二次函数图像解题——根的分布
二次函数根的分布

二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)分布情况两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(>a )得出的结论 ()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象(<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论(不讨论a )()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a分布情况两根都小于k 即 k x k x <<21,两根都大于k 即 k x k x >>21,一个根小于k ,一个大于k 即21x k x <<大致图象(0>a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()0<k f大致图象(0<a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论(不讨论a ) ()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()0<⋅k f akkk分布情况两根都在()n m ,内两根有且仅有一根在()n m ,内(图象有两种情况,只画了一种) 一根在()n m ,内,另一根在()q p ,内,q p n m <<<大致图象(>a )得出的结论()()0002f m f n b m na ∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 大致图象(0<a )得出的结论()()0002f m f n b m na ∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000fm f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()0f m f n f p f q <⎧⎪⎨<⎪⎩综合结论(不讨论a ) ——————()()0<⋅n f m f()()()()⎪⎩⎪⎨⎧<<00q f p f n f m f ()n m ,12,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明:(1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <g 不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
二次函数图象与二次方程的根的分布

页, 为学生指 明参考材料的范围, 让学生 在网络上有 目的地搜索与
研究 , 这样可 以避免无意义的“ 冲浪”从 而提 高学 习效率 。在解决 , 这一问题过程中发现 ,对 于我们很多没有 网页设计 能力 的教师而
课 题
让学生了解教 学 目 学习 目 标、 标。
相 关视频链接 究性问题 的情境 , 引发问题 和探 究兴趣。
< 2才可能满 函数值 的符号影响 图象与 轴交点 的左 右 对称轴 0 一 < 位置。下面举例说明。
个大于 1的不同根 , m的取值 范围。 求 分析 : 基本方法解 出方程的根 , 构造关 足题意 , 再加 上 o < j 2 < )oK  ̄ )0就可 以控
f = 乙4 > △m mO
I
判别式 △= -8 O 对称 轴一 m-> , '
m
内, 若有求 m的取值范围 , 若无说明理 由。 二次 函数 图象是二 次函数 y a b + 2> =x xc + l才 可能 满 足题 意 , 再 分析 : 考 的表 示 形 式 之一 , 当 y O时 , b+ = = O + x c O是 X . 加上, ( ) 0就 l 1> 可以控制 函数 图象满足题 虑 函数 f ( ) = 二次方程 ,所 以二次方 程是二次 函数 的特 意, 因而 解 法 如下 。 , + ,— ) + 扎 ( 1 殊形式 。研究 二次方程 根的分布最基 本的 f= 一 > △ m。8 O l图象 的 四个 方法是解 出它 的根 , 造 出不等 式 , 构造 关 因素 , 这里 o = 图l 图2 解: 依题意得: m, , { 1 一 解之得 于参数的不等式 , 出不等式即可。但这种 解 1 _ ‘ m, m影响 图象开 口方 向与大小 ,判别式与 方法 比较麻烦 , 利用影响二次 函数 图象与 1= + > )m 3 o 对称轴影响根 的分布 ,但 是它们的影响 叮 轴交 点位置 的几个 因素 ,来 构造关 于参 数 3 m< 2 / 。 < 一 、 以有 1 2 一 ) m 的符 号决定 , ) ) 2与 如 的不等式较为简单 。( 实际上是数形结合的 m 的取值范围为一 < 一 、 。 3 m< 2 / 图 1 图 2 当 m O 如图 1 只需, 1> 、 : <, , ( )o厂 方法 ) 例 2 关于 的方程 x+ x m= . 若 - 'm + 0有两 ()0厂一 )0 当 m O时 , 2< (2 < , > 如图 2需有, , 影响二次 函数 y a 6+ - x+ c图象与 轴 个根 , 一根大于 2 一根小于 0 求 / 的取值 ( ) O 2 > 一 )0 综合两种情况只需 , , / t ' 1< )O 2> , 交点 的因素有 :. 1 a的符 号及 。的绝对 值 , o 范围。 1 2< 1, 2< 。解法如下。 )o ( )0 1一 的符号决定抛物线开 口方向 , n的绝对 值影 分 析 : 虑 函数 ) 考 = 解: 由题意 , 考虑 函数 )册 ( 一 ) = m 1 响抛物线开 口的大小。2 .判别式 A b 4c x+ x m 图象的 四个 因素 , = 2 o 2m + - x l 图象 , 图可 知 只需 m≠ + 的 如 0且 厂1 () 的符号决定图象与 轴交点的个数。 . 3对称 如右图 : 这里 a l 开 口方 向 =, f2 < ( ) 0且 f 1厂一 ) 0满 足 题 意 , 2 ( )( 2 < 即 m 轴一 决定 图象相对 于 Y轴 的左右位 置 , 与大小均定 , . 对根的分布无 D (m— ) 0且 2 (m+ ) o解 之 得 : 无 6 1< m 2 3< m
二次方程根的分布情况归纳(教师版)

二次方程根的分布与二次函数在闭区间上的最值归纳21、一元二次方程ax bx c 0根的分布情况设方程ax bx c 0 a 0的不等两根为X|,X2且X i x?,相应的二次函数为f x ax bx c 0,方程的根即为二次函数图象与x轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)根在区间上的分布还有一种情况:两根分别在区间夕卜,即在区间两侧为2,(图形分别如下)需满足的条件是f n 0 f n 0对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在 m, n 有以下特殊情况:1 若f m 0或f n 0,则此时f mg f n 0不成立,但对于这种情况是知道了方程有一根为 m 或n ,可以求出另外一根, 然后可以根据另一根在区间 m,n ,从而可以求出参数的值。
如方程mx 2 m 2 x 2 0、 2 2 2在区间1,3上有一根,因为f 10,所以mx m 2 x 2 x 1 mx 2,另一根为 ,由13m m2得 m 2即为所求;3 2方程有且只有一根,且这个根在区间m, n ,即 0,此时由 0可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给疋的区间, 如右不在,舍去相应的参数。
如方程x 4mx 2m 6 0有且 一根在区间 3,0 ,求m 的取值围。
分析:①由f 3gf 0 0 即 14m 15 m3 0得出 3 15 m;②由0即 16m 2 4 2m146 0得出m 31 或 m —,2 当m1时,根x23,0 ,即m31满足题意;当m 时,根x 323,0,故 m-不满足题意; 2综上分析,得出3 m至或14m1根的分布练习题例1、已知二次方程 2m 1 x 2 2mx m 1 0有一正根和一负根,数 m 的取值围。
1解:由 2m 1 gf 0 0即 2m 1 m 1 0,从而得m 1即为所求的围。
二次函数根的分布

特点二:(1)-(5)都是两根在同一区间内;(6)-(10) 都是两根在不同的区间内。
现在的问题变成了“如何解决这两类问题?”
分成两组研究: 第一组:(1)-(5) 第二组:(6)-(10)
问题二:方程满足下列条件x2+(m-3)x+m=0, 求m的范围。
(2)有两个负根
解法一:设方程的两实根分别为x1、x2,则
(6) 一个正根,一个负根
解法一:设方程的两实根分别为x1、x2,则
( m 3)2 4m 0
x1x2 m 0
m m0
问题二:方程满足下列条件x2+(m-3)x+m=0, 求m的范围。
(6) 一个正根,一个负根
解法二:设f(x)= x2+(m-3)x+m,要使二次函数与x轴 的交点分别在x轴的正、负半轴,由图像知只需满足:
思路:通过换元,转化为一元二次方程根的分布问题
解:设t=2x,则t∈(0,+∞)
t2 (m 3)t m 0 (1)
问题转化为方程(1)有两相异正实根,求m的取值范围。
设 f (t) t2 (m 3)t m ,则
=(3-m)2 -4m 0
- b =- 3-m >0 2a 2 f ( 0 )=m>0
一元二次方程ax2+bx+c=0 (a>0)根的分布
两个根都小于k
小
y
两个根都大于k
y
两个根都在(k1.k2)内
y
kx
k
x
k1 O
kx 2
结
0
0
b 2a
k
二次函数根的分布

二次函数根的分布二次函数是二次多项式的函数,其一般形式为y=ax^2+bx+c(其中a≠0)。
首先,我们需要了解二次函数的图像特点。
对于二次函数y=ax^2+bx+c,a决定了二次函数的开口方向和开口大小,a>0时开口向上,a<0时开口向下;b决定了二次函数的对称轴位置,对称轴的方程为x=-b/2a;c决定了二次函数与y轴的交点。
其次,我们来探讨二次函数的根的分布。
二次函数的根即方程的解,即使二次方程的解的个数以及位置。
对于一元二次方程ax^2+bx+c=0,我们可以利用判别式来判断解的情况:判别式Δ=b^2-4ac。
1.当Δ>0时,方程有两个不相等的实根。
实根的个数与开口方向无关,只与判别式Δ有关。
-当Δ>0时,方程有两个不相等的实根。
-当Δ=0时,方程有一个实根,这个实根称为方程的重根。
-当Δ<0时,方程无实根,但可以有两个共轭虚根。
值得注意的是,只有在a≠0时,方程为一元二次方程,才能求解二次函数的根。
接下来,我们来分析二次函数根的分布。
1.当Δ>0时,方程有两个不相等的实根。
此时,二次函数与x轴交于两个不同的点,也就是有两个实根。
这两个实根的位置由二次函数的对称轴决定,对称轴的方程为x=-b/2a。
假设根的位置为x1和x2,那么有以下三种情况:-当x1和x2均小于对称轴的x坐标时,二次函数开口向上,根的位置为x1>x2-当x1和x2均大于对称轴的x坐标时,二次函数开口向下,根的位置为x1<x2-当x1小于对称轴的x坐标,x2大于对称轴的x坐标时,一个根位于对称轴的左侧,一个根位于对称轴的右侧。
2.当Δ=0时,方程有一个实根,这个实根称为方程的重根。
此时,二次函数与x轴有且仅有一个交点,也就是有一个实根。
这个实根的位置正好位于二次函数的对称轴上,对称轴的方程为x=-b/2a。
3. 当Δ<0时,方程无实根,但可以有两个共轭虚根。
此时,二次函数与x轴没有交点,也就是无实根。
一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表〔每种情况对应的均是充要条件〕表一:〔两根与0的大小比拟即根的正负情况〕分布情况两个负根即两根都小于0()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象〔>a 〕得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象〔<a 〕得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论〔不讨论a〕()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a表二:〔两根与k 的大小比拟〕分布情况两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即21x k x <<大致图象〔>a 〕得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()0<k f大致图象〔<a 〕得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论〔不讨论a〕()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()0<⋅k f akkk表三:〔根在区间上的分布〕分布情况两根都在()n m ,内两根有且仅有一根在()n m ,内〔图象有两种情况,只画了一种〕 一根在()n m ,内,另一根在()q p ,内,q p n m <<<大致图象〔>a 〕得出的结论()()0002f m f n b m na ∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 大致图象〔<a 〕得出的结论()()0002f m f n b m na ∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 综合结论〔不讨论a〕——————()()0<⋅n f m f()()()()⎪⎩⎪⎨⎧<<00q f p f n f m f 根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,〔图形分别如下〕需满足的条件是〔1〕0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; 〔2〕0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: 〔1〕两根有且仅有一根在()n m ,内有以下特殊情况:假设()0f m =或()0f n =,那么此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
二次函数根的分布

二次函数根的分布二次函数根的分布是二次函数中的重要内容。
这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。
下面我们将主要结合二次函数图象的性质,分两种情况系统地介绍二次函数根的分布的充要条件及其运用。
一.一元二次方程根的基本分布——零分布所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。
比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。
设一元二次方程02=++c bx ax (0≠a )的两个实根为1x ,2x ,且21x x ≤。
【定理1】⎪⎪⎪⎩⎪⎪⎪⎨⎧>=>-=+≥-=∆>>00040,02121221a c x x a bx x ac b x x ,则例1若一元二次方程0)1(2)1(2=-++-m x m x m 有两个正根,求m 的取值范围。
【定理2】⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<-=+≥-=∆<<00040,02121221a c x x a bx x ac b x x ,则【定理3】0021<<<ac x x ,则例3 k 在何范围内取值,一元二次方程0332=-++k kx kx 有一个正根和一个负根?【定理4】 1)01=x ,02>x ⇔0=c 且0<a b;2)01<x ,02=x ⇔0=c 且0>ab。
例4若一元二次方程03)12(2=-+-+k x k kx 有一根为零,则另一根是正根还是负根?二.一元二次方程的非零分布——k 分布设一元二次方程02=++c bx ax (0≠a )的两实根为1x ,2x ,且21x x ≤。
k 为常数。
则一元二次方程根的k 分布(即1x ,2x 相对于k 的位置)有以下若干定理。
【定理1】⎪⎪⎪⎪⎨⎧>->≥-=∆≤<k ab k af ac b x x k 20)(04221,则【定理2】⎪⎪⎪⎪⎨⎧<->≥-=∆<≤k ab k af ac b k x x 20)(04221,则【定理3】21x k x <<⇔0)(<k af【定理4】有且仅有11x k <(或2x )2k <⇔0)()(21<k f k f【定理5】221211p x p k x k <<≤<<⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧><<>>0)(0)(0)(0)(02121p f p f k f k f a 或⎪⎪⎪⎩⎪⎪⎪⎨⎧<>><<0)(0)(0)(0)(02121p f p f k f k f a 此定理可直接由定理4推出,请自证。
二次函数根的分布和最值

二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程ax2bx 0根的分布情况设方程ax2 bx 0 a = 0的不等两根为X i, X2且x i :::X2,相应的二次函数为f x =ax2■ bx ■ c = 0,方程的根即为二次函数图象与x轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)根在区间上的分布还有一种情况:两根分别在区间m,n夕卜,即在区间两侧为:::m,x2• n ,(图形分别如下)需满足的条件是对以上的根的分布表中一些特殊情况作说明: (1) 两根有且仅有一根在 m,n 内有以下特殊情况:1 若f m =0或f n =0,贝眦时f m|_f n :: 0不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间 m,n 内,从而可以求出参数的值。
如方 程 mx 2-m ・2x ・2=0在区间 1 , 3E 有一根,因为 f1=0 , 所以222mx 2 - m2x ^ x-1 mx-2,另一根为一,由13得 m ::: 2即为所求; mm 32 方程有且只有一根, 且这个根在区间 m,n 内,即丄=0,此时由厶=0可以求出参数的值, 然后 再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程x 2 -4 m x 2 m 6 = 0有且一根在区间-3,0内,求m 的取值范围。
分析:①由15f -3Lf 0 :: (即卩 14m 15 m 3 :: 0得出 -3 :: m ;②由• ; -0即 16m 2-4 2m 6;=0得 143 3出m~-1或m ,当m = -1时,根x=-2三i 3。
,即m=-1满足题意;当m 时,根2 23 15-3, 0,故m 不满足题意;综上分析,得出 -3:::m 或m=-1』 2 14根的分布练习题例1、已知二次方程 2m 1 x 2 -2mx ■ m -1 =0有一正根和一负根,求实数 m 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其交点横坐标便是方程的解,由图知: k 4时, 无解; k = 4或k 3时,有两解; 4 k 3时有四个解; k 3时有三个解.
3
4
y
x
结论: 一元二次方程 ax2 bx c 0(a 0) 在区间上的
实根分布问题.
() 1 一元二次方程有且仅有一个实根属于(m, n)的 充要条件是: f (m) f (n) 0. b 2 4ac 0 a f ( m) 0 a f ( n) 0 m b n 2a
(6) x1,x2有且只有一个根在(k1 , k2)内
k1
k2
f (k1 ) f (k2 ) 0
k1
k2
0 或 b k1 k2 2a
k1
k2
f ( k1 ) 0 或 b k1 k2 k1 2a 2
k1
f ( k2 ) 0 或 k1 k2 b 2 2a k2 k2
(2) 一元二次方程两个实根都属于(m, n)的充要条件是:
(3) 一元二次方程两个实根分别在(m, n)两侧的
a f ( m) 0 充要条件是: a f ( n) 0 (4)一元二次方程两个实根分别在(m, n)同一侧的 充要条件是: 分两类: b 2 4ac 0 () 在(m, n)右侧 a f (n) 0 b n 注:前提 m,n 2a 不是方程(1) b 2 4ac 0 () 在(m, n)左侧 a f (m) 0 b m 2a
不等式组
2 x 变式题:m为何实数值时,关于x的方程 mx (3 m) 0
有两个大于1的根.
=m2 4(3 m) 0 法二: m m 2 4m 12 1 x1 2 m m2 4m 12 1 x2 2
由求根公式,转化成含根式的 不等式组
m 6或m 2 m6 解不等式组,得 m 2 m 2 4m 12 m 2 4m 4
例.就实数k的取值,讨论下列关于x的方程 2 x 2 x 3 k 解的情况:
解: 将方程视为两曲线 y x 2 x 3与y k 相交,
变式题:m为何实数值时,关于x的方程 x mx (3 m) 0 有两个大于1的根. 转变为函数,借 2 法一:设 f ( x) x mx (3 m) 由已知得: 助于图像,解不
2
等式组
f(xm 2 4( m 3) 0 m6 f (1) 0 m 1 转化为韦达定理的 2
b 4ac
2
b x 2a f ( m) 的符号。
设f ( x ) ax 2 bx c(a 0) 一元二次方程ax bx c 0(a 0)
2
的两根为x1 , x2 ( x1 x2 )
(1)方程两根都小于k (k为常数)
0 b k 2a f (k ) 0
的根.
课时小结:
紧紧以函数图像为中心,将方程的根用 图像直观的画出来,或数形结合或等价转 化,将函数、方程、不等式视为一个统一 整体,另外,要重视参数的分类讨论对图 形的影响。
(2)方程两根都大于k (k为常数)
0 b k 2a f (k ) 0
(3) x1 k x2 (k为常数)
f (k ) 0
(4)k1 x1 x2 k2 (k1 , k2为常数)
0 b k2 k1 2a f ( k1 ) 0 f ( k2 ) 0
(3)当 b 2 4ac 0时, 方程没有实数根
2、当x在某个范围内的实根分布
2 ax bx c 0(a 0) 在某个区间 ★一元二次方程 上有实根,求其中字母系数的问题称为实根分布问题。
实根分布问题一般考虑四个方面,即: (1)开口方向 (2)判别式 (3)对称轴 (4)端点值
一元二次函数根的分布
二次函数的图像与性质,从而能判断一元 二次方程根的存在性及根的个数
实根分布问题
★一元二次方程
ax2 bx c 0(a 0)
1、当x为全体实数时的根
(1)当 b 2 4ac 0时, 方程有两个不相等的实数根
(2)当 b 2 4ac 0时, 方程有两个相等的实数根