚糖还可用于组织工程。

通过将壳聚糖与胶原等生物活性物质结合,可以制备出具有良好生物相容性和生物活性的组织工程支架。

这些支架可为细胞生长提供适宜的微环境,促进组织的再生和修复。

壳聚糖还可用于制备生物传感器,用于检测生物分子和有害物质。

例如,将壳聚糖与酶或抗体结合制成生物传感器,可实现对血糖、胆固醇等生物分子和有害物质的快速、灵敏检测。

壳聚糖作为一种天然高分子材料,具有良好的生物相容性、生物活性和生物降解性,在工业、生物医学等领域得到了广泛的应用。

改性壳聚糖对重金属离子的吸附研究和应用进展_姚瑞华

改性壳聚糖对重金属离子的吸附研究和应用进展_姚瑞华

改性壳聚糖对重金属离子的吸附研究和应用进展*姚瑞华,孟范平,张龙军,马冬冬,亢小丹(中国海洋大学海洋环境与生态教育部重点实验室,青岛266100)摘要壳聚糖是一种来源广泛、无毒、易降解的天然高分子材料,其分子中的羟基和氨基等功能团能形成活泼的界面,可以与重金属离子进行螯合,发生吸附作用;通过对壳聚糖进行适当的改性,可以提高壳聚糖的物理稳定性,选择吸附性。

综述了采用交联、交联模板、羧甲基化、Schiff碱化、含氮、硫、磷等杂原子等方法对壳聚糖进行改性及其对重金属离子吸附的研究和应用进展。

关键词壳聚糖重金属离子吸附StudyandApplicationofAdsorptionofHeavyMetalIonsbyModifiedChitosanYAORuihua,MENGFanping,ZHANGLongjun,MADongdong,KANGXiaodan(KeyLabofMarineEnvironmentScienceandEcologyofMinistryofEducation,OceanUniversityofChina,Qingdao266100)AbstractChitosanisoneofthemostabundantnaturalpolymers,whichisnontoxic,biodegradable,andcanbechelatedwithheavymetalionbytheactiveinterfacewhichismadebychitosan'sfunctionalgroupssuchashydroxyl,aminegroups.Chitosan'sderivativeshavegoodstabilityandexcellentselectiveadsorbability.Inthispaper,therecentstudiesofitsderivativeswhicharepreparedbythemeansofcrosslinking,templatecrosslinking,carboxymethyderivatives,schiffbasederivatives,chitosanderivativescontaining,nitrogen,phosphorus,sulphurandothermethodsarereviewedmainlyontheirad-sorptionabilitiesformetalions.Keywordschitosan,heavymetalion,adsorption*山东省优秀中青年科学家科研奖励基金项目(No.BS03124)姚瑞华:男,1980年生,博士生,主要研究方向为水污染和控制技术Tel:0532-66781823E-mail:oucyrh@163.com孟范平:通讯联系人,男,1965年生,教授壳聚糖(Chitosan)是甲壳素(Chitin)在碱性条件下水解并脱去部分乙酰基后生成的衍生物,又名壳多糖、氨基多糖、甲壳糖等,化学名称为β-(1→4)-2-氨基-2-脱氧-D-葡萄糖(图1)。

壳聚糖的改性研究进展及其应用

壳聚糖的改性研究进展及其应用

壳聚糖的改性研究进展及其应用王浩【摘要】Research progress of chitosan modification in recent years was reviewed.The applications of chitosan and its derivatives as new functional materials in medicine, environmental protection, textile, food, daily cosmetics and other fields were introduced.The development trend of the research and application of chitosan was prospected.%综述了近年来壳聚糖改性的研究进展,介绍了壳聚糖及其衍生物作为新型的功能材料在医药、环保、纺织、食品及日用化妆品等领域的应用,展望了壳聚糖研究应用的发展趋势.【期刊名称】《成都纺织高等专科学校学报》【年(卷),期】2017(034)001【总页数】8页(P187-194)【关键词】壳聚糖;改性;衍生物;应用【作者】王浩【作者单位】安徽农业大学轻纺工程与艺术学院,安徽合肥 230036【正文语种】中文【中图分类】TS102壳聚糖是自然界中含量仅次于纤维素的第二大丰富的生物多糖,主要来自于低等节肢类动物如虾、蟹、昆虫等外壳以及低等植物如藻类、菌类的细胞壁中。

壳聚糖是已知的唯一的天然碱性阳离子聚合物,具有优异的生物官能性、生物相容性、无毒、抗菌性和生物降解性等特点[1-2],已成为一个新型的生理功能材料而广泛应用于医药、环保、纺织、食品及化妆品行业等领域。

随着壳聚糖及其衍生物的研究工作不断深入广泛,其应用领域也随之不断扩展,有着巨大的潜在市场。

甲壳素由于其分子内、分子间强的氢键作用,构成紧密的晶态结构,其溶解性差,不溶于一般溶剂。

壳聚糖改性技术的新进展烷基化、酰化以及接枝化改性

壳聚糖改性技术的新进展烷基化、酰化以及接枝化改性

壳聚糖改性技术的新进展烷基化、酰化以及接枝化改性一、本文概述壳聚糖,作为一种天然多糖,因其独特的生物相容性、生物降解性和低毒性等特性,在医药、食品、农业、环保等领域具有广泛的应用前景。

然而,壳聚糖本身的溶解性差、机械性能不足等问题限制了其进一步的应用。

为了改善壳聚糖的性能,拓宽其应用领域,科研工作者们一直致力于壳聚糖改性技术的研究。

本文旨在全面综述近年来壳聚糖改性技术的新进展,特别是烷基化、酰化以及接枝化改性等方面的研究动态和成果。

本文将介绍壳聚糖的基本结构和性质,为后续改性技术的研究提供基础。

随后,将重点讨论烷基化、酰化和接枝化等改性方法的原理、操作步骤及其在壳聚糖改性中的应用。

通过对比不同改性方法的优缺点,分析改性后壳聚糖的性能变化及其在各个领域的应用前景。

本文还将展望壳聚糖改性技术的发展趋势,以期为未来相关研究提供参考和借鉴。

二、壳聚糖的烷基化改性壳聚糖的烷基化改性是一种重要的化学修饰方法,通过引入烷基基团,可以改变壳聚糖的水溶性、生物相容性和生物活性等特性。

烷基化改性通常包括烷基醚化、烷基酯化和长链烷基化等。

烷基醚化是指将壳聚糖上的羟基与烷基卤代物或硫酸酯进行反应,生成烷基醚衍生物。

这种改性方法可以提高壳聚糖在有机溶剂中的溶解性,同时保留其生物相容性和生物活性。

常用的烷基卤代物包括溴代烷烃和氯代烷烃,而硫酸酯则可以通过硫酸与醇的反应制备。

烷基酯化则是将壳聚糖上的羟基与酸酐或酰氯进行反应,生成烷基酯衍生物。

这种改性方法可以增强壳聚糖的热稳定性和化学稳定性,同时赋予其新的功能。

常用的酸酐包括乙酸酐和丙酸酐,而酰氯则可以通过相应的羧酸与氯气反应制备。

长链烷基化则是将长链烷烃基团引入壳聚糖分子中,以增加其疏水性和生物相容性。

这种改性方法通常使用长链烷基卤代物或长链烷基硫酸酯作为反应试剂,通过取代反应将长链烷基基团连接到壳聚糖分子上。

长链烷基化的壳聚糖衍生物在药物载体、生物医用材料等领域具有广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

改性壳聚糖的研究进展1壳聚糖的理化性质壳聚糖(chitosan,(1,4)-2-氨基-2-脱氧-β-D-葡聚糖)是甲壳素(chitin,(1,4)-2-乙酰氨基-2-脱氧-β-D-葡聚糖)部分脱乙酰化的产物。

甲壳素广泛存在于蟹、虾以及藻类、真菌等低等动植物中,含量极其丰富,自然界每年产量约在100亿吨,是仅次于纤维素的第二大多糖。

它是由葡萄糖结构单元组成的直链多糖,此多糖中含有数千个乙酰己糖胺残基,因此在分子间形成很强的氢键,导致其不溶于水和普通有机溶剂,这就大大限制了其应用范围。

将甲壳素在碱性条件下加热,脱去N-乙酰基后可生成壳聚糖。

人们常将N-脱乙酰度和粘度(平均相对分子质量)作为衡量壳聚糖性能的两项指标。

N-脱乙酰度是判定壳聚糖溶解性的依据,脱乙酰度越高,分子链上的游离氨基就越多,在酸中的溶解性就越好;而壳聚糖相对分子质量越大,分子之间的缠绕程度就越大,溶解度就越小。

壳聚糖是自然界中唯一的一种碱性多糖,它一般是白色无定型、半透明、略有珍珠光泽的固体。

壳聚糖可溶于大多数稀酸,如盐酸、醋酸、苯甲酸溶液,且溶于酸后分子中氨基可与质子结合,使自身带上正电荷。

甲壳素及壳聚糖的结构式如图1所示:图1壳寡糖与壳聚糖的结构式甲壳素和壳聚糖在自然界可以被各种微生物降解。

微生物中的甲壳素酶(chitinase)可以随机地水解甲壳素的N-乙酰-β-(1-4)糖苷键。

而壳聚糖可以被多种酶水解,包括壳聚糖酶(chitosanase)、麦芽糖酶、脂肪酶、以及各种来源的蛋白酶。

在人体内甲壳素酶和壳聚糖酶并非普遍存在,通过测定显示N-乙酰壳聚糖在人血清中可以被人体内普遍存在的溶菌酶(lysozyme)降解。

壳聚糖的主链结构中引入了2-氨基,化学性质区别于3,6-羟基,与甲壳素相比增加了反应选择性的功能基团。

由于C6-OH是一级羟基,C3-OH是二级羟基,空间位阻不同反应活性也不同,再加上C2-NH2,壳聚糖就具有三个活性不同的可供修饰的基团。

根据不同的需要,被修饰的壳聚糖作为一种功能大分子广泛用于各种领域。

由于壳聚糖只在酸性水溶液中溶解,而在中性或碱性水溶液中以及多数有机溶剂中不溶,限制了它的应用范围,因此科学家们采用衍生化的方法对壳聚糖进行改性获得了多种水溶性和可溶解于某些有机溶剂的衍生物,大大扩展了壳聚糖的应用范围。

其中包括对壳聚糖进行N-,O-酰化,含氧无机酸酯化,醚化,N-烷基化,C6-OH和C3-OH的氧化,以及鳌合、交联等,在此过程中获得了许多性能良好,甚至是独特性能的产品。

2壳聚糖及其衍生物的应用2.1壳聚糖作为生物医用材料的应用壳聚糖可作为外科手术可吸收缝合线,具有高强度、易打结、韧性好的机械性能和促进伤口愈合、抗溃疡等药理作用。

据报道,临床应用壳聚糖缝合线效果良好,无过敏、刺激、炎症等现象,并有消炎、促进伤口愈合和愈合后伤口平滑等优点。

壳聚糖具有止血作用,精制的壳聚糖细粉可明显地促进伤口愈合。

用甲壳素和壳聚糖制成的薄膜,或和其它纤维如棉花、纤维素等共混做成的无纺布可作为良好的创伤敷料,用于烧伤、植皮等部位的创面保护。

壳聚糖还可以作为组织修复材料,以其固定肝素、硫酸软骨素和葡聚糖等,可以有效地刺激硬组织尤其是骨组织的恢复和再生。

制备了加人血小板生长因子的壳聚糖/磷酸钙海绵。

体外骨成纤维细胞培养实验结果显示,细胞在海绵体基质中贴附、分化以及生长状况良好,具备诱导新骨生成的作用。

2.2壳聚糖在药物缓控释领域的应用壳聚糖微球是目前应用较多的药物缓释形式,根据制备原理及结构的不同可分为以下几类:1、通过乳化交联技术制备的糖或脂质覆盖的交联壳聚糖微球。

这类微球最早用于5-氟尿嘧啶的输送。

其基本方法与原理是将药物分散于壳聚糖醋酸溶液中,与含表面活性剂的液体石蜡超声分散均匀后,再用戊二醛、甲醛等乳化交联便可制成;2、壳聚糖明胶网络多聚物微球,药物的释放实验结果显示:杂交多聚物网状结构具有pH依赖的药物释放行为。

可通过改变微球的组成和壳聚糖脱乙酰度来控制药物的释放率;3、壳聚糖褐藻酸钙微囊。

壳聚糖具有氨基,可以与褐藻酸钠(聚阴离子)通过静电相互作用,在褐藻酸钠微囊表面复合一层聚电解质半透膜,从而提高微囊的稳定性和载药量,并可调节药物释放速度;4、壳聚糖多孔微球。

将壳聚糖溶于醋酸,用压缩的气泡向这种溶液吹入NaOH,NaOH甲醇或乙胺溶液凝聚层液滴。

接着用热水和冷水过滤冲洗,得到壳聚糖多孔微球。

有研究者制备了氨比西林和各种甾类激素的口服多孔壳聚糖微球,药物从这种壳聚糖载体中的释放是可以控制的,一般其在pH 1~2时的释放率高于pH 7.2~7.4。

近年来,壳聚糖纳米球的应用也开始吸引研究者的广泛注意。

纳米球的应用包括以下几个方面:1、多肽及蛋白类药物载体,由于形成壳聚糖纳米球的条件比较温和,这种药物运载系统适合于对环境比较敏感的大分子,如牛血清白蛋白、破伤风类毒素、白喉类毒素和胰岛素等。

应晓英等利用溶剂扩散法制备了含胰岛素的壳聚糖纳米粒子。

将含胰岛素的壳聚糖醋酸溶液滴加到乙醇和Span85的合溶液中,随后经离心、水超声处理得到纳米粒子,其粒径分布较窄。

放射免疫法测得的胰岛素包封率达72.6%。

壳聚糖及其衍生物能够有效的抑制酶的活性,可保护胰岛素避免生物体酶的破坏,提高生物利用度,并具有缓释作用。

2、难溶性抗肿瘤药物载体,Lee等利用自组装的方法制备了脱氧胆汁酸改性壳糖纳米胶束,包载阿霉素后的载药量可达49.6%,粒径随着载药量的增加而增大。

目前所包覆的抗肿瘤疏水性药物主要有:紫杉醇、喜树碱、阿霉素、顺铂等,对这些药物的增容性有很大的改善,提高了癌症的治疗效果,并且降低了副作用。

3、基因载体,2001年Mao等利用复凝聚技术制备了壳聚糖-DNA 纳米粒子,并且确定了DNA及壳聚糖的浓度、分子量、温度、缓冲液pH等因素对粒径尺寸及分散性的影响,结果发现壳聚糖-DNA纳米粒子在一定程度上能延缓核酸酶降解质粒DNA。

4、纳米探针,将壳聚糖制备成水溶性纳米胶束粒子,其内核为疏水性基团,利用其疏水性内核将量子点、氧化铁纳米晶、钆等包覆在胶束内核中。

这样就制备了生物相容应医用纳米探针,为癌症的诊断及早期治疗提供了重要手段,有着广泛的应用前景。

此外,壳聚糖在缓释片剂、缓释膜剂中也有一定的应用。

以壳聚糖作为骨架材料,利用壳聚糖在酸性介质中溶胀成凝胶的性质,可以作为缓释、控释片剂的骨架材料,可制备难溶性药物的亲水凝胶骨架片。

用壳聚糖制备片剂包衣,或者再加入多聚合磷酸盐制成电解质复合包衣,能够达到缓释的目的。

总之,关于壳聚糖的研究将会越来越深入,越来越广泛。

3已有的壳聚糖改性方法壳聚糖的主链结构中引入了2-氨基,化学性质区别于3,6-羟基,与甲壳素相比增加了反应选择性的功能基团。

由于C6-OH是一级羟基,C3-OH是二级羟基,空间位阻不同反应活性也不同,再加上C2-NH2,壳聚糖就具有三个活性不同的可供修饰的基团。

根据不同的需要,被修饰的壳聚糖作为一种功能大分子广泛用于各种领域。

而对壳聚糖的改性主要有N-,O-酰化,含氧无机酸酯化,醚化,N-烷基化,C6-OH和C3-OH的氧化,以及鳌合、交联等,在此过程中获得了许多性能良好,甚至是独特性能的产品。

下面具体介绍一些壳聚糖改性的方法及实验过程。

3.1羧甲基化壳聚糖的制备羧甲基壳聚糖是壳聚糖改性中研究相对较早的方法,通过对壳聚糖上的羟基或者氨基进行羧甲基化,制备了水溶性较好的羧甲基化壳聚糖,这种壳聚糖由于具有良好的水溶性和生物相容性,因而使壳聚糖的应用有很大提高。

但这种方法也有缺点,第一,选择性不高,不能特定的制备氨基羧甲基化或羟基羧甲基化,对进一步修饰改性造成了困难。

第二,制备的壳聚糖只具有水溶性,性质单一,不能进行两亲性纳米粒子的制备与应用,限制了它的应用范围。

当然如果不是单纯的羧甲基化将有很大用处。

例如在羧甲基化之前进行烷基化或peg 化,这些在其它的科学工作中有所改进。

聚糖的梭甲基化反应示意如下。

在250ml三颈瓶中加入5g壳聚糖粉末和50ml异丙醇,在温度为30℃的水浴中搅拌,使壳聚糖均匀分散在异丙醇中,然后加入50%的NaOH溶液33ml,继续搅拌1h,,使壳聚糖碱化。

碱化结束后,滴加氯乙酸溶液(30g氯乙酸加50ml异丙醇溶液),滴加完毕,水浴升温至70℃,恒温搅拌反应90min。

然后冷却反应体系,去掉上层,取下层水相,加100ml,蒸馏水,稀释下层糊浆液必要时搅拌,然后用稀中和pH7.0为左右,离心沉淀出来未参加反应的壳聚糖,用无水乙醇沉淀上层清夜得到梭甲基壳聚糖.图2羧甲基壳聚糖的制备3.2非均相反应制备叶酸偶联壳聚糖叶酸(Folic acid)维生素B复合体之一,相当于蝶酰谷氨酸(pteroylglutamic acid,PGA),是米切尔(H.K.Mitchell,1941)从菠菜叶中提取纯化的,故而命名为叶酸。

有促进骨髓中幼细胞成熟的作用,人类如缺乏叶酸可引起巨红细胞性贫血以及白细胞减少症,对孕妇尤其重要。

而医学研究表明叶酸具有抗肿瘤作用和靶向癌细胞作用,能够使肿瘤细胞凋亡,那么这种叶酸偶联的壳聚糖将具有很好的抗癌、靶向癌症的的作用,具有很好的应用前景。

称20mg壳聚糖(Mw=50kDa)悬浮于5mL无水DMSO中,磁力搅拌下逐滴滴入叶酸活性醋的DMSO溶液,在适当温度卜反应一定时间,反应停止后,过滤。

用蒸馏水洗涤数次。

将其溶解于2%醋酸溶液中,低速离心后取其上清液,用SepHadex G-10葡聚糖凝胶柱进行分离,以2%醋酸溶液为流动相进行洗脱,流速为1. 5mL/min 。

在363nm波长处监测洗脱过程,收集流出的第一个峰。

冷冻干燥后各用。

反应路线见图图3叶酸偶连壳聚糖的制备3.3长链卤代烷法制备烷基化壳聚糖壳聚糖由于其大量的氨基的作用,存在着很强的分子内氢键作用,因此壳聚糖具有很强的结晶性能,这使得壳聚糖的水溶性大大降低,那么增加壳聚糖水溶性之一的方法就是破坏其中的大量氢键。

通过给氨基上连接烷基链,一方面取代了部分氨基,降低了氢键数量,另一方面,烷基链的存在增加了氨基之间的相互作用距离,这也降低了氢键的相互作用,这些都是得烷基化壳聚糖的结晶性下降,溶解性增加。

而且由于壳聚糖糖环本省就具有亲水性,这样还使得壳聚糖具有了两亲性,能够制备壳聚糖纳米胶束。

以下为相关工作示例:准确称量壳聚糖1.0 g KOH 1.5 ~2.5 g异丙醇12 ml置于100 ml三口瓶中搅拌并平稳升温至40 ~60℃下并恒温0.5 ~2 h以使壳聚糖碱化碱化结束后在规定的反应温度下缓慢滴加一定量的卤代烷,并同时控制恒温反应时间在4 ~10 h后停止反应此时壳聚糖已经从白色粉末变成黄色粉末并有少量产物会粘附在三口瓶的瓶壁上往三口瓶中添加20ml甲醇可将产物洗出,然后用稀盐酸中和体系pH值至中性再往体系中添加10ml丙酮以使烷基壳聚糖能充分从体系中析出然后将混合体系充分静置沉淀后过滤再用丙酮和乙醚反复洗涤所得固体粉末产物以除掉多余的有机杂质和卤代烷然后烘干即的烷基化壳聚糖的粗制品。

相关文档
最新文档