44一次函数的应用(2)-安徽省灵璧县黄湾中学八年级数学上册学案(无答案)
初中数学八年级上册苏科版6.4一次函数的应用教学设计

一、教学目标
(一)知识与技能
1.让学生掌握一次函数的定义,能够准确识别和描述一次函数的一般形式,即y=kx+b(k≠0,k、b为常数),理解其中k、b分别代表的意义。
2.使学生能够运用一次函数解决实际问题,如直线运动物体的速度与时间关系、单价与数量的关系等,提高学生将数学知识应用于实际生活的能力。
c.课堂练习:设计有针对性的练习题,让学生运用一次函数知识解决问题,巩固所学内容。
d.课堂小结:总结一次函数的性质、图像特征,以及解决实际问题的方法。
3.教学策略:
a.关注学生的个体差异,针对不同学生的学习需求,提供个性化的指导。
b.鼓励学生积极参与课堂讨论,培养他们的表达能力、合作精神。
c.及时反馈学生的学习情况,调整教学进度和策略,确保教学效果。
3.小组合作:引导学生相互讨论,共同解决问题,鼓励学生发表自己的观点。
4.汇报:每个小组汇报自己的讨论成果,其他小组进行评价,教师点评并总结。
(四)课堂练习
1.练习题设计:针对一次函数的知识点,设计不同难度的练习题,包括选择题、填空题、解答题等。
2.学生独立完成:要求学生在规定时间内独立完成练习题,巩固所学知识。
1.激发学生兴趣,引导学生主动参与课堂,通过实例分析,让学生体会一次函数在实际生活中的应用。
2.注重培养学生的抽象思维能力,帮助学生将实际问题转化为数学模型,提高学生解决问题的能力。
3.针对学生对截距、斜率等概念的理解困难,设计具有针对性的教学活动,采用直观演示、互动讨论等方式,帮助学生深入理解。
4.鼓励学生积极思考,勇于提问,充分调动学生的学习积极性,提高课堂效果。在此基础上,关注学生的个体差异,给予每个学生个性化的指导,使他们在原有基础上得到提高。
初中数学初二数学上册《一次函数的简单应用》教案、教学设计

在布置作业时,要注意以下几点:1.作业量适中,避免过多增加学生的负担。
2.作业难度层次分明,满足不同层次学生的需求。
3.作业内容与生活实际相结合,提高学生的学习兴趣。
4.关注学生作业的完成情况,及时给予反馈和指导。
4.小组合作题:布置一些需要小组合作完成的作业,培养学生的合作意识和沟通能力。
-例如:让学生分组调查生活中的一次函数实例,然后进行汇报交流,分享各组的调查成果。
5.个性化作业:根据学生的个体差异,布置一些具有挑战性的个性化作业,激发学生的学习兴趣,提高他们的自主学习能力。
-例如:鼓励学生自己寻找生活中的一次函数实例,并尝试用一次函数的知识解决相关问题。
(二)过程与方法
1.通过小组合作、讨论交流等形式,引导学生主动探究一次函数的图像特点及其表达式,培养学生的合作意识和自主学习能力。
2.运用数形结合、问题驱动的教学方法,激发学生的求知欲,帮助学生掌握一次函数的应用,提高他们分析问题和解决问题的能力。
3.设计丰富的课堂练习,让学生在实际操作中巩固所学知识,形成系统的知识体系。
1.教学内容:一次函数图像的特点及其应用。
2.教学方法:小组合作、讨论交流。
3.教学过程:
-将学生分成若干小组,每组讨论一次函数图像的特点及其在实际问题中的应用。
-各小组派代表进行汇报,分享本组讨论成果。
-教师点评,给予鼓励和指导。
(四)课堂练习
1.教学内容:一次函数相关知识点的巩固。
2.教学方法:设计具有梯度性的练习题。
1.注重激发学生的兴趣,通过设置生活情境和实际问题,引导学生积极参与课堂,提高他们的学习积极性。
八年级数学上册《一次函数的应用》优秀教学案例

三、教学策略
(一)情景创设
3.如果你需要在规定的时间内到家,如何调整自己的速度?
讨论过程中,我会巡回指导,关注每个小组的讨论情况,及时解答学生的疑问。讨论结束后,各小组汇报自己的讨论成果,共同分享学习心得。
(四)总结归纳
在总结归纳环节,我将与学生一起回顾本节课的主要内容,包括一次函数的定义、性质、图像以及在实际问题中的应用方法。通过师生互动,让学生巩固所学知识,形成知识体系。
在导入新课环节,我将利用多媒体展示一张“学生放学回家”的图片,并提出问题:“同学们,你们每天放学回家的时间一样吗?你们的速度是如何影响你们回家的时间的?”通过这个问题,引导学生思考速度、时间和距离之间的关系,从而自然地引入一次函数的应用。
接着,我会简要回顾一次函数的基本概念和性质,为学生接下来的学习做好铺垫。这样既巩固了学生的基础知识,又能激发他们对新课的兴趣。
(四)反思与评价
在教学过程中,我将注重学生的反思与评价,帮助他们总结经验,不断提高。在每个教学环节结束后,我会引导学生对自己的学习过程进行反思,思考自己在解决问题中遇到的困难和收获。此外,我还将组织学生进行互评,让他们学会欣赏他人的优点,发现自身的不足,从而实现共同进步。
四、教学内容与过程
(一)导入新课
5.知识与技能、过程与方法、情感态度与价值观的全面培养
本案例不仅关注学生知识与技能的掌握,还注重过程与方法、情感态度与价值观的培养。在教学过程中,我努力实现这三个维度的全面发展,使学生在获得数学知识的同时,形成正确的价值观和良好的学习习惯。
八年级数学上册6_4一次函数的应用教案2新版苏科版

课 题:§一次函数的应用(2)教学目标:1、能利用一次函数及其图象解决简单的实际问题。
2、通过解决实际问题,进一步进展学生的数学应用能力。
3、培育学生学习爱好,使他们能踊跃参与数学活动,更好地解决实际问题。
教学重点:一次函数的应用。
教学进程 一、教学新课例题1、某居民小区依照分期付款的形式福利售房,政府给予必然的贴息。
小明家购得一套现价为120000元的屋子,购房时首期(第一年)付款30000元,从第二年起,以后每一年应付房款为5000元与上一年剩余欠款利息的和,设剩余欠款年利率为%。
1)若第x (x ≥2)年小明家交付房款y 元,求年付房款y (元)与x (年)的函数关系式; 2)将第三、第十年应付房款填入下表中:年份 第一年 第二年 第三年 … 第十年 交房款(元)300005360…例题2、已知雅美服装厂现有A 种布料70米,B 种布料52米,现打算用这两种布料生产M ,N 两种型号的时装共80套。
已知做一套M 型号的时装需要A 种布料米,B 种布料米,可获利润45元;做一套N 型号的时装需要A 种布料米,B 种布料米,可获利润50元。
若设生产N 型号的时装套数为x ,用这批布料生产这两种型号的时装所获总利润为y 元。
(1)求y 与x 的函数关系式,并求出自变量的取值范围;(2)雅美服装厂在生产这批服装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少? 例题3、某地远程汽车客运公司规定,旅客可随身携带必然重量的行李,若是超过规定,则需要购买行李票,行李票费用y (元)是行李重量x (千克)的一次函数,其图象如图所示。
求 (1)y 与x 之间的函数关系式(2)旅客最多可免费携带行李的千克数。
例题4、扬州火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物往广州,这列货车可挂A 、B 两种不同规格的货厢50节,已知用一节A 型货厢的运费是吨万元,用一节B 型货厢的运费是万元。
八年级数学上册《一次函数的应用》教案、教学设计

2.如何根据实际问题抽象出一次函数模型。
3.一次函数在实际问题中的应用,如购物优惠、快递费用计算等。
讨论过程中,我会巡回指导,关注每个小组的讨论情况,及时解答学生疑问,引导他们深入思考。
(四)课堂练习
在课堂练习环节,我会设计以下几类题目:
1.基础题:求解一次函数的解析式,分析图像特征等,以巩固学生对一次函数知识的掌握。
2.提高题:解决实际问题,如根据已知数据求解函数模型,进行数据预测等,培养学生的应用能力。
3.拓展题:设计具有一定难度的题目,如一次函数的图像变换、复合一次函数等,激发学生的思维。
(五)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学的一次函数知识,强调以下几点:
1.一次函数的定义及其与一次方程的联系与区别。
3.探究题:布置一些需要学生观察、分析、探究的题目,培养学生的逻辑思维和创新能力。
例题:
探究一次函数图像的平移、压缩和伸展变换对斜率k和截距b的影响。
4.拓展题:提供一些难度较大的题目,供学有余力的学生挑战,激发他们的学习兴趣。
例题:
已知一次函数的图像经过点A(2, 4)和点B(4, 8),求该一次函数的解析式,并判断其图像与x轴、y轴的交点坐标。
3.教学过程中,设计不同层次的问题,引导学生逐步深入地探究一次函数的性质。例如,从斜率k的正负、截距b的值等方面,让学生观察图像变化,总结性质。
4.分组讨论与交流,培养学生的合作意识和团队精神。在小组内,学生可以互相解答疑惑,共同解决问题,提高解决问题的能力。
5.课后作业与拓展练习相结合,巩固学生对一次函数知识的掌握。布置一定数量的基础题,确保学生对一次函数的基本概念和性质有扎实的掌握;同时,设计一定难度的拓展题,激发学生的思维,提高他们的创新能力。
苏科版八年级数学上册第2课时一次函数的应用(二)课件

km;
(4)乙出发多长时间时,甲、乙两人刚好相距10 km?
解:(1)l2Leabharlann 预习导学(2)2,40
(3)10
(4)设乙出发t小时,甲、乙两人刚好相距10 km,
当乙未追上甲时,20+10t=20t+10,解得t=1;
当乙追上甲后,20+10t+10=20t,解得t=3.
答:乙出发1小时或3小时,甲、乙两人刚好相距10 km.
第6章 一次函数
6.4 用一次函数解决问题
第2课时 一次函数的应用(二)
素养目标
1.能根据实际问题中变量之间的关系,确定一次函数的关
系式.
2.会计算两个一次函数图像的交点,会比较两个一次函数
的大小.
3.会运用一次函数模型解决最优方案问题.
◎重点:结合一次函数表达式及其图像解决实际问题.
◎难点:建立数学模型,解决实际问题.
先?
解:(3)设甲龙舟队的解析式为y=k1x,则1000=
4k1,所以k1=250,所以甲龙舟队的解析式为y=250x.设乙龙舟
= . + ,
队2.2分钟后的解析式为y=k2x+b,则ቊ
解得
= . + ,
k2=375,b=-425.所以乙龙舟队的解析式为y=375x-425.依题
B地,甲先出发,图中l1,l2表示甲、乙两人离A地的距离y(km)
与乙所用时间x(h)之间的关系,请结合图像回答下列问题:
预习导学
(1)图中表示甲离A地的距离y(km)与乙所用时间x(h)之间
关系的是
(填l1或l2);
(2)大约在乙先出发
地
h后,两人相遇,这时他们离开A
有关八年级数学一次函数的应用教案4篇

有关八年级数学一次函数的应用教案4篇【学情分析】本节课主要是复习巩固一次函数的图象与性质,是在学完一次函数之后,并初步了解了如何研究一个具体函数的图象与性质的基础上进行的。
原有知识与经验对本节课的学习有着积极的促进作用,在复习巩固的过程中,学生进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。
【教学目标】知识技能:1、进一步理解一次函数和正比例函数的意义;2、会画一次函数的图象,并能结合图象进一步研究相关的性质;3、巩固一次函数的性质,并会应用。
过程与方法:1、通过先基础在提升的过程,使学生巩固一次函数图象和性质,并能进一步提升自己应用的能力;2、通过习题,使学生进一步体会“数形结合”、“方城思想”、“分类思想”以及“待定系数法”。
情感态度:1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
教学重点难点教学重点:复习巩固一次函数的图象和性质,并能简单应用。
教学难点:在理解的基础上结合数学思想分析、解决问题。
【教法学法】1、教学方法依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。
因此我选用了以下教学方法:1、自学体验法——让学生通过作图经历体验并发现问题,分析问题,进一步解决问题。
目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。
2、直观教学法——利用多媒体现代教学手段。
目的:通过几何画板动画演示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。
2、学法指导做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。
八年级数学上册 《5.4一次函数的应用(2)》课件 苏科版

当x﹥0时,函数y=kx+b的函数值大于函
数y=-2x+2的函数值。
123x
y=-2x+2
例题1:某公司与汽车租赁公司签定租车,以用 车路程x km计算,甲汽车租贷公司的租费是y1 元,乙汽车租贷公司的租费是y2元,如果y1、 y2与x之间的关系如图5-15,那么:
(1)每月用车路程多少时,租用两家汽车租贷公司 的车所需费用相同?
五、学习反馈
★本节课你有什么收获?
六、作业
习题5.4 P160 T3 T4 T5
姚明的脚——你知道姚明的脚有多大吗?
姚明穿的鞋是56码,你能 算出他的脚大约有多少厘 米长吗?
鞋码与厘米转换表
x厘(c米m
y鞋()码码)
23.0 36码
23.5 37码
24.0 38码
24.5 39码
25.0 m
2m-10
应先找出题中的变量。一个是每月出租公司(个体 出租司机)的总费用,一个是行驶路程。设每月出 租公司、个体出租司机的总费用分别为y1(元)、y2 (元),行驶路程为x( 千米),根据题意,得 y1=150x ,y2=800+0.1x。由y1=y2得过且过x=800, 再根据函数图象可知:每月车程少于800km 时,租 用出租公司的车费低;每月车程大于800km 时,租 个体司机的车费低。
y(米)
(4)哪段时间 54 小华跑在小
明前面?
48
答:0≤x<9时 36
,小华跑在小 24
明前面
12
y1 4x y2 93x
o 3 6 9 12 15
x(秒)
y(米)
(5)哪段时间 54 小明在小华
的前面?
48
答:x>9秒, 36
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄湾中学讲学稿
年级:八年级科目:数学学生姓名:
主备:王献审核:八年级数学备课组终审:
课题:4.4一次函数的应用(2)课型:新授时间:2019 .10
学习目标:
(1)能通过函数图象获取信息,解决简单的实际问题;
(2)通过对函数图象的观察与分析,培养学生数形结合的意识,发展
形象思维能力。
学习重点:通过函数图象获取信息
学习难点:对函数图象的观察与分析
学习过程:
一、复习回顾:
在一次函数y kx b
=+中
当0
k>时,y随x的增大而()
当0
b>时,直线交y轴于()半轴,必过()象限;
当0
b<时,直线交y轴于()半轴,必过()象限.当0
k时,y随x的增大而(),
<
当0
b>时,直线交y轴于()半轴,必过()象限;
当0
b<时,直线交y轴于()半轴,必过()象限.
二、初步探究:
由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.蓄水量V(万米3) 与干旱持续时间t(天)的关系如下图所示,回答下列问题:
(1)水库干旱前的蓄水量是多少?
(2)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?
(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少
天后将发出严重干旱警报?
(4)按照这个规律,预计持续干旱多少天水库将干涸?
三、反馈练习:
当得知周边地区的干旱情况后,我校的小敏意识到节约用水的重要性.当天
在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后全校师生都参加了活动,并且参加该活动的家庭数S(户)与宣传时间t(天)的函数关系如图所示.根据图象回答下列问题:
(1)活动开始当天,全校有多少户家庭参加了该活动?
(2)全校师生共有多少户?该活动持续了几天?
(3)你知道平均每天增加了多少户?
(4)活动第几天时,参加该活动的家庭数达到800户?
(5)写出参加活动的家庭数S与活动时间t之间的函数关系式
四、当堂检测:
某函数图像如右图所示,根据图像,完成下面各题
(1)当0
x=;
y=时,______
(2)求这条直线的函数表达式.。