光缆光纤的基础知识
光缆光纤布线知识及注意事项

光缆光纤布线知识及注意事项一、光缆光纤布线知识1.光缆类型光缆可以分为单模光缆和多模光缆两种。
单模光缆适用于长距离传输,多模光缆适用于短距离传输。
2.光纤类型光纤可以分为单模光纤和多模光纤两种。
单模光纤传输距离远,多模光纤传输距离短。
3.光纤接口类型光纤接口可以分为SC接口、LC接口等多种类型。
不同类型的接口适用于不同的应用场景。
4.光缆敷设方式光缆的敷设可以分为架空敷设、地下敷设等多种方式。
根据实际情况选择合适的敷设方式。
5.光缆辐射安全光缆在挖掘时要注意避免对人体造成辐射,特别是单模光缆。
二、光缆光纤布线注意事项1.环境条件2.光缆保护光缆在布线过程中需要进行保护,避免光缆被压力、弯曲或者拉力导致损坏。
光缆通常使用保护套管或者保护线槽进行保护。
3.光纤接触光纤在布线过程中需要避免露头,保证光纤接触的完整性,避免因接触不良导致信号传输问题。
4.光纤弯曲半径光纤在布线过程中需要保证弯曲半径,避免光纤过度弯曲导致信号传输损失。
一般建议的最小弯曲半径是光纤直径的10倍。
5.光缆长度在布线过程中需要考虑光缆的长度,避免光缆过长导致信号传输衰减。
一般建议的最大长度为100米。
6.光纤连接光缆在布线过程中需要进行连接,连接时需要注意光纤的清洁和插拔的正确操作,避免连接问题导致信号传输失败。
7.光缆标识在布线完成后,需要对光缆进行标识,以方便日后的维护和管理。
总结:光缆光纤布线是网络建设和通信工程中重要的一环,正确的布线和操作对于保证通信质量和网络稳定性具有重要意义。
在进行光缆光纤布线时,需要了解相关知识和注意事项,并根据实际情况选择合适的光缆和敷设方式。
同时,还需要对光缆进行保护和标识,以确保光缆的传输性能和日后的维护和管理工作。
1.光纤光缆基础知识

THANK YOU!
产生光损耗的原因大部分为光纤具有的固有损耗和光纤制造后 的附加损耗。前者主要包括瑞利散射损耗、吸收损耗、波导结构不完 善引起的损耗;后者包括微弯损耗、弯曲损耗、接续损耗等。
损耗成因
瑞利散射损耗
吸收损耗
固有损耗
附加损耗
对于光纤损耗的成因及其解决方案,在这里不做深入的研究,了解即可。
微弯损耗
弯曲损耗
接续损耗
N/A
GSK/GMK/GCF
B5
G656
N/A
B6
G657
N/A
多模62.5/125
A1b
N/A
OM1
MCF
OM2
ACF
多模50/125
A1a
G651.1
OM3
OM4
我们公司最常用的光 纤为G652D和G655
G.652是常规单模光纤,零色散 点在1300nm,此点色散最小;同 时根据PMD又分为G. 652A、B、C、 D四种。
按传输模式分类
类型
解释
纤芯只能传输 单模光纤 单个模式的光
纤
多模光纤
纤芯能传输多 个模式的光纤
纤芯直径 包层外径
8μm-10μm 125μm
50μm、 62.5μm
125μm
2. 光纤分类
2.3 总结
光纤 类型
单模 光纤
传输模式
只能传输单 模式的光纤
多模 光纤
能传输多个 模式的光纤
传输距离 传输距离远
6. 光缆简介
6.2 光缆分类
用途
光纤种类
光纤芯数
加强件配置
传输导体、介质状况 铺设方式
结构方式
用户光缆 单模光缆 单芯光缆
光纤光缆基础知识全解析(最全最详细)

光纤光缆基础知识全解析(最全最详细)光纤的原材料以玻璃为主,所以制造成本相对不⾼。
光纤通讯有良好的特性,如:保密性、容量⾼、速率⾼等。
所以光纤应⽤极为⼴泛,⼤致有以下⼏类:1、⾻⼲传输⽹络(SDH/SONET),如各⼤城市之间、各⼤洋底的海底光缆等;2、以太⽹(GBE),包括现在的光纤到户(FTTH)、到楼(FTTB)、到社区等,主要是我们家庭、办公⽹络;3、数据⽹络(Fiber channel),各种存储设备、数据库,包括正在发展的云计算服务系统;4、有线电视传输(PIN接收);5、其他特种⽤途传输,如战机、舰船。
动态图⽰光纤光缆的48条基础知识点1.简述光纤的组成答:光纤由两个基本部分组成:由透明的光学材料制成的芯和包层、涂敷层。
2.描述光纤线路传输特性的基本参数有哪些?答:包括损耗、⾊散、带宽、截⽌波长、模场直径等。
3. 产⽣光纤衰减的原因有什么?答:光纤中光功率沿纵轴逐渐减⼩。
光功率减⼩与波长有关。
光纤链路中,光功率减⼩主要原因是散射、吸收,以及连接器和熔接接头造成的光功率损耗。
衰减的单位为dB。
产⽣原因:使光纤产⽣衰减的原因很多,主要有:吸收衰减,包括杂质吸收和本征吸收;散射衰减,包括线性散射、⾮线性散射和结构不完整散射等;其它衰减,包括微弯曲衰减等。
其中最主要的是杂质吸收引起衰减。
光纤衰减系数(fiber attenuation coefficient):每公⾥光纤对光信号功率的衰减值。
单位:dB/km。
光纤弯曲损耗光纤对弯曲⾮常敏感,过度弯曲 = 光溢出。
如果弯曲半径<20x>两种弯曲都会发⽣光损耗:Macrobend(宏弯)和Microbend(微弯)。
Macrobend当Macrobend弯曲被纠正,可以得到恢复。
MicrobendMicrobend⽆法恢复,⽐如由线缆捆扎过紧造成。
4.光纤衰减系数是如何定义的?答:⽤稳态中⼀根均匀光纤单位长度上的衰减(dB/km)来定义。
光缆的基本知识及常识

光缆小常识光缆基本知识介绍一、光纤的组成与分类1、光纤按其制造材料的不同可分为石英光纤和塑料光纤,石英光纤即通常使用的光纤,石英光纤按其传输模式的不同分为单模光纤和多模光纤。
塑料光纤全部由塑料组成,通常为多模短距离应用,还处于起步阶段,未有大规模应用。
2、石英光纤的结构:石英光纤由纤芯、包层及涂覆层组成,其结构如图:光纤中光的传输在纤芯中进行,因包层与纤芯石英的折射率不同,使光在纤芯与包层表面产生全反射,使光始终在纤芯中传输,而塑料涂覆层起保护石英光纤及增加光纤强度的作用,因石英很脆,若没有塑料的保护则无法在实际中得到应用,正因为光纤的结构如此,所以光纤易折断,但有一定的抗拉力。
3、石英光纤的分类单模光纤G.652A(B1.1简称B1)G.652B(B1.1简称B1)G.652C(B1.3)G.652D(B1.3)G.655A光纤(B4)(长途干线使用)G.655B光纤(B4)(长途干线使用)多模光纤50/125(A1a简称A1)62.5/125(A1b)二、光缆的结构1、室外光缆主要有中心管式光缆、层绞式光缆及骨架式光缆三种结构,按使用光纤束与光纤带又可分为普通光缆与光纤带光缆等6种型式。
每种光缆的结构特点:①中心管式光缆(执行标准:YD/T769-2003):光缆中心为松套管,加强构件位于松套管周围的光缆结构型式,如常见的GYXTW型光缆及GYXTW53型光缆,光缆芯数较小,通常为12芯以下。
②层绞式光缆(执行标准:YD/T901-2001):加强构件位于光缆的中心,5~12根松套管以绞合的方式绞合在中芯加强件上,绞合通常为SZ绞合。
此类光缆如GYTS等,通过对松套管的组合可以得到较大芯数的光缆。
绞合层松套管的分色通常采用红、绿领示色谱来分色,用以区分不同的松套管及不同的光纤。
层绞式光缆芯数可较大,目前层绞式光缆芯数可达216芯或更高。
松套层绞式普通光缆 (GYTA - GYTS - GYTA53 - GYTY53 - GYTA33 - GYTA(Y)533)③骨架式光缆:加强构件位于光缆中心,在加强构件上由塑料组成的骨架槽,光纤或光纤带位于骨架槽中,光纤或光纤带不易受压,光缆具有良好的抗压扁性能。
光缆相关知识点总结大全

光缆相关知识点总结大全一、光缆的基本概念光缆是由一根或多根以及相关的附件组成的,具有光学传输特性的传输介质。
它主要由光纤、包层、护套和其它特种组件组成。
光缆的主要优势在于传输速度快,传输容量大,抗干扰能力强,且具有较长的寿命。
二、光缆的分类1.按照构造方式分类光缆可分为裸光缆、光缆、光纤连接线、光纤分支线等,根据用途不同有专门化设计的光缆。
2.按用途分类(1)室内光缆室内光缆广泛用于办公楼、商场、工厂等建筑室内的通信传输。
(2)室外光缆室外光缆主要用于户外跨越、管道线路或者敷设在光缆护套和管道内。
3.按传输介质分类(1)单模光纤单模光纤能够传输单一的波长,适用于大直径光纤,传输距离较远。
(2)多模光纤多模光纤可以传输多个波长,适用于小直径光纤,传输距离较短。
4.按结构分类(1)中心缆中心缆光纤芯是缆芯的集中分布,轴向拉伸,属于裸光缆,抗拉伸性和抗外界环境的性能非常好。
(2)分支缆分支缆主要用于光缆敷设到分支状终端的应用环境。
三、光缆的光学原理光纤的基本结构是由两种不同的介质组成,即外层护套(包层)和内核。
内核是折射率比包层小的树脂和显微的玻璃纤维组成。
包层的折射率通常较小,使内核中“驻波光”的传播。
光沿内核表面传播,在不同折射率的内核与包层之间,会产生反射现象。
四、光缆的基本特性1. 低损耗光缆的传输介质是光纤,几乎不受材料自身的损耗,且具有较低的传输损耗。
2. 高带宽光缆传输带宽较大,可传输大量数据,适用于大容量数据传输。
3. 高速度光缆传输速度快,可满足高速数据传输的需求,能够满足未来通信技术的需求。
4. 抗干扰能力强光缆传输时不易受到电磁干扰,是一种抗干扰能力较强的传输介质。
5. 灵活性光缆可以弯曲安装,对应用环境的要求不高,非常灵活。
光缆在现代通信领域占据了非常重要的地位,在未来通信网络中仍将发挥重要作用。
对光缆的深入了解,有助于提高通信网络技术水平,促进通信网络技术的发展。
光纤光缆知识培训

光纤光缆知识培训一、光纤光缆的基本概念光纤光缆是一种用于传输光信号的通信线路,它由一根或多根纤维组成,每根纤维都是以光波导的形式将光信号进行传输。
光纤光缆能够实现宽带、高速、远距离传输,并且具有抗干扰能力强、信息安全性高的优点。
光纤光缆的基本构造包括光纤芯、包层和护套。
光纤芯是传输光信号的主体,其材料通常为二氧化硅。
包层用于包裹光纤芯以提高光纤的抗折和抗拉性能,通常采用二氧化硅或者氟化聚合物。
护套则是用于保护整根光缆的材料,一般为聚乙烯或者聚氯乙烯等塑料材料。
二、光纤光缆的传输特性1. 带宽大:相比于传统的铜质电缆,光纤光缆的带宽更大,能够支持更高速的数据传输。
2. 传输距离远:光纤光缆能够实现较长距离的信号传输,通常能够实现几十公里到上百公里的传输距离。
3. 信号衰减小:光纤光缆的信号衰减非常小,可以在长距离内保持信号的稳定传输。
4. 抗干扰性强:由于光信号是以光波导的形式进行传输,光纤光缆具有良好的抗干扰性,能够在电磁干扰较严重的环境下实现稳定的传输。
5. 信息安全性高:光纤光缆传输的是光信号,而非电信号,因此很难被窃听,具有较高的信息安全性。
三、光纤光缆的应用领域1. 通信网络:光纤光缆是构建光纤通信网络的关键基础设施,其宽带、高速、远距离传输的特性使得其被广泛应用于长途、城域通信网的建设。
2. 数据中心:在数据中心网络中,光纤光缆能够提供高速、大容量的数据传输,以满足大数据处理和云计算等应用的需求。
3. 工业自动化:光纤光缆的抗干扰性强,使得其在工业自动化领域得到广泛应用,用于传输各类传感器信息、控制信号等。
4. 医疗领域:光纤光缆被广泛应用于医疗设备中,用于传输医学图像、激光手术器械等。
5. 军事领域:由于其信息安全性高的特性,光纤光缆在军事通信和指挥控制系统中得到广泛应用。
四、光纤光缆的安装和维护1. 安装前的准备:在进行光纤光缆的安装前,需要对线路进行详细的规划设计,包括线路路径选择、光缆类型选择等。
光纤光缆基本知识

光纤和光缆基础知识光纤光缆基本知识一、光纤通信及发展史1、1966年英籍华人高锟提出“光纤通信”.2、以激光为光源,经光纤为传输媒质的通信方式,叫做光纤通信.3、1983年武汉三镇使用光纤通信投入电话网中使用,标志着我国光纤通信进入使用阶段.二、光通信原理介绍及光纤通信的特点1、全反射原理:1)光从光密介质射入光疏介质。
2)入射角大于临界角。
2、光通信特点:优点:1)传输频带宽、通信容量大2) 中继距离远、损耗低3)抗电磁能力强、无串话4)重量轻5)资源丰富6)抗化学腐蚀、柔软可绕缺点:1)强度不如金属2)连接比较困难3)分路耦合不变4)弯曲半径不宜太小5)传输能量比较困难三、光纤通信系统的组成光发送光传输光接收光端机四、光纤简介1、光纤的结构:由纤芯、包层、涂覆层组成2、光纤分类:1)按材料组成分:玻璃光纤、塑料光纤2)按传输模式分:单模光纤、多模光纤单模光纤G652 折射率:1310nm 1.4677 1550nm 1.4682G655 折射率:1550nm 1.4690多模光纤芯径62.5um A1b 折射率:850nm 1.496 1300nm 1.487芯径50um A1a 折射率:850nm 1.482 1300nm 1.4773、常用光纤的主要技术特性及部分指标介绍指标的介绍:1)衰减:光在光纤中传输时能量的损耗2)色散:光脉冲在光纤中传输时脉冲的展宽3)偏振模色散:基模可分解成两个垂直相交的偏振模,光脉冲在光纤中传输时现两个垂直的偏振模间的时延差4)光纤几何参数:包层直径、涂层直径、光纤不圆度同心度误差:芯/包层<1um 涂覆层/包层<12um不圆度=长轴直径-短轴直径/标准值4、模场直径:基模光斑的大小标准:9.2+0.4um模:光在光纤中的传输方式(单模、多模)纤芯直径:8.3um5、截止波长:保证光纤以基模传输的最小波长(G652 1100-1330nm)常用光纤的主要技术特性G652 衰减 1310nm≤0.36dB/km 1550nm≤0.22dB/km模场直径 1310nm 9.3+0.5um 1550nm 10.5+0.8um包层直径 125+1.0um包层不圆度≤02%模场/包层同心度误差≤1um涂层直径 245+5um涂层不圆度 /涂层与包层同心度误差 <12um截止波长 1100nm≤λc≤1330nm零色散波长 1300nm-1324nm零色散斜率≤0.093Ps/nm2.km1288-1339nm波长范围内色散系数≤3.5 Ps/nm.km1271-1360nm波长范围内色散系数≤5.3 Ps/nm.km1550nm波长范围内色散系数≤17 Ps/nm.km衰减不连续性—--在1310nm或1550nm处均没有大于0.01dB的不连续点,实际一般控制≤0.03dB.衰减不均匀性----在光纤后向散射曲线上,任意500米长度上的实测衰减值与全长平均每500米的衰减值之差的最坏值应≤0.05dB.外观检查----排丝整齐,颜色鲜明涂覆层牢固光洁,不脱皮.G655 (康宁LEAF、朗讯真波、长飞大保实)康宁 LEAF :衰减: 1550nm ≤ 0.22dB/km模场直径(MFD):9.5±0.6um截止波长(λcc) 1470nm色散:1530-1565nm 2.0-6.0 PS/nm.km1565-1625nm 4.5-11.2 PS/nm.km零色散斜率≤0.1Ps/nm2.kmPMD ≤0.1PS/km1/2朗讯真波:衰减:1550nm≤ 0.22dB/km模场直径(MFD):9.4±0.6um截止波长(λcc) 1260nm色散:1530-1565nm 2.0-6.0 PS/nm.km1565-1625nm 4.0-8.6 PS/nm.km零色散斜率≤0.05Ps/nm2.kmPMD ≤0.5PS/km1/2光缆的简单介绍1、缆的分类按光纤类别分:单模光纤光缆、多模光纤光缆按缆芯结构分:中心束管式、层绞式、骨架式层绞式把松套光纤绕在中心加强件周围绞合而构成。
光纤和光缆通信基本知识

光纤和光缆通信基本知识一、概述 光纤呈圆柱形,由纤芯、包层与涂层三大部分组成,如下图 纤芯主要采用高纯度的SiO2二氧化硅,并掺有少量的掺杂剂,提高纤芯的光折射率n1;包层也是高纯度的二氧化硅,也掺杂一些掺杂剂,主要是降低包层的光折射率n2;涂层采用丙烯酸酯、硅橡胶、尼龙,增加机械强度和可弯曲性。
光缆是多根光纤放在放在一个松套管内,内冲石油膏和钢丝形成的。
海底光缆内还有电源线,主要为中继站的放大器等提供电源。
二、光信号在光纤内的传输原理 为了保证光信号在光纤中能进行远距离传输,一定要使光信号在光纤中反复进行全反射,才能保证衰减最小,色散最小,到达远端。
实现全反射的两个条件为: 1、一定要使光纤纤芯的折射率n1大于光纤包层的折射率N2; 2、光入光纤的光线向纤芯---包层界面入射时,入射角θ应大于临界角θc ,如下图: 光的折射和反射定律:入射角=反射角,所以 ∠θ=∠θ2 n1sin θ=n2sin θ1 因n1>n2 则θ1 〉θ,当θ1=π/2 ,θ=θc 为临界角,θ继续增大,则形成全反射,无折射。
进入光纤的光,在光纤的纤芯---包层界面上的入射角大于临界角时,在交界面内发生全反射,而入射角小于临界角的光就有一部分进入包层被很快衰减掉。
前者的传输衰减小,能远距离传输,称为传导模。
能满足全反射条件的光线也只有某些以特定的角度射入光纤端面的部分才能在光纤中传输,因此,不同模式的光传输方向不是连续改变的。
当通过同样一段光纤时,以不同角度入射后,光信号在光纤中所走的路径也不一样,沿光纤轴前进的光走的路径最短,而与轴线交角大的光所走的路径长。
三、光纤的种类 按传播模式分类----多模光纤和单模光纤。
光是一种频率极高的电磁波,频率约为3X10E14 Hz ,它在波导光纤中传播时,根据波动光学理论和电磁场理论,当波导光纤纤芯的几何尺寸远大于光波波长时,光在波导光纤中会以几十种或更多的传播模式进行传播。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光缆光纤基础知识
1.光缆的基本结构
光缆一般由缆芯、加强构件和护层三部分组成。
缆芯:由单根或多根光纤芯线组成,有紧
套和松套两种结构。
紧套光纤有二
层和三层结构。
加强构件:用于增强光缆敷设时可承受的负荷。
一般是金属丝或非金属纤维。
护层:具有阻燃、防潮、耐压、耐腐蚀等
特性,主要是对已成缆的光纤芯线
进行保护。
根据敷设条件可由铝带图1-1 光缆结构
/聚乙烯综合纵包带粘界外护层(LAP),钢带(或钢丝)铠装和
聚乙烯护层等组成。
2.光缆的分类
①按敷设方式分类:直埋光缆、管道光缆、架空光缆、水底光缆;
②按缆芯结构分类:层绞式、骨架式、中心束管式、带状式、单元式;
③按外护套结构分类:无铠装、钢带铠装、钢丝铠装;
④按维护方式分类:充油光缆、充气光缆;
⑤按光缆中有无金属分类:有金属光缆、无金属光缆;
⑥按适用范围分类:中继光缆、海底光缆、用户光缆、局内光缆、长途光缆;
⑦按所使用的光线分类:单模光缆、多模光缆、(阶跃型、渐变型)。
3.光缆的结构特点
室外光缆主要有中心管式光缆、层绞式光缆及骨架式光缆三种结构,按使用光纤束与光纤带又可分为普通光缆与光纤带光缆等6种型式。
每种光缆的结构特点如下:
①中心束管式光缆:光缆中心为松套管,加强构件位于松套管周围的光缆结构型式,如常见的GYXTW型光缆及GYXTW53型光缆,光缆芯数较小,通常为12芯以下。
图3-1中心束管式光缆结构
②层绞式光缆:加强构件位于光缆的中心,5~12根松套管以绞合的方式绞合在中芯加强件上,绞合通常为SZ绞合。
此类光缆如G YT A、G YT S等,通过对松套管的组合可以得到较大芯数的光缆。
绞合层松套管的分色通常采用红、绿领示色谱来分色,用以区分不同的松套管及不同的光纤。
图3-2层绞式光缆结构
③骨架式光缆:加强构件位于光缆中心,在加强构件上由塑料组成的骨架槽,光纤或光纤带位于骨架槽中,光纤或光纤带不易受压,光缆具有良好的抗压扁性能。
该种结构光缆在国内较少见,所占的比例较小。
图3-3骨架式光缆结构
④8字型自承式结构,该种结构光缆可以并入中心管式与层绞式光缆中,把它单独列出主要是因为该光缆结构与其它光缆有较大的不同。
通常有中心管式与层绞式8字型自承式光缆。
图3-4 8字型自承式光缆结构
4.光缆
的型
号
根据I T U -T 的有关建议,目前光缆的型号是由光缆的型式代号和光纤的规格代号两部分构成,中间用一短横线分开。
光缆的型式代号由分类、加强构件、派生特征、护套和外乎层5个部分组成。
光缆型式组成组成部分如下:
I 、表示光缆类别 G Y ——通信用室外光缆 G J ——通信用室(局)内光缆 GS ——通信用设备内光缆; GM ——通信用移动式光缆 GH ——通信用海底光缆 GT ——通信用特殊光缆 Ⅱ、加强构件类型
(无型号)——金属加强构件 F ——非金属加强构件 G — —金属重型加强构件
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ
5.室外常用光缆的型号
G Y X T W——金属加强构件、中心管填充式、夹带钢丝的钢-聚乙烯粘结护层通信用室外光缆,适用于管道及架空敷设。
G Y F T Y——非金属加强构件、松套层绞填充式、聚乙烯护套通信用室外光缆,适用于管道及架空敷设,主要用于有强电磁危害的场合。
G Y T A——金属加强构件、松套层绞填充式、铝-聚乙烯粘结护套通信用室外光缆,
适用于管道及架空敷设。
G Y T S——金属加强构件、松套层绞填充式、钢-聚乙烯粘结护套通信用室外光缆,
适用于管道及架空敷设。
G Y T A53——金属加强构件、松套层绞填充式、铝-聚乙烯粘结护套、纵包皱纹钢带
铠装、聚乙烯套通信用室外光缆,适用于直埋敷设。
6.光缆AB端的识别
光缆A、B端识别方法:面对光缆截面,由领示光纤以红—绿顺时针为A端,逆时针为B端。
这种识别方法适用于层绞式光缆和骨架式光缆:其中层绞式光缆可按松套管的颜色来确定领示色。
如按上述方式不能区分端别,可按厂家提供的有关资料来区分光缆的端别,如仍不能区分,则按光缆外护套上标明光缆长度的数码来区分,如规定小数字端为A端,大数字端为B端。
7.光纤的结构
光纤的结构三部分组成:纤芯、包层、涂覆层。
图7-1 光纤结构
①纤芯位于光纤中心,直径2a为5~75μm, 作用是传输光波。
②包层位于纤芯外层,直径2b为100~150μm,作用是将光波限制在纤芯中。
纤芯和包层即组成裸光纤,两者采用高纯度二氧化硅(SiO2)制成,但为了使光波在纤芯中传送,应对材料进行不同掺杂,使包层材料折射率n2比纤芯材料折射率n1小,即光纤导光的条件是n1>n2。
一次涂敷层是为了保护裸纤而在其表面涂上的聚氨基甲酸乙脂或硅酮树脂层,厚度一般为30~150μm。
8.光纤的分类。