截面图形的几何性质资料

合集下载

4 截面图形的几何性质

4 截面图形的几何性质
2
C
2 πd 4 2d 2 πd 2 2d πd 2 a 8 3π 8 128 3π
将 d = 80 mm,a = 100 mm 代入后得
I x2 3 467 10 4 mm 4
从而得图a所示截面对x轴的惯性矩:
I xC
2 πd 4 2d πd 2 2d πd I x 1284.3 平行移轴公式
然后再利用平行移轴公式求半圆形对x轴的惯性矩:
I x2 I x 2d πd 2 a 3π 8
I y 1 054 10 4 mm 4
21
4.3 平行移轴公式
(3) 求 惯性积 Ixy 由
I xy xy d A 可知,只要x
A
轴或y 轴为截面的对称轴,则由于 与该轴对称的任何两个面积元素 dA的惯性积 xydA 数值相等而正负 号相反,致使整个截面的惯性积必 定等于零。图a所示截面的x 轴和y 轴都是对称轴,当然 Ixy=0。
22
4.4 惯性矩和惯性积的转轴公式
图示任意形状的截面,其面积A以及对于坐标轴x,y的 惯性矩Ix,Iy和惯性积Ixy为已知,现在来求截面对于绕原点O 旋转a 角(以逆时针为正)后的坐标轴x1y1的惯性矩 I x1, I y1和 惯性积 I x y 。
1 1
23
4.4 惯性矩和惯性积的转轴公式
由图可见,截面上任一微面积dA在x,y和x1,y1两个坐标系中坐标 的关系为
13
4.3 平行移轴公式
因截面上的任一元素dA在x,y 坐标系内的坐标为 x xC b, 于是有
2 I x y 2 d A y C a d A yC d A 2 a yC d A a 2 d A A A A A A 2

截面的几何性质

截面的几何性质

bh bh Iz 12 12 b 3 h h 3 12
3 3
I y Iz
D 4


64 64 4 D (1 4 ) 64

d 4
三、
y1
惯性矩和惯性积的平行移轴公式
z1
y z dA y
y1
已知 I z , I y , I yz
b a O1
2
y1 y a,
2 A A A A A
I z 2aSz a 2 A
I y1 z1 y1 z1dA ( y a )(z b)dA
A A
yzdA azdA bydA abdA
A A A A
I yz aSy bSz abA
I y1 I y 2bSy b A
• 平面图形的惯性矩
I z y 2 dA
A
I y z 2 dA
A
y x
面积A
• 平面图形的极惯性矩
dA y z
Ip
r dA y
2 A A
2
z
2
dA
o
r
I p Iz I y
• 惯性矩和极惯性矩为正值,单位为m4 或mm4。
• 平面图形的惯性半径
y x r y
面积A
Iz i A
2 z
Iy i A
2 y
dA
iz iy
Iz A Iy A
o
图形对z轴和y轴的惯性半径 (单位为m 或mm)
z
• 例7-2 求矩形截面对其对称轴z和y的惯性矩 和惯性半径。 y • 解:
I z y 2 dA

附录1 截面的几何性质

附录1 截面的几何性质
z zc
d D
I y内 I zc
y I z内
d4
64
2
64
d I zc A内 2 d 4 d 2 d 2 5 d 4 64 4 64 2
I y I y外 I y内 I z I z外 I z内
D4
I y bh 12
3
h
C
b
y
I y I yi I z I zi
i 1
n
n
i 1
13
三、惯性积: I yz yz dA
z
dA dA
y y
A
大小:正,负,0。
量纲:[长度]4
z 轴为对称轴:I yz yz dA 0
A
z
z
y y
O
图形对任一包含对称轴在内的一 对正交坐标轴的惯性矩为0。
C2
C yc , zc
10

C1
10 80 5 10 110 65 39.74 mm 10 80 10 110
120
80
y
A1 y1 A2 y2 yc A1 A2 10 80 40 10 110 5 9 19.74 mm 10 80 10 110
(2)计算Iz
S z ' A1 yC1 A2 yC 2 yc A A1 A2 500 800 400 400 550 425 500 800 400 550 369.44mm
I z I z1 I z 2 1.541010 mm4
21
[例Ⅰ-6] 电线铁塔基座采用四个等边角钢组成 L160× 10mm,a=3m,试计算基座的形心主惯性矩。

材料力学截面的几何性质课件

材料力学截面的几何性质课件
材料力学截面的几何 性质课件
目录
• 截面的基本性质 • 截面的二次矩 • 截面的抗弯截面系数 • 截面的抗扭截面系数 • 材料力学截面的应用
01 截面的基本性质
截面的面积
面积
截面面积是二维平面图形被截后,与 原图形相比增加的面积。对于矩形、 圆形、三角形等简单形状,截面面积 可以通过几何公式直接计算。
的刚度和稳定性。
截面惯性矩
截面惯性矩是衡量截面抗弯刚度 的指标,对于承受弯矩的构件, 选择具有较大惯性矩的截面可以
减少挠度和转角。
截面抵抗矩
截面抵抗矩是衡量截面抗剪切能 力的指标,对于承受剪力的构件 ,选择具有较大抵抗矩的截面可
以增加构件的承载能力。
工程设计中的应用
桥梁设计
在桥梁设计中,需要考虑梁的截面尺寸、材料类型和截面形式等 因素,以确保桥梁具有足够的强度和刚、单位等因素,以确保数 据处理结果的准确性和可靠性。
1.谢谢聆 听
根据微面积和其对应的主 轴方向余弦,计算出截面 二次矩。
主轴的确定
根据计算出的惯性矩,找 出三个主轴的方向余弦和 角度。
实例分析
圆截面
圆截面的二次矩为常数, 且各主轴与截面垂直,说 明圆截面在弯曲时没有翘 曲的趋势。
矩形截面
矩形截面的二次矩与宽度 的平方成正比,说明矩形 截面有较好的抗弯能力。
工字形截面
工字形截面的二次矩比同 样面积的矩形截面小,但 抗弯能力仍高于同样重量 的实心杆件。
03 截面的抗弯截面系数
定义与性质
01
抗弯截面系数是截面对其轴线的惯性矩除以截面的面积 得到的数值,用来度量截面在弯矩作用下抵抗变形的能 力。
02
不同形状的截面有不同的抗弯截面系数,如圆截面为1 ,矩形截面为1.13,工字形截面为1.44等。

截面的几何性质截面的几何性质

截面的几何性质截面的几何性质

分别为图形对于z 轴和y 轴的静矩。
3
平面图形的静矩
S z = ∫A ydA
S y = ∫ A zd A
• 静矩与截面面积大小及坐标设置有关; • 静矩可正、可负、可为零; • 静矩的单位为m3或 mm3。
4
平面图形的形心Leabharlann • 平面图形的形心 — 平面图形几何形状的中心。 • 通过截面形心的坐标轴称为形心轴 。
设图形的形心C坐标为(zC , yC), 由均质等厚薄片重心坐标公式: A yC = ∫A ydA = S z
A z C = ∫ A zd A = S y Sy S yC = z , z C = A A
• 截面对形心轴的静矩必为零;反之,若截面对
某轴的静矩等于零,则该轴必为形心轴。
5
平面图形的静矩和形心
h 1 h * = b − y1 + y1 S z = A* yC 2 2 2 b 2 = ( h2 − 4 y1 ) 8
7
h 2

组合图形的静矩和形心位置 • 组合图形 — 由几个简单图形(如矩形、圆形
或三角形等规则图形)组成的图形。
zC =
8
∑ Ai zC i ∑ Ai
截面的几何性质 • 平面图形的静矩和形心 • 平面图形的惯性矩、惯性积和惯性半径 • 惯性矩和惯性积的平行移轴公式 • 惯性矩和惯性积的转轴公式 • 主惯性轴和主惯性矩
9
平面图形的极惯性矩和惯性矩 • 定义
I z = ∫A y 2dA
I y = ∫ A z 2 dA
• 组合图形对某一对正交轴的惯性积等于各组成
部分对同一对正交轴的惯性积之和。
I yz = ∑ ( I yz ) i

建筑力学第七章 截面的几何性质

建筑力学第七章 截面的几何性质

第七章平面图形的几何性质研究截面几何性质的意义从上章介绍的应力和变形的计算公式中可以看出,应力和变形不仅与杆的内力有关,而且与杆件截面的横截面面积A、极惯性矩I P、抗扭截面系数W P等一些几何量密切相关。

因此要研究构件的的承载能力或应力,就必须掌握截面几何性质的计算方法。

另一方面,掌握截面的几何性质的变化规律,就能灵活机动地为各种构件选取合理的截面形状和尺寸,使构件各部分的材料能够比较充分地发挥作用,尽可能地做到“物尽其用”,合理地解决好构件的安全与经济这一对矛盾。

第一节 静矩一、静距的概念Ay S z d d =Az S y d d =⎰⎰⎰⎰====AAy y AAz z Az S S A y S S d d d d zy d A yz静距是面积与它到轴的距离之积。

平面图形的静矩是对一定的坐标而言的,同一平面图形对不同的坐标轴,其静矩显然不同。

静矩的数值可能为正,可能为负,也可能等于零。

它常用单位是m 3或mm 3。

形心d A zyy zCx Cy ⎪⎪⎭⎪⎪⎬⎫⋅∆∑=⋅∆∑=A y A y Az A z C C ⎪⎪⎭⎪⎪⎬⎫==⎰⎰A ydA y A zdA z AC A C ⎪⎪⎭⎪⎪⎬⎫==A S y A S z z C y C ⎭⎬⎫⋅=⋅=C y C z z A S y A S 平面图形对z 轴(或y 轴)的静矩,等于该图形面积A 与其形心坐标y C (或z C )的乘积。

当坐标轴通过平面图形的形心时,其静矩为零;反之,若平面图形对某轴的静矩为零,则该轴必通过平面图形的形心。

如果平面图形具有对称轴,对称轴必然是平面图形的形心轴,故平面图形对其对称轴的静矩必等于零。

⎭⎬⎫⋅=⋅=C y C z z A S y A S二、组合图形的静矩根据平面图形静矩的定义,组合图形对z 轴(或y 轴)的静矩等于各简单图形对同一轴静矩的代数和,即⎪⎪⎭⎪⎪⎬⎫=+++==+++=∑∑==ni Ci i Cn n C C y ni Ci i Cn n C C z z A z A z A z A S y A y A y A y A S 1221112211 式中 y Ci 、z Ci 及A i 分别为各简单图形的形心坐标和面积;n 为组成组合图形的简单图形的个数。

建筑力学6截面图形几何性质

建筑力学6截面图形几何性质

截面图形的几何性质一.重点及难点:(一).截面静矩和形心1.静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即ydAdSx xdA dS y == 整个图形对y 、z 轴的静矩分别为⎰⎰==AAy ydASx xdAS (I-1) 2.形心与静矩关系 图I-1设平面图形形心C 的坐标为C C z y , 则 0AS y x= , A S x y = (I-2)推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。

推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。

3.组合图形的静矩和形心设截面图形由几个面积分别为n A A A A ⋯⋯321,,的简单图形组成,且一直各族图形的形心坐标分别为⋯⋯332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为∑∑∑∑========ni ni ii xi x ni ii ni yi y y A S S x A S 1111S (I-3)截面图形的形心坐标为∑∑===ni ini ii AxA x 11 , ∑∑===ni ini ii AyA y 11 (I-4)4.静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。

(2) 静矩的单位为3m 。

(3) 静矩的数值可正可负,也可为零。

图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。

(4) 若已知图形的形心坐标。

则可由式(I-1)求图形对坐标轴的静矩。

若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。

组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。

(二).惯性矩 惯性积 惯性半径1. 惯性矩(极惯性矩、对y 轴和x 轴的惯性矩)定义 设任意形状的截面图形的面积为A (图I-3),则图形对O 点的极惯性矩定义为⎰=Ap dA I 2ρ (I-5)图形对y 轴和x 轴的惯性矩分别定义为⎰=Ay dA x I 2 , dA y I Ax ⎰=2 (I-6)惯性矩的特征(1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐标轴定义的。

附录1 截面图形的几何性质概况PPT课件

附录1  截面图形的几何性质概况PPT课件
2
1.1 静矩和形心
max
FN max A
;
T
GI P
;
max
T WP
一、截面的静矩(static moment)
dSx dA y
dSy dA x
Sx dSx ydA
A
A
Sy dSy xdA
A
A
3
二、形心(centriod of an area)
¯x
m x dm m
h1 2
bh1
( h2 2
h1 ) dh2
h2
Sy x.A 0
x0
h1
x
y Sx
b
A
8
1.2 惯性矩、惯性积和惯性半径
一、惯性矩(moment of inertia):(类似于转动惯量)
Ix y2dA A
I y x2dA A
二、极惯性矩:是面积对极点的二次矩。 IP r2dA Ix I y A
xi Ai
x 1
A1
x.3 120 80 70 110
图(b)
y
yi Ai
y 1
A1
y 2 A2
A
A1 A2
5 (70 110) 20.3 120 80 70 110
7
练习:求Sx、Sy,并求形心位置。
yd
S x S1x S2 x
I x I xC b2 A
12
I x I xC b2 A 同理:
I y I yC a2 A I xy I xC yC abA
注意!C点必须为截面形心。
13
y
d O
A
例 3-1 求图示圆对其切线AB的惯性矩. 解 :求解此题有两种方法:一是安
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
截面图形的几何性质
1
4
截面图形的几何性质
4.1 截面的静矩与形心 4.2 惯性矩与惯性积 4.3 平行移轴公式 4.4 惯性矩和惯性积的转轴公式
4.5 截面的主惯性轴和主惯性矩
2
4.1 截面的静矩与形心
1、静矩 任意平面图形 A (例如杆的横截面) 建立 yz 坐标系(x轴为杆的轴线) 平面图形的形心C(yc,zc) 图形对 y 轴的静矩
截面的形心C在x,y坐标系内的坐标为
x b和y a。
13
4.3 平行移轴公式
因截面上的任一元素dA在x,y
坐标系内的坐标为
x xC b,
于是有
y yC a
2 I x y 2 d A yC a d A yC d A 2a yC d A a 2 d A 2 A A A A A
例1 试计算图示三角形截面对于与其底边重合的z轴的静矩。
y
O b
y
z
b (y )
h
解: 取平行于x轴的狭长条,
b 因此 d A ( h y ) d y h
b 易求 b( y ) (h y ) h
所以对 x 轴的静矩为
S x Ad y h 6
y
dA
I y z dA
2 A

y
I z y 2 dA
A
O
z
z
惯性矩的单位:m4,cm4,mm4
7
4.2 惯性矩与惯性积
图形对原点的 极惯性矩
I p 2dA ( y 2 z 2 )dA I z I y
A A
y
图形对z轴和y轴 惯性半径
dA
iz
IZ A
整个截面对于z、y两坐标轴的 惯性积
y
I yz yzdA
A
dA
(1)惯性积与轴有关,可正可负可 为零。
(2)若 y , z 轴有一为图形的对称轴, 则 Iyz = 0。
y
性质

O
z
z
12
4.3 平行移轴公式 1、平行移轴公式
已知任意形状的截面(如图)的面积A以及对于形心轴xC 和yC的惯性矩 I xC,I yC 及惯性积 I x y ,现需导出该截面对于 C C 与形心轴xC , yC平行的x轴和y轴的惯性矩Ix,Iy和惯性积Ixy。
yC Ay A
i i Ci

A yC A yC A A
1200mm2 10mm+1200mm2 50mm 30mm 2 2 1200mm 1200mm 6
60
20
解:zC=0,只需计算yC
z
yC
C
4.2 惯性矩与惯性积 1、惯性矩
图形对 y,z 轴的 轴惯性矩
I xC 2a S xC a 2 A
注意到xC轴为形心轴,故上式中的静矩 S xC等于零,从而有
I x I xC a 2 A
14
4.3 平行移轴公式
I x I xC a 2 A
同理可得
I y I yC b2 A
I xy I xC yC abA
以上三式就是惯性矩和惯性积的平行移轴公式。需要
O
dy
z
I y z 2dA
b 2 b 2
3 b h 2 hz dz 12
b
因为z轴(或y轴)为对称轴,故惯性积
I yz 0
9
4.2 惯性矩与惯性积
例4 试计算图示圆形截面对O点的极惯性矩IP和对于其形心轴 (即直径轴)的惯性矩Iy和Iz。 解:建立如图所示坐标系,取图示微元dA,
y dA C
y yC
S y zdA
A
O
zC z
z
图形对 z 轴的静矩
S z ydA
A
静矩的单位:m3,cm3,mm3
3
4.1 截面的静矩与形心
2、形心的位置
yC
ydA
A
A
Sz zC A ,
zdA
A
A

Sy A
静矩的性质 (1)静矩与轴有关,可正可负可为零。 (2)若yC,zC坐标轴过形心,则有
y
d
dA 2π d
πd 4 2 2 I P dA (2π d ) A 32 由于圆截面对任意方向的直径轴都是对称的, 故
d 2 0

O
z
I y Iz
d
所以
I P πd 4 I y Iz 2 64
10
4.2 惯性矩与惯性积
矩形: b
圆形: d
iy
Iy A

y
O
z
z
8
4.2 惯性矩与惯性积
例3 试计算图示矩形截面对于其对称轴(即形心轴)z和y 的惯性矩Iz和Iy,及其惯性积Iyz。 y
z dz
I z y dA
2 A
同理
A
h 2 h 2
3 bh by 2dy 12
h
y
解:取平行于z轴的狭长条作为面积元素, 则 dA bdy
注意的是式中的a,b为坐标,有正负,应用惯性积平行移
轴公式时要特别注意。
15
4.3 平行移轴公式
2、组合截面的惯性矩及惯性积
若组合截面由几个部分组成,则组合截面对于x,y 两轴的惯性矩和惯性积分别为
I x I xi,
i 1
n
I y I yi,
i 1
n
I xy I xyi
i 1
n
d2
y2
x
O x
y1 y
16
b
d1
h
4.3 平行移轴公式
例5 试求图a所示截面对
于x轴的惯性矩Ix ,对于y轴
空心圆形: D d z y
h
z
z
y
bh3 Iz 12 hb3 Iy 12
y
Iz Iy Ip
d 4
64
4
Iy Iz
D 4 d 4
64
D 4
64
d
(1 4 )
32
32
Ip
D 4
dD
11
(1 4 )
4.2 惯性矩与惯性积
2、惯性积
S yC 0
S zC 0
A1 c1 A2 c2
Sy
(3)组合图形静矩可分块计算求代数和
S z S z1 S z 2 A1 yC1 A2 yC 2
(4)求形心
S z A1 yC1 A2 yC 2 yC A A
A1 zC1 A2 zC 2 zC A A
4
4.1 截面的静矩与形心
dy
5
4.1 截面的静矩与形心
例2 试计算图示T型截面的形心位置。
60
将截面分为I、II两个矩形,建立 如图所示坐标系。 各矩形的面积和形心坐标如下:
y
C
yC
z C zC C z
A A 20mm 60mm=1200mm2 yC 50mm yC 10mm

y 20
于是:
相关文档
最新文档