C语言结构体对齐
C语言基础--结构体对齐,位域,联合体

C语⾔基础--结构体对齐,位域,联合体结构体对齐1--结构体对齐的原因与意义许多计算机系统对基本数据类型的可允许地址做出了⼀些限制,要求某种类型的对象的地址必须是某个值K(通常是2,4,8)的倍数,⽽这个k则被称为该数据类型的对齐模数(alignment modulus)。
这种对其限制不仅简化了处理器与存储系统之间的接⼝的硬件设计,⽽且提⾼了存储系统的性能。
2 -- 结构体对齐包括两个⽅⾯的含义1)结构体总长度2)结构体内各数据成员的内存对齐,即该数据成员相对结构体的起始位置3--不同编译器的对其策略1)Linux沿⽤的对其策略是2字节的数据类型(例如short)的地址必须是2的倍数,⽽更⼤的数据类型(如int,double)的地址必须是4的倍数。
2)Windows对齐要求更要严格些,任何K字节(基本)对象的地址都必须是k的倍数。
4 -- 结构体⼤⼩的计算⽅法和步骤1)将结构体内所有数据成员的长度值相加,记为sum_a;2)将各数据成员为了内存对齐,按各⾃对齐模数⽽填充的字节数累加到和sum_a上,记为sum_b。
对齐模数是#pragma pack指定的数值以及该数据成员⾃⾝长度中数值较⼩者。
该数据相对起始位置应该是对齐模式的整数倍;3)将和sum_b向结构体模数对齐,该模数是#pragma pac指定的数值和结构体内部最⼤的基本数据类型成员长度中数值较⼩者。
结构体的长度应该是该模数的整数倍.4)Linux与Windows基本数据类型⼤⼩以及对齐模数char short int long double long double平台长度与对齐模数Windows长度124488对齐模数124488Linux长度1244812对齐模数1244443.例⼦1)1: struct my_struct 2: { 3: char a; 4: long double b; 5: };Windows分析:步骤1:得出sum_a=1+8=9;步骤2,数据成员a放在相对偏移0处,之前不需要填充字节;数据成员b为了内存对齐,根据“结构体⼤⼩的计算⽅法和步骤”中第⼆条原则,其对齐模数是8,之前需填充7个字节,sum_a + 7 = 16B --> sum_b = 16 B步骤3:按照定义,结构体对齐模数是结构体内部最⼤数据成员长度和pragma pack中较⼩者,前者为8后者为4,所以结构体对齐模数是4。
C语言结构体字节对齐简单计算方法

C语⾔结构体字节对齐简单计算⽅法
1.在C语⾔⾥⾯每⼀种数据类型都有字节对齐⽐如在32位操作系统下:整型的⾃⾝对齐数就是 4 字节,字符型就是 1 字节,double就是 8 字节。
但是结构体的计算⽅式就和普通的数据类型不⼀样。
在C语⾔⾥⾯字节对齐的⽅式主要根据“有效对齐数”来确定,那么有效对齐数是怎杨确定的呢?
在结构体⾥⾯::: 有效字节对齐数 = (⾃⾝对齐数 < 最⼤字节)?(⾃⾝对齐数):(最⼤字节);
⾃⾝对齐数 = 4字节(32位操作系统);(8 字节为32位操作系统)。
最⼤字节数 = 结构体⾥⾯最⼤的⼀个数据类型所占的字节数。
列:struct test{
char a;
int a;
short c;
}d;
sizeof(d) == ? ; //在32位操作系统下为12字节,64位操作系统下也为12字节。
(每⼀次都开4个字节)
struct test2{
char a;
double b;
short c;
}d;
sizeof(d) == ? ;// 在32位操作系统下为16字节(每⼀次开4个字节),在64位操作系统下为24字节(每⼀次开8个字节)。
c语言结构体对齐规则

c语言结构体对齐规则C语言中的结构体是一种将多个数据项组合成一个整体的数据类型。
在定义结构体时,需要考虑如何进行内存对齐,以保证数据访问的正确性和效率。
本文将介绍C语言结构体的对齐规则。
结构体内存对齐规则主要涉及两个概念:对齐边界和填充字节。
对齐边界指的是数据在内存中的对齐位置,它必须是该数据类型大小的整数倍。
填充字节是指在数据与对齐边界之间补充的字节,以满足对齐要求。
C语言结构体对齐规则如下:1. 结构体内的第一个数据成员放在地址最低的位置,后面的数据成员按照声明顺序依次放置。
2. 结构体的总大小必须是其包含的所有数据成员大小的整数倍,如果不是,则在最后一个数据成员后面填充字节。
3. 结构体的对齐边界为其中最大的数据成员大小。
即结构体的起始地址必须是最大数据成员大小的整数倍。
4. 当结构体中包含的数据成员不同类型时,按照其大小从大到小进行排列。
5. 如果结构体中包含的数据成员中有某个成员的大小超过了当前的对齐边界,则需要进行填充字节,以保证下一个数据成员的对齐要求。
下面通过几个例子来说明内存对齐规则的应用:例一:struct student{char name[10];int age;float score;};使用sizeof计算结构体大小得到:24 (可以想象,不加对齐的话只有12个字节)对齐后:struct student{char name[10]; 10char fill[2]; fillint age; 4float score; 4};例二:struct person{char gender;short height;int id;};使用sizeof计算结构体大小得到:8 (在32位架构上)对齐后:struct person{char gender; 1char fill[1]; fillshort height; 2int id; 4};例三:struct fraction{int numerator;int denominator;char symbol;};使用sizeof计算结构体大小得到:12 (在32位架构上)对齐后:struct fraction{int numerator; 4int denominator; 4char symbol; 1char fill; fill};总结:内存对齐是为了保证数据访问的效率和正确性,不能忽视。
c语言结构体对齐规则

c语言结构体对齐规则
C语言结构体对齐规则是指在定义结构体时,编译器会按照一定的规则对结构体中的成员进行对齐,以保证结构体在内存中的存储方式是合理的。
这个规则是由编译器实现的,不同的编译器可能会有不同的实现方式。
结构体对齐的目的是为了提高内存访问的效率。
在计算机中,内存是以字节为单位进行存储的,而不是以位为单位。
因此,如果结构体中的成员没有按照一定的规则进行对齐,那么在访问结构体中的成员时,就需要进行多次内存访问,这会降低程序的执行效率。
C语言结构体对齐规则的实现方式是通过在结构体中插入一些空白字节来实现的。
具体来说,编译器会按照结构体中最大成员的大小进行对齐,也就是说,结构体中的每个成员都必须按照最大成员的大小进行对齐。
例如,如果结构体中最大的成员是一个int类型的变量,那么结构体中的每个成员都必须按照4字节进行对齐。
在进行结构体对齐时,编译器还会考虑结构体中成员的顺序。
具体来说,编译器会将结构体中相邻的成员进行合并,以减少空白字节的数量。
例如,如果结构体中有两个char类型的成员,那么编译器会将它们合并为一个2字节的成员,而不是分别对齐。
除了按照最大成员的大小进行对齐外,编译器还会考虑一些其他的因素,例如编译器的优化级别、目标平台的字节序等。
因此,在编
写程序时,我们应该尽量避免依赖结构体对齐的具体实现方式,以免出现不可预测的问题。
C语言结构体对齐规则是编译器为了提高程序执行效率而实现的一种机制。
在定义结构体时,我们应该遵循一定的规则,以保证结构体在内存中的存储方式是合理的。
同时,我们也应该尽量避免依赖结构体对齐的具体实现方式,以免出现不可预测的问题。
c语言结构体16字节对齐

c语言结构体16字节对齐【最新版】目录1.结构体的概念2.16 字节对齐的重要性3.C 语言中的结构体对齐规则4.16 字节对齐的实现方法5.应用实例正文一、结构体的概念结构体是一种复合数据类型,它可以将不同类型的数据组合在一起。
结构体主要应用于以下场景:当需要将一组相关联的数据组织在一起时,可以使用结构体来描述这些数据。
结构体可以包含各种不同类型的成员,如整型、浮点型、字符型等。
二、16 字节对齐的重要性在计算机系统中,数据存储和访问通常是以字节为单位的。
不同的数据类型所占用的字节数是不同的。
结构体中的成员也需要占用一定的字节空间。
为了提高数据访问的效率,需要对结构体中的成员进行对齐。
对齐的目的是使结构体成员的首地址能够被其大小所整除,这样可以减少访问数据时的内存浪费。
三、C 语言中的结构体对齐规则C 语言中的结构体对齐规则是按照成员的大小进行排列,从大到小。
当一个成员的大小小于等于 16 字节时,它会被紧挨着放置在前一个成员的后面。
当一个成员的大小大于 16 字节时,它会被从下一个 16 字节的位置开始放置。
四、16 字节对齐的实现方法要实现 16 字节对齐,需要在结构体定义时注意成员的排列顺序和数据类型。
首先,将较大的成员放在结构体的前面,较小的成员放在后面。
其次,可以使用预编译指令#pragma pack 来指定对齐的字节数。
例如,可以使用#pragma pack(2) 来指定 16 字节对齐。
五、应用实例以下是一个使用 16 字节对齐的结构体应用实例:```c#pragma pack(2)typedef struct {int a; // 4 字节float b; // 4 字节char c; // 1 字节char d; // 1 字节} MyStruct;```在这个例子中,结构体 MyStruct 中的成员按照 16 字节对齐规则进行排列。
可以看到,int 类型的成员 a 和 float 类型的成员 b 分别占据了 4 字节的空间,char 类型的成员 c 和 d 各占据了 1 字节的空间。
c语言结构体中的数组字节对齐

C语言结构体中的数组字节对齐在C语言中,结构体是一种用户自定义的数据类型,用于将不同类型的数据组合在一起。
结构体中常常包含多个成员变量,其中可能有数组类型的成员变量。
在结构体中使用数组时,需要了解数组字节对齐的概念和规则,以确保内存的最佳利用和访问的效率。
什么是字节对齐字节对齐是指在将数据存储在计算机内存中时,按照特定规则进行调整,以确保数据的存储和访问的效率。
字节对齐的规则可以对齐数据的起始地址或者数据的长度。
计算机中的数据存储是按照字节(Byte)来划分的,一个字节通常由8个二进制位组成。
字节对齐的主要目的是为了节省内存和提高访问效率。
在C语言中,结构体中的成员变量通常按照字节对齐的规则来排列。
C语言结构体中的数组字节对齐规则在C语言中,结构体中的数组字节对齐规则通常遵循以下原则:1.结构体的起始地址必须是所有成员变量所要求对齐方式的最小公倍数。
2.结构体中的每个成员变量的地址必须是它本身的大小的整数倍。
3.结构体的总大小必须是其最大成员变量大小的整数倍。
根据字节对齐规则,如果结构体中的成员变量的累计大小不是字节对齐的倍数,编译器会在成员变量之间添加填充字节,以满足对齐要求。
这些填充字节在结构体的占用空间中不可访问。
填充字节的目的是将后续成员变量的地址对齐,以提高内存访问效率。
数组字节对齐的示例为了更好地理解数组字节对齐的规则,我们来看一个示例。
#include <stdio.h>struct MyStruct {char c;int i;char arr[3];};int main() {struct MyStruct s;printf("sizeof(MyStruct) = %lu\n", sizeof(struct MyStruct));printf("sizeof(s.c) = %lu\n", sizeof(s.c));printf("sizeof(s.i) = %lu\n", sizeof(s.i));printf("sizeof(s.arr) = %lu\n", sizeof(s.arr));return 0;}输出结果:sizeof(MyStruct) = 12sizeof(s.c) = 1sizeof(s.i) = 4sizeof(s.arr) = 3在这个示例中,我们定义了一个包含一个字符类型变量、一个整型变量和一个长度为3的字符数组的结构体MyStruct。
C语言结构体对齐问题

C语言结构体对齐问题1。
几个结构体例子:struct{short a1;short a2;short a3;}A;struct{long a1;short a2;}B;sizeof( A)=6, sizeof( B)=8,为什么?注:sizeof(short)=2,sizeof(long)=4因为:“成员对齐有一个重要的条件,即每个成员按自己的方式对齐。
其对齐的规则是,每个成员按其类型的对齐参数(通常是这个类型的大小)和指定对齐参数(这里默认是8字节)中较小的一个对齐。
并且结构的长度必须为所用过的所有对齐参数的整数倍,不够就补空字节。
”(引用)结构体A中有3个short类型变量,各自以2字节对齐,结构体对齐参数按默认的8字节对齐,则a1,a2,a3都取2字节对齐,则sizeof(A)为6,其也是2的整数倍;B中a1为4字节对齐,a2为2字节对齐,结构体默认对齐参数为8,则a1取4字节对齐,a2取2字节对齐,结构体大小6字节,6不为4的整数倍,补空字节,增到8时,符合所有条件,则sizeof(B)为8;可以设置成对齐的#pragma pack(1)#pragma pack(push)#pragma pack(1)struct{short a1;short a2;short a3;}A;struct{long a1;short a2;}B;#pragma pack(pop)结果为sizeof( A)=6,sizeof( B)=6 ************************#pragma pack(8)struct S1{char a;long b;};struct S2 {char c;struct S1 d;long long e;};#pragma pack()sizeof(S2)结果为24.成员对齐有一个重要的条件,即每个成员分别对齐,即每个成员按自己的方式对齐。
也就是说上面虽然指定了按8字节对齐,但并不是所有的成员都是以8字节对齐。
c语言结构体对齐规则

c语言结构体对齐规则C语言结构体对齐规则结构体是C语言中一种自定义的数据类型,可以用来存储不同类型的数据,使得数据的组织更加灵活。
在使用结构体时,为了提高内存的利用率和访问效率,C语言引入了结构体对齐规则。
结构体对齐是指在结构体中各个成员之间的内存间隔,也称为对齐间隔。
结构体对齐的目的是为了使得结构体的成员在内存中按照一定的规则对齐,以提高访问效率。
在C语言中,结构体的对齐规则是由编译器决定的。
一般来说,结构体对齐规则主要涉及两个方面:成员对齐和结构体整体对齐。
1. 成员对齐在结构体中,每个成员都有自己的对齐要求。
对于基本数据类型,如整型、字符型等,其对齐要求一般与其本身的大小相关,例如int 类型通常要求4字节对齐,而char类型则无对齐要求。
对于数组成员,其对齐要求与数组元素的对齐要求相同。
对于结构体中的成员,编译器会按照成员的类型和对齐要求进行内存对齐。
对于需要对齐的成员,编译器会在其前面填充适当的空白字节,以满足对齐要求。
填充的字节数量由编译器自行决定,在不同的编译器和平台上可能有所差异。
2. 结构体整体对齐结构体整体对齐是指结构体变量在内存中的起始地址需要满足的对齐要求。
结构体整体对齐要求一般是结构体中成员对齐要求的最大公约数。
例如,如果结构体中有一个成员要求4字节对齐,而另一个成员要求8字节对齐,则结构体整体对齐要求为8字节。
结构体整体对齐要求的目的是为了提高访问效率。
如果结构体的整体对齐要求为8字节,那么在访问该结构体变量时,编译器会保证该变量的起始地址是8的倍数,以提高访问速度。
在实际编程中,为了满足结构体对齐规则,可以使用#pragma pack指令来控制对齐方式。
该指令可以指定结构体的对齐方式,常用的取值有1、2、4、8等。
例如,使用#pragma pack(4)指令可以将结构体的对齐方式设置为4字节对齐。
需要注意的是,结构体对齐规则是与编译器和平台相关的,不同的编译器和平台可能有不同的对齐规则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C语言结构体对齐
C语言结构体对齐也是老生常谈的话题了。
基本上是面试题的必考题。
内容虽然很基础,但一不小心就会弄错。
写出一个struct,然后sizeof,你会不会经常对结果感到奇怪?sizeof的结果往往都比你声明的变量总长度要大,这是怎么回事呢?
开始学的时候,也被此类问题困扰很久。
其实相关的文章很多,感觉说清楚的不多。
结构体到底怎样对齐?
有人给对齐原则做过总结,具体在哪里看到现在已记不起来,这里引用一下前人的经验(在没有#pragma pack宏的情况下):
原则1、数据成员对齐规则:结构(struct或联合union)的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员存储的起始位置要从该成员大小的整数倍开始(比如int在32位机为4字节,则要从4的整数倍地址开始存储)。
原则2、结构体作为成员:如果一个结构里有某些结构体成员,则结构体成员要从其内部最大元素大小的整数倍地址开始存储。
(struct a里存有struct b,b 里有char,int,double等元素,那b应该从8的整数倍开始存储。
)
原则3、收尾工作:结构体的总大小,也就是sizeof的结果,必须是其内部最大成员的整数倍,不足的要补齐。
这三个原则具体怎样理解呢?我们看下面几个例子,通过实例来加深理解。
例1:struct {
short a1;
short a2;
short a3;
}A;
struct{
long a1;
short a2;
}B;
sizeof(A) = 6; 这个很好理解,三个short都为2。
sizeof(B) = 8; 这个比是不是比预想的大2个字节?long为4,short为2,
整个为8,因为原则3。
例2:struct A{
int a;
char b;
short c;
};
struct B{
char b;
int a;
short c;
};
sizeof(A) = 8; int为4,char为1,short为2,这里用到了原则1和原则3。
sizeof(B) = 12; 是否超出预想范围?char为1,int为4,short为2,怎么会是12?还是原则1和原则3。
深究一下,为什么是这样,我们可以看看内存里的布局情况。
a b c
A的内存布局:1111, 1*, 11
b a c
B的内存布局:1***, 1111, 11**
其中星号*表示填充的字节。
A中,b后面为何要补充一个字节?因为c 为short,其起始位置要为2的倍数,就是原则1。
c的后面没有补充,因为b和c正好占用4个字节,整个A占用空间为4的倍数,也就是最大成员int类型的倍数,所以不用补充。
B中,b是char为1,b后面补充了3个字节,因为a是int为4,根据原则1,起始位置要为4的倍数,所以b后面要补充3个字节。
c后面补充两个字节,根据原则3,整个B占用空间要为4的倍数,c后面不补充,整个B的空间为10,不符,所以要补充2个字节。
再看一个结构中含有结构成员的例子:
例3:struct A{
int a;
double b;
float c;
};
struct B{
char e[2];
int f;
double g;
short h;
struct A i;
};
sizeof(A) = 24; 这个比较好理解,int为4,double为8,float为4,总长为8的倍数,补齐,所以整个A为24。
sizeof(B) = 48; 看看B的内存布局。
e f g h i
B的内存:11* *, 1111, 11111111, 11 * * * * * *, 1111* * * *, 11111111, 1111 * * * *
i其实就是A的内存布局。
i的起始位置要为24的倍数,所以h后面要补齐。
把B的内存布局弄清楚,有关结构体的对齐方式基本就算掌握了。
以上讲的都是没有#pragma pack宏的情况,如果有#pragma pack宏,对齐方式按照宏的定义来。
比如上面的结构体前加#pragma pack(1),内存的布局就会完全改变。
sizeof(A) = 16; sizeof(B) = 32;
有了#pragma pack(1),内存不会再遵循原则1和原则3了,按1字节对齐。
没错,这不是理想中的没有内存对齐的世界吗。
a b c
A的内存布局:1111, 11111111, 1111
e f g h i
B的内存布局:11, 1111, 11111111, 11 , 1111, 11111111, 1111
那#pragma pack(2)的结果又是多少呢?#pragma pack(4)呢?留给大家自己思考吧,相信没有问题。
还有一种常见的情况,结构体中含位域字段。
位域成员不能单独被取sizeof值。
C99规定int、unsigned int和bool可以作为位域类型,但编译器几乎都对此作了扩展,允许其它类型类型的存在。
使用位域的主要目的是压缩存储,其大致规则为:
1) 如果相邻位域字段的类型相同,且其位宽之和小于类型的sizeof大小,则后面的字段将紧邻前一个字段存储,直到不能容纳为止;
2) 如果相邻位域字段的类型相同,但其位宽之和大于类型的sizeof大小,则后面的字段将从新的存储单元开始,其偏移量为其类型大小的整数倍;
3) 如果相邻的位域字段的类型不同,则各编译器的具体实现有差异,VC6采取不压缩方式,Dev-C++采取压缩方式;
4) 如果位域字段之间穿插着非位域字段,则不进行压缩;
5) 整个结构体的总大小为最宽基本类型成员大小的整数倍。
还是让我们来看看例子。
例4:struct A{
char f1 : 3;
char f2 : 4;
char f3 : 5;
};
a b c
A的内存布局:111, 1111 *, 11111 * * *
位域类型为char,第1个字节仅能容纳下f1和f2,所以f2被压缩到第1个字节中,而f3只能从下一个字节开始。
因此sizeof(A)的结果为2。
例5:struct B{
char f1 : 3;
short f2 : 4;
char f3 : 5;
};
由于相邻位域类型不同,在VC6中其sizeof为6,在Dev-C++中为2。
例6:struct C{
char f1 : 3;
char f2;
char f3 : 5;
};
非位域字段穿插在其中,不会产生压缩,在VC6和Dev-C++中得到的大小均为3。
考虑一个问题,为什么要设计内存对齐的处理方式呢?如果体系结构是不对齐的,成员将会一个挨一个存储,显然对齐更浪费了空间。
那么为什么要使用对齐呢?体系结构的对齐和不对齐,是在时间和空间上的一个权衡。
对齐节省了时间。
假设一个体系结构的字长为w,那么它同时就假设了在这种体系结构上对宽度为w的数据的处理最频繁也是最重要的。
它的设计也是从优先提高对w 位数据操作的效率来考虑的。
有兴趣的可以google一下,人家就可以跟你解释的,一大堆的道理。
最后顺便提一点,在设计结构体的时候,一般会尊照一个习惯,就是把占用空间小的类型排在前面,占用空间大的类型排在后面,这样可以相对节约一些对齐空间。