有源电力滤波器的基本原理和分类
【可编辑全文】有源电力滤波器的基本原理和分类

可编辑修改精选全文完整版有源电力滤波器的基本原理和分类1.有源电力滤波器的基本原理有源电力滤波器系统主要由两大部分组成,即指令电流检测电路和补偿电流发生电路。
图1 有源滤波器示意图指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。
电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。
这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。
根据同样的原理,电力有源滤波器还能对不对称三相电路的负序电流分量进行补偿。
有源电力滤波器的主电路一般由PWM逆变器构成。
根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。
电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流侧输出为PWM电压波。
而电流型有源滤波器在工作时需对直流侧电感电流进行控制,使直流侧电流维持不变,因而逆变器交流侧输出为PWM电流波。
电压型有源滤波器的优点是损耗较少,效率高,是目前国外绝大多数有源滤波器采用的主电路结构。
电流型有源滤波器由于电流侧电感上始终有电流流过,该电流在电感阻上将产生较大损耗,所以目前较少采用。
图2 电压型有源滤波器图3 电流型有源滤波器2.有源电力滤波器的分类按电路拓朴结构分类,电力有源滤波器可分为并联型、串联型、串-并联型和混合型。
图4 并联型有源滤波器图4所示为并联型有源滤波器的基本结构。
它主要适用于电流源型非线性负载的谐波电流抵消、无功补偿以及平衡三相系统中的不平衡电流等。
目前并联型有源滤波器在技术上已较成熟,它也是当前应用最为广泛的一种有源滤波器拓补结构。
图5 串联型有源滤波器图5所示为串联型有源滤波器的基本结构。
它通过一个匹配变压器将有源滤波器串联于电源和负载之间,以消除电压谐波,平衡或调整负载的端电压。
有源电力滤波器的基本原理和分类

有源电力滤波器的基本原理和分类有源电力滤波器(Active Power Filter,APF)是一种用于消除电力系统中谐波和电流不平衡问题的装置。
它是一种由电子器件组成的滤波器,能够注入特定频率的电流来抵消电网中的谐波,从而实现电流的纯正输出。
下面将介绍有源电力滤波器的基本原理和分类。
基本原理:有源电力滤波器由三相逆变器(Inverter)和控制系统组成。
首先,控制系统采集电网中的电压和电流信号,并进行处理和分析。
接下来,控制器确定电网的谐波特性并计算相应的注入电流。
最后,逆变器产生特定频率和幅度的电流,并通过与电网连接的线路与谐波电流相消。
这样,通过有源电力滤波器可以实现对电流谐波的消除和电流的纯正输出。
分类:根据滤波器的连接方式和使用场景,有源电力滤波器可以分为三种类型:单台型、平行型和串级型。
1.单台型有源电力滤波器:单台型有源电力滤波器适用于单台负载设备或供电点,用于对单一负载设备引起的谐波进行消除。
这种滤波器的工作方式简单,实施成本低,但只能解决单个设备引起的谐波问题。
2.平行型有源电力滤波器:平行型有源电力滤波器通常由多台滤波器并联连接,在一个供电点上对谐波进行消除。
这种连接方式可以同时处理多个电流不平衡或谐波扰动。
平行型滤波器具有相互独立工作的特点,其中一台滤波器的故障不会影响其他滤波器的工作。
3.串级型有源电力滤波器:串级型有源电力滤波器由多个滤波器串联连接在一个供电点上。
每个滤波器负责处理一定范围内的谐波频率。
串级型滤波器具有较大的容载能力,能够处理大电流负载和更复杂的谐波问题,但它的成本更高,并且在安装和维护过程中需要更多的配置。
总结:有源电力滤波器是一种用于消除电力系统中谐波和电流不平衡问题的装置。
通过逆变器产生特定频率和幅度的电流,有源电力滤波器可以实现对电流谐波的消除和电流的纯正输出。
根据滤波器的连接方式和使用场景,有源电力滤波器可以分为单台型、平行型和串级型三种类型。
有源电力滤波器原理

有源电力滤波器原理有源电力滤波器是一种电力滤波器,与被动电力滤波器相比具有更好的滤波性能和灵活性。
其原理是通过外部激励电路的引入,使滤波器能够主动对输入信号进行调节和滤波。
有源电力滤波器主要由滤波器部分和激励电路部分组成。
滤波器部分一般采用电容、电感和电阻等元器件组成,用于对输入信号进行滤波处理。
根据滤波器部分的组成以及滤波器的工作原理不同,有源电力滤波器可以分为多种类型,比如自适应滤波器、谐波滤波器等。
激励电路部分是有源电力滤波器的关键部分,它通过激励信号对滤波器进行调节。
在有源电力滤波器中,激励电路通常由一组放大器和控制电路组成。
放大器的作用是将激励信号放大到适当的幅值,使其能够有效地调节滤波器的工作状态。
控制电路主要用于对放大器进行控制,使其能够根据输入信号的频率和幅值变化而调节。
激励电路的引入可以使有源电力滤波器具有更好的频率响应和动态性能。
有源电力滤波器的工作原理可以通过如下步骤进行描述:1. 输入信号通过滤波器部分,被电容、电感和电阻等元器件滤波和衰减。
滤波器部分的设计和参数选择决定了滤波器的频率响应和滤波特性。
2. 激励信号通过激励电路部分,被放大器放大到适当的幅值。
放大器的增益可以根据需要进行调节,以满足不同的滤波器工作要求。
3. 放大后的激励信号通过控制电路,对滤波器的工作状态进行调节。
控制电路可以根据输入信号的频率和幅值变化,动态地调整滤波器的参数和工作模式。
4. 调节后的滤波器输出信号经过放大器的逆变输出,得到最终的滤波器输出信号。
有源电力滤波器具有很多优点,比如滤波精度高、滤波范围宽、动态性能好等。
它可以有效地抑制输入信号中的谐波和噪声,提高电力系统的稳定性和可靠性。
同时,有源电力滤波器还可以根据需要进行调节和优化,适应不同的电力系统和工作环境。
总之,有源电力滤波器通过外部激励电路的引入,使滤波器能够主动对输入信号进行调节和滤波,从而实现更好的滤波效果和灵活性。
它是电力滤波器中一种重要的类型,广泛应用于电力系统和工业控制等领域。
有源滤波器工作原理

有源滤波器工作原理一、引言有源滤波器是一种电子滤波器,它利用有源元件(如运算放大器)来增强滤波器的性能。
本文将详细介绍有源滤波器的工作原理,包括有源滤波器的基本原理、常见的有源滤波器类型以及其工作原理的详细解释。
二、有源滤波器的基本原理有源滤波器是由有源元件(如运算放大器)和被动元件(如电容、电感和电阻)组成的电路。
有源元件在电路中起放大和增强信号的作用,从而改善滤波器的性能。
被动元件则用于构建滤波器的频率特性。
三、常见的有源滤波器类型1. 低通滤波器(Low Pass Filter):允许低频信号通过,阻断高频信号。
2. 高通滤波器(High Pass Filter):允许高频信号通过,阻断低频信号。
3. 带通滤波器(Band Pass Filter):只允许特定频率范围内的信号通过,阻断其他频率的信号。
4. 带阻滤波器(Band Stop Filter):阻断特定频率范围内的信号,允许其他频率的信号通过。
四、有源滤波器的工作原理详解1. 低通滤波器工作原理低通滤波器允许低频信号通过,阻断高频信号。
它的工作原理是利用运算放大器的放大特性和电容的频率特性。
当输入信号的频率较低时,电容的阻抗较高,导致输入信号几乎全部通过运算放大器。
而当输入信号的频率较高时,电容的阻抗较低,导致输入信号部分被电容吸收,从而实现了对高频信号的阻断。
2. 高通滤波器工作原理高通滤波器允许高频信号通过,阻断低频信号。
它的工作原理与低通滤波器相反。
当输入信号的频率较低时,电容的阻抗较低,导致输入信号部分被电容吸收,从而实现了对低频信号的阻断。
而当输入信号的频率较高时,电容的阻抗较高,导致输入信号几乎全部通过运算放大器。
3. 带通滤波器工作原理带通滤波器只允许特定频率范围内的信号通过,阻断其他频率的信号。
它的工作原理是将低通滤波器和高通滤波器结合起来。
通过选择合适的电容和电感参数,可以实现对特定频率范围内的信号的放大和传输,而阻断其他频率的信号。
有源电力滤波器的基本原理和分类

有源电力滤波器的基本原理和分类有源电力滤波器是电力电子技术中常用的一个概念。
它被广泛应用于电力系统中的谐波抑制和滤波控制中,以保证电力系统的稳定运行和有序的能量传输。
本文将从有源电力滤波器的基本原理和分类两个方面来详细介绍该技术的内容和应用场景。
一、有源电力滤波器的基本原理有源电力滤波器是指通过电力电子器件(如IGBT、MOSFET 等)配合控制电路,实现对电网谐波电流的主动抑制和滤波。
它的工作原理主要是通过采样电网波形,将其变换为电压信号后,送入控制器中进行数字信号处理。
处理后的结果通过PWM变换,驱动电力电子器件产生谐波电流,与谐波电流相互抵消,从而达到滤波的目的。
二、有源电力滤波器的分类根据其工作原理和控制方式的不同,有源电力滤波器可以分为多种类型,下面就具体介绍几种常见的有源电力滤波器类型。
1、电压型有源滤波器电压型有源滤波器主要是通过对电压信号进行采样和滤波,得到电网谐波电压分量后,通过功率放大器输出到负载侧,实现谐波电压的主动补偿和抑制。
该类型的有源滤波器主要适用于当前的电力系统中高压功率电子装置的谐波抑制,具有复杂的电路和控制策略,实现难度较大。
2、电流型有源滤波器电流型有源滤波器主要是通过对电流信号进行采样和滤波,得到电网谐波电流分量后,通过功率放大器输出到电力系统中,实现谐波电流的主动补偿和抑制。
该类型的有源滤波器主要适用于中低压电力系统,具有较高的滤波精度和电路简单易用的优点。
3、混合电压和电流型有源滤波器混合电压和电流型有源滤波器主要是通过对电压和电流信号分别进行采样和滤波,得到电网谐波电压和电流分量后,通过功率放大器输出到负载侧,实现谐波电压和电流的主动补偿和抑制。
该类型的有源滤波器是电压型和电流型有源滤波器的综合体现,具有滤波效果优秀、适用范围广、控制策略简单等优点。
总之,有源电力滤波器是电力电子技术中的一项重要内容。
在保证电力系统稳定运行和能量传输的过程中,有源滤波器可以发挥出其强大的作用。
简述电力有源滤波器的工作原理

简述电力有源滤波器的工作原理
电力有源滤波器是一种用于消除电力系统中的谐波和其他干扰的装置。
它由一个用于滤波的被动滤波器和一个用于控制和补偿的主动滤波器组成。
工作原理如下:
1. 被动滤波器:被动滤波器是一个由电感和电容组成的电路,它能够滤除电力系统中的谐波。
谐波是由非线性负载和电力设备引起的,会导致电流和电压产生非正弦波形。
被动滤波器通过选择合适的电感和电容值,能够将谐波频率上的电压和电流滤除或减小。
2. 主动滤波器:主动滤波器是一个由功率电子器件(通常是可控硅)组成的电路,它通过改变电路的工作状态来产生补偿电流。
主动滤波器能够实施主动干预,生成与负载引入的谐波相反的谐波电流,以消除或减小谐波。
主动滤波器通过调节自身产生的电流波形,控制谐波电流与负载产生的谐波电流相抵消,从而消除谐波。
总之,电力有源滤波器通过结合被动滤波和主动控制,实现对电力系统中谐波和其他干扰的消除或减小。
被动滤波器用于滤除谐波,而主动滤波器用于补偿产生相反形态的谐波电流,以实现谐波的消除。
这样可以提供更纯净的电力供应,保证电力系统的稳定运行。
有源滤波电路基础原理介绍

有源滤波电路基础原理介绍1 简介1.1 滤波器的分类; 有源滤波器实际上是一种具有特定频率响应的放大器。
它是在运算放大器的基础上增加一些R、C等无源元件而构成的。
通常有源滤波器分为:低通滤波器高通滤波器带通滤波器带阻滤波器它们的幅度频率特性曲线如图1所示。
图1 有源滤波器的频响滤波器也可以由无源的电抗性元件或晶体构成,称为无源滤波器或晶体滤波器。
1.2 滤波器的用途滤波器主要用来滤除信号中无用的频率成分,例如,有一个较低频率的信号,其中包含一些较高频率成分的干扰。
滤波过程如图2所示。
图2 滤波过程2 有源低通滤波器(LPF)2.1 低通滤波器的主要技术指标(1)通带增益Avp通带增益是指滤波器在通频带内的电压放大倍数,如图3所示。
性能良好的LPF通带内的幅频特性曲线是平坦的,阻带内的电压放大倍数基本为零。
(2)通带截止频率fp其定义与放大电路的上限截止频率相同,见图3。
通带与阻带之间称为过渡带,过渡带越窄,说明滤波器的选择性越好。
图3 LPF的幅频特性曲线2.2 简单一阶低通有源滤波器一阶低通滤波器的电路如图4所示,其幅频特性见图5,图中虚线为理想的情况,实线为实际的情况。
特点是电路简单,阻带衰减太慢,选择性较差。
图4 一阶低通电路(LPF)图5 一阶LPF的幅频特性曲线当f = 0时,电容器可视为开路,通带内的增益为一阶低通滤波器的传递函数如下,其中该传递函数式的样子与一节RC低通环节的增益频率表达式差不多,只是缺少通带增益Avp这一项。
2.3 简单二阶低通有源滤波器为了使输出电压在高频段以更快的速率下降,以改善滤波效果,再加一节RC 低通滤波环节,称为二阶有源滤波电路。
它比一阶低通滤波器的滤波效果更好。
二阶LPF的电路图如图6所示,幅频特性曲线如图7所示。
图6 二阶低通电路(LPF) 图7 二阶低通电路幅频特性曲线(1)通带增益当f = 0时,各电容器可视为开路,通带内的增益为(2)二阶低通有源滤波器传递函数根据图8-2.06可以写出通常有,联立求解以上三式,可得滤波器的传递函数(3)通带截止频率将s换成jω,令ω0=2πf0=1/(RC)可得当f=fp 时,上式分母的模解得截止频率:与理想的二阶波特图相比,在超过f0以后,幅频特性以-40 dB/dec的速率下降,比一阶的下降快。
有源电力滤波器的基本原理

有源电力滤波器基本原理及设备目录一.APF 的系统构成 (4)二.APF 特性 (6)三.APF的组成和功能 (10)四.技术参数及规格型号 (18)五.经典案例 (21)六、谐波无功节能 (26)七、谐波无功治理设备的选择 (29)有源电力滤波器是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能对大小和频率都变化的谐波以及变化的无功进行补偿,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点。
有源电力滤波器的基本原理如下图所示:检测补偿对象的电压和电流,经指令电流运算电路计算得出补偿电流的指令信号,该信号经补偿电流发生电路放大,得出补偿电流,补偿电流与负载电流中要补偿的谐波及无功等电流抵消,最终得到期望的电源电流。
有源电力滤波器基本原理一.APF 的系统构成下图为APF的系统框图。
图中,e S表示交流电源,负载为谐波源,它产生谐波并消耗无功。
有源电力滤波器系统由两大部分组成,即指令电流运算电路和补偿电流发生电路。
其中指令电流运算电路的核心是检测出补偿对象电流中的谐波和无功等电流分量。
补偿电流发生电路的作用是根据指令电流运算电路得出的补偿电流的指令信号,产生实际的补偿电流,它由电流跟踪控制电路、驱动电路和主电路三个部分构成。
主电路目前均采用PWM变流器。
APF 系统框图下图为APF的系统原理图。
图中e a、e b、e c 为交流电源,谐波电流源为非线性负载,L sa、L sb、L sc 分别代表三相的电网阻抗。
而有源电力滤波器主要由以下几部分组成,指令运算电路,电流跟踪控制电路,驱动电路以及主电路。
其中指令运算电路的主要任务是按照要求检测出负载电流中的谐波、无功以及负序分量。
电流跟踪控制电路,驱动电路以及主电路和在一起可以称为补偿电流发生电路,它的主要作用是根据指令运算电路得出的补偿指令,产生实际的补偿电流。
主电路主要由IGBT 构成的电压型PWM变流器,以及与其相连的电感和直流侧电容组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有源电力滤波器的基本原理和分类
1.有源电力滤波器的基本原理
有源电力滤波器系统主要由两大部分组成,即指令电流检测电路和补偿电流发生电路。
图1 有源滤波器示意图
指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。
电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。
这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。
根据同样的原理,电力有源滤波器还能对不对称三相电路的负序电流分量进行补偿。
有源电力滤波器的主电路一般由PWM逆变器构成。
根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。
电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流侧输出为PWM电压波。
而电流型有源滤波器在工作时需对直流侧电感电流进行控制,使直流侧电流维持不变,因而逆变器交流侧输出为PWM电流波。
电压型有源滤波器的优点是损耗较少,效率高,是目前国外绝大多数有源滤波器采用的主电路结构。
电流型有源滤波器由于电流侧电感上始终有电流流过,该电流在电感阻上将产生较大损耗,所以目前较少采用。
图2 电压型有源滤波器
图3 电流型有源滤波器
2.有源电力滤波器的分类
按电路拓朴结构分类,电力有源滤波器可分为并联型、串联型、串-并联型和混合型。
图4 并联型有源滤波器
图4所示为并联型有源滤波器的基本结构。
它主要适用于电流源型非线性负载的谐波电流抵消、无功补偿以及平衡三相系统中的不平衡电流等。
目前并联型有源滤波器在技术上已较成熟,它也是当前应用最为广泛的一种有源滤波器拓补结构。
图5 串联型有源滤波器
图5所示为串联型有源滤波器的基本结构。
它通过一个匹配变压器将有源滤波器串联于电源和负载之间,以消除电压谐波,平衡或调整负载的端电压。
与并联型有源滤波器相比,串联型有源滤波器损耗较大,且各种保护电路也较复杂,因此,很少研究单独使用的串联型有源滤波器,而大多数将它作为混合型有源滤波器的一部分予以研究。
图6 混合型有源滤波器
图6所示为混合型有源滤波器的基本结构。
它是在串联型有源滤波器的基础上使用一些
大容量的无源L-C滤波网络来承担消除低次谐波,进行无功补偿的任务。
而串联型有源滤波器只承担消除高次谐振及阻尼无源LC网络与线路阻抗产生的谐波谐振的任务。
从而使串联型有源滤波器的电流、电压额定值大大减少(功率容量可减少到负载容量的5%以下),降低了有源滤波器的成本和体积。
从经济角度而言,这种结构形式在目前是一种值得推荐的方案。
但随着电力电子器件性能的不断提高,成本不断下降,混合型有源滤波器可能被下面一种性能价格比更高的有源滤波器代替。
图7 串-并联型有源滤波器
图7所示为串-并联型有源滤波器的基本结构。
它组合了串联有源滤波器和并联有源滤波器的优点,能解决电气系统发生的大多数电能质量问题,所以又称之为万能有源滤波器或统一电能质量调节器(UPQC),该类有源滤波器的主要问题是控制复杂、造价较高。