空间向量在立体几何中的应用知识点大全、经典高考题带解析、练习题带答案

合集下载

高考数学资料——5年高考题、3年模拟题分类汇编专题_空间向量在立体几何中的应用

高考数学资料——5年高考题、3年模拟题分类汇编专题_空间向量在立体几何中的应用

第三节空间向量在立体几何中的应用一、填空题1. 若等边的边长为,平面内一点知足,则_________2.在空间直角坐标系中,已知点 A( 1,0, 2), B(1 , -3 , 1) ,点 M在 y 轴上,且 M到 A 与到 B 的距离相等,则 M的坐标是 ________。

【分析】设由可得故【答案】 (0,-1 , 0)二、解答题3.(本小题满分 12 分)如图,在五面体ABCDEF中, FA 平面 ABCD, AD(II )证明:,(I II )又由题设,平面的一个法向量为4.(此题满分15 分)如图,平面平面,是认为斜边的等腰直角三角形,分别为,,的中点,,.(I )设是的中点,证明:平面;(II )证明:在内存在一点,使平面,并求点到,的距离.证明:( I )如图,连结 OP,以 O为坐标原点,分别以 OB、 OC、 OP所在直线为轴,轴,轴,成立空间直角坐标系 O,则,由题意得,因,所以平面BOE的法向量为,得,又直线不在平面内,所以有平面6.(本小题满分 12 分)如图,已知两个正方行ABCD 和 DCEF不在同一平面内,M, N 分别为 AB, DF的中点。

(I)若平面 ABCD ⊥平面 DCEF,求直线 MN与平面 DCEF所成角的正当弦;(I I )用反证法证明:直线 ME 与 BN 是两条异面直线。

设正方形ABCD,DCEF的边长为2,以 D 为坐标原点,分别以射线DC,DF,DA为 x,y,z轴正半轴成立空间直角坐标系如图.则 M( 1,0,2 ) ,N(0,1,0),可得=(-1,1,2).又 =( 0, 0, 2)为平面DCEF的法向量,可得cos(,)=·DCEF所成角的正弦值为所以MN与平面cos · 6 分( Ⅱ ) 假定直线ME与 BN共面,8 分则 AB平面 MBEN,且平面 MBEN与平面 DCEF交于 EN由已知,两正方形不共面,故AB平面 DCEF。

空间向量与立体几何练习题(带答案)

空间向量与立体几何练习题(带答案)

空间向量与立体几何练习题(带答案)一、选择题1.若空间向量a与b不相等,则a与b一定()A.有不同的方向B.有不相等的模C.不可能是平行向量D.不可能都是零向量【解析】若a=0,b=0,则a=b,这与已知矛盾,故选D.【答案】D图2-1-72.如图2-1-7所示,已知平行六面体ABCD-A1B1C1D1,在下列选项中,CD→的相反向量是()A.BA→B.A1C1→C.A1B1→D.AA1→【解析】由相反向量的定义可知,A1B1→是CD→的相反向量.【答案】C图2-1-83.在如图2-1-8所示的正三棱柱中,与〈AB→,AC→〉相等的是() A.〈AB→,BC→〉B.〈BC→,CA→〉C.〈C1B1→,AC→〉D.〈BC→,B1A1→〉【解析】∵B1A1→=BA→,∴〈BA→,BC→〉=〈AB→,AC→〉=〈BC→,B1A1→〉=60°,故选D.【答案】D4.在正三棱锥A-BCD中,E、F分别为棱AB,CD的中点,设〈EF→,AC→〉=α,〈EF→,BD→〉=β,则α+β等于()A.π6B.π4C.π3D.π2【解析】如图,取BC的中点G,连接EG、FG,则EG∥AC,FG∥BD,故∠FEG=α,∠EFG=β.∵A-BCD是正三棱锥,∴AC⊥BD.∴EG⊥FG,即∠EGF=π2.∴α+β=∠FEG+∠EFG=π2.【答案】D5.如图2-1-9所示,正方体ABCD-A1B1C1D1中,以顶点为向量端点的所有向量中,直线AB的方向向量有()图2-1-9A.8个B.7个C.6个D.5个【解析】与向量AB→平行的向量就是直线AB的方向向量,有AB→,BA→,A1B1→,B1A1→,C1D1→,D1C1→,CD→,DC→,共8个,故选A.【答案】A二、填空题6.在正方体ABCD-A1B1C1D1中,若E为A1C1的中点,则向量CE→和BD→的夹角为________.【解析】∵BD→为平面ACC1A1的法向量,而CE在平面ACC1A1中,∴BD→⊥CE→.∴〈BD→,CE→〉=90°.【答案】90°7.下列命题正确的序号是________.①若a∥b,〈b,c〉=π4,则〈a,c〉=π4.②若a,b是同一个平面的两个法向量,则a=B.③若空间向量a,b,c满足a∥b,b∥c,则a∥c.【解析】①〈a,c〉=π4或3π4,①错;②a∥b;②错;③当c=0时,推不出a∥c,③错;④由于异面直线既不平行也不重合,所以它们的方向向量不共线,④对.【答案】④8.在棱长为1的正方体中,S表示所有顶点的集合,向量的集合P={a|a =P1P2→,P1,P2∈S},则在集合P中模为3的向量的个数为________.【解析】由棱长为1的正方体的四条体对角线长均为3知:在集合P 中模为3的向量的个数为8.【答案】8三、解答题图2-1-109.如图2-1-10所示,在长、宽、高分别为AB=3、AD=2、AA1=1的长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中,(1)单位向量共有多少个?(2)试写出模为5的所有向量;(3)试写出与AB→相等的所有向量.【解】(1)由于长方体的高为1,所以长方体4条高所对应的AA1→,A1A→,BB1→,B1B→,CC1→,C1C→,DD1→,D1D→这8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于这个长方体的左右两侧的对角线长均为5,故模为5的向量有AD1→,D1A→,A1D→,DA1→,BC1→,C1B→,B1C→,CB1→共8个.(3)与向量AB→相等的所有向量(除它自身之外)共有A1B1→,DC→及D1C1→3个.图2-1-1110.如图2-1-11所示,正四棱锥S-ABCD中,O为底面中心,求平面SBD的法向量与AD→的夹角.【解】∵正四棱锥底面为正方形,∴BD⊥AC,SO⊥AC又∵BD∩SO=O∴AC⊥平面SBD.∴AC→为平面SBD的一个法向量.∴〈AC→,AD→〉=45°.图2-1-1211.如图2-1-12,四棱锥P—ABCD中,PD⊥平面ABCD,底面ABCD 为正方形且PD=AD,E、F分别是PC、PB的中点.(1)试以F为起点作直线DE的一个方向向量;(2)试以F为起点作平面PBC的一个法向量.【解】(1)取AD的中点M,连接MF,连接EF,∵E、F分别是PC、PB的中点,∴EF綊12BC,又BC綊AD,∴EF綊12AD,则由EF綊DM知四边形DEFM是平行四边形,∴MF∥DE,∴FM→就是直线DE的一个方向向量.(2)∵PD⊥平面ABCD,∴PD⊥BC,又BC⊥CD,∴BC⊥平面PCD,∵平面PCD,∴DE⊥BC,又PD=CD,E为PC中点,∴DE⊥PC,从而DE⊥平面PBC,∴DE→是平面PBC的一个法向量,由(1)可知FM→=ED→,∴FM→就是平面PBC的一个法向量.。

高二数学空间向量与立体几何试题答案及解析

高二数学空间向量与立体几何试题答案及解析

高二数学空间向量与立体几何试题答案及解析1.长方体中,,,,则与所成角的余弦值为.【答案】【解析】以D为空间原点,DA为x轴,D为z轴,DC为y轴,建立空间直角坐标系则=(-1,2,0),=(-1,-2,3)||=,|'|=,·=-3cos<,>==,即为所求。

【考点】本题主要考查空间向量的应用,向量的数量积,向量的坐标运算。

点评:简单题,通过建立空间直角坐标系,将求异面直线的夹角余弦问题,转化成向量的坐标运算。

2.正方体的棱长为1,是底面的中心,则到平面的距离为.【答案】【解析】因为O是A1C1的中点,求O到平面ABC1D1的距离,就是A1到平面ABC1D1的距离的一半,就是A1到AD1的距离的一半.所以,连接A1D与AD1的交点为P,则A1P的距离是:O到平面ABC1D1的距离的2倍O到平面ABC1D1的距离【考点】本题主要考查空间距离的计算。

点评:本题也可以通过建立空间直角坐标系,将求角、求距离问题,转化成向量的坐标运算,是高考典型题目。

3.已知={-4,3,0},则与垂直的单位向量为= .【答案】(,,0)【解析】设与垂直的向量与垂直的向量=(x,y,0),则-4x+3y=0,,解得x= ,y=,所以=(,,0)。

【考点】本题主要考查向量的坐标运算、向量垂直的充要条件、单位向量的概念。

点评:利用向量垂直的充要条件及单位向量的概念。

4.已知向量与向量平行,则()A.B.C.D.【答案】C【解析】因为向量与向量平行,所以,,故选C。

【考点】本题主要考查平行向量及向量的坐标运算。

点评:简单题,按向量平行的充要条件计算。

5.已知点,为线段上一点,且,则的坐标为()A.B.C.D.【答案】C【解析】设C的坐标为(x,y,z)则向量=(x-4,y-1,z-3)向量=(-2,-6,-2),而即=所以x-4=-,y-1=-2,Z-3=-所以x=,y=-1,z=,C的坐标为,选C。

高中数学高考考点解析8.5 空间向量在立体几何中的应用

高中数学高考考点解析8.5 空间向量在立体几何中的应用

即 22 xx

4 2
y y

2z 0.

0,
令x=1,则y=1,z=3,∴平面GEF的一个法向量为n=(1,1,3).设点B到平面

GEF的距离为h,则有h=| BG n | = | 4 6 | = 2 = 2 11 ,故选C.
|n|
11 11 11
答案 C
栏目索引
方法技巧
栏目索引
栏目索引
考向二 利用空间向量求距离
例2 (2017福建漳州八校3月联考,8)已知正方形ABCD的边长为4,CG⊥
平面ABCD,CG=2,E,F分别是AB,AD的中点,则点B到平面GEF的距离为
( )
A. 11
B. 11 2
C. 2 11 11
D. 4 11 11
栏目索引
解析 连接BG.以C为原点, CD , CB , CG 的方向分别为x,y,z轴的正方向建 立如图所示的空间直角坐标系,
由题意得A(0,0,3),E(2,0,0),G(1, 3 ,3),C(-1, 3 ,0),
故 AE

=(2,0,-3), AG
=(1, 3

,0), CG
=(2,0,3),
设m=(x1,y1,z1)是平面AEG的法向量.

m m


AE

AG

0, 0
可得
2x1 x1
| m || n | 10
10
所以,二面角E-BC-F的正弦值为 10 . 10
栏目索引
(3)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得 BP =(-1,-
2,h).

空间向量在立体几何中的应用知识点大全、经典高考题带解析、练习题带答案[2]演示教学

空间向量在立体几何中的应用知识点大全、经典高考题带解析、练习题带答案[2]演示教学

空间向量在立体几何中的应用【考纲说明】1.能够利用共线向量、共面向量、空间向量基本定理证明共线、共面、平行及垂直问题;2.会利用空间向量的坐标运算、两点间的距离公式、夹角公式等解决平行、垂直、长度、角、距离等问题;3.培养用向量的相关知识思考问题和解决问题的能力;【知识梳理】一、空间向量的运算 1、向量的几何运算 (1)向量的数量积:已知向量 ,则 叫做 的数量积,记作 ,即 空间向量数量积的性质:① ;② ;③.(2)向量共线定理:向量()0a a ≠rr r 与b r 共线,当且仅当有唯一一个实数λ,使b a λ=r r .2、向量的坐标运算 (1)若,,则.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

(2)若 , ,则 ,,,;,.(3)夹角公式:(4)两点间的距离公式:若,,则二、空间向量在立体几何中的应用2.利用空间向量证明平行问题对于平行问题,一般是利用共线向量和共面向量定理进行证明.3.利用空间向量证明垂直问题对于垂直问题,一般是利用进行证明;4.利用空间向量求角度(1)线线角的求法:设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为(线线角的范围[00,900])(2)线面角的求法:设n是平面的法向量,是直线的方向向量,则直线与平面所成的角为(3)二面角的求法:设n1,n2分别是二面角的两个面,的法向量,则就是二面角的平面角或其补角的大小(如图)5.利用空间向量求距离(1)平面的法向量的求法:设n=(x,y,z),利用n与平面内的两个不共线的向a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量(如图)。

(2)利用法向量求空间距离(a)点A到平面的距离:,其中,是平面的法向量。

(b)直线与平面之间的距离:,其中,是平面的法向量。

(c)两平行平面之间的距离:,其中,是平面的法向量。

【经典例题】【例1】(2010全国卷1理)正方体ABCD-1111A B C D中,B1B与平面AC1D所成角的余弦值为()(A)23(B)33(C)23(D)63【解析】D【例2】(2010全国卷2文)已知三棱锥S ABC-中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为()(A)3(B)5(C)7(D)34【解析】D【例3】(2012全国卷)三棱柱111ABC A B C-中,底面边长和侧棱长都相等,1160BAA CAA∠=∠=o,则异面直线1AB与1BC所成角的余弦值为____________。

空间向量在立体几何中的应用-立体几何

空间向量在立体几何中的应用-立体几何
(4)若平面α的一个 法向量 为m,P是α外一
点,A是α内任一点,则点P到α的距离d= | PA·m | .
|m|
考点一 用向量证明平行、垂直问题
如图,在四棱锥P—ABCD 中,PA⊥平面ABCD,底面 ABCD为矩形,且PA=AD, E,F分别为线段AB,PD的中 点.求证:
(1) AF∥平面PEC;
相等或互补 .
5.空间的距离
(1)一个点到它在一个平面内 正射影 的距离,叫做 点到这个平面的距离.
(2)已知直线l平行平面α,则l上任一点到α的距离 都 相等 ,且叫做l到α的距离.
返回目录
(3)和两个平行平面同时 垂直 的直线,叫做两 个平面的公垂线.公垂线夹在平行平面间的部分,叫做两 个平面的 公垂线段 .两平行平面的任两条公垂线段的长 都相等,公垂线段的 长度 叫做两平行平面的距离, 也是一个平面内任一点到另一个平面的距离.
EC=(
a
22 ,1,0),∴AF=
1
2 EP+
1 EC,
2
2
2
又AF⊂ 平面PEC,∴AF∥平面PEC.
(2)PD=(0,1,-1),CD=(-a,0,0), 11
∴AF·PD=(0, 2, 2)·(0,1,-1)=0, AF·CD=(0, 1 , 1 )·(-a,0,0)=0,
22 ∴AF⊥PD,AF⊥CD,又PD∩CD=D,
∴m⊥n.
∴平面ADE⊥平面A1D1F.
返回目录
考点二 用向量求线线角与线面角 如图所示,已知点P在正方体ABCDA′B′C′D′的对角线BD′上,∠PDA=60°. (1)求DP与CC′所成角的大小; (2)求DP与平面AA ′ D′D所成角的大小
【分析】建立空间直角坐标系,利用空间向量方法求解. 返回目录

高中数学 2空间向量与立体几何(带答案)

高中数学 2空间向量与立体几何(带答案)

空间向量与立体几何一.空间向量及其运算1.空间向量及有关概念(1)共线向量定理:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。

a 平行于b 记作a ∥b。

推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式 A O P O =a t+①其中向量a叫做直线l 的方向向量。

在l 上取a AB =,则①式可化为.)1(OB t OA t OP +-=②当21=t 时,点P 是线段AB 的中点,则 ).(21OB OA OP += ③①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式。

(2)向量与平面平行:如果表示向量a 的有向线段所在直线与平面α平行或a在α平面内,我们就说向量a 平行于平面α,记作a ∥α。

注意:向量a∥α与直线a ∥α的联系与区别。

共面向量:我们把平行于同一平面的向量叫做共面向量。

共面向量定理:如果两个向量a 、b 不共线,则向量p与向量a 、b 共面的充要条件是存在实数对x 、y ,使.b y a x p+=①推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y ,使,MB y MA x MP +=④或对空间任一定点O ,有.MB y MA x OM OP ++=⑤在平面MAB 内,点P 对应的实数对(x, y )是唯一的。

①式叫做平面MAB 的向量表示式。

又∵.,OM OA MA -=.,OM OB MB -=代入⑤,整理得.)1(OB y OA x OM y x OP ++--= ⑥由于对于空间任意一点P ,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P 就在平面MAB 内;对于平面MAB 内的任意一点P ,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量MA 、MB (或不共线三点M 、A 、B )确定的空间平面的向量参数方程,也是M 、A 、B 、P 四点共面的充要条件。

高三立体几何大题专题(用空间向量解决立体几何类问题)

高三立体几何大题专题(用空间向量解决立体几何类问题)

1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。

称为基向量。

2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。

则轴。

则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。

)称为空间直角坐标。

注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。

建立即可。

3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。

121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量在立体几何中的应用【考纲说明】1.能够利用共线向量、共面向量、空间向量基本定理证明共线、共面、平行及垂直问题;2.会利用空间向量的坐标运算、两点间的距离公式、夹角公式等解决平行、垂直、长度、角、距离等问题;3.培养用向量的相关知识思考问题和解决问题的能力;【知识梳理】一、空间向量的运算1、向量的几何运算(1)向量的数量积:已知向量 ,则 叫做 的数量积,记作 ,即 空间向量数量积的性质:① ; ② ; ③ .(2)向量共线定理:向量与共线,当且仅当有唯一一个实数,使.()0a a ≠b λb a λ= 2、向量的坐标运算(1)若,,则. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

(2)若 , ,则 ,, , ; ,.(3)夹角公式:(4)两点间的距离公式:若 , ,则 二、空间向量在立体几何中的应用2.利用空间向量证明平行问题 对于平行问题,一般是利用共线向量和共面向量定理进行证明.3.利用空间向量证明垂直问题 对于垂直问题,一般是利用进行证明;4.利用空间向量求角度(1)线线角的求法:设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为(线线角的范围[00,900])(2)线面角的求法:设n是平面的法向量,是直线的方向向量,则直线与平面所成的角为(3)二面角的求法:设n1,n2分别是二面角的两个面,的法向量,则就是二面角的平面角或其补角的大小(如图)5.利用空间向量求距离(1)平面的法向量的求法:设n=(x,y,z),利用n与平面内的两个不共线的向a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量(如图)。

(2)利用法向量求空间距离(a)点A到平面的距离:,其中,是平面的法向量。

(b)直线与平面之间的距离:,其中,是平面的法向量。

(c)两平行平面之间的距离:,其中,是平面的法向量。

【经典例题】【例1】(2010全国卷1理)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为( )(A )(B(C )23 (D【解析】D【例2】(2010全国卷2文)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为( )(A )(D) 34【解析】D【例3】(2012全国卷)三棱柱中,底面边长和侧棱长都相等,111ABC A B C -,则异面直线与所成角的余弦值为____________。

1160BAA CAA ∠=∠= 1AB 1BC 【解析】66【例4】(2012重庆)如图,在直三棱柱ABC-A 1B 1C 1中,AB=4,AC=BC=3,D 为AB 的中点。

(Ⅰ)求异面直线CC 1和AB 的距离;(Ⅱ)若AB 1⊥A 1C ,求二面角A 1—CD—B 1的平面角的余弦值。

【解析】531【例5】(2012江苏)如图,在直三棱柱中,,分别是棱上的点(点D 不同111ABC A B C -1111A B A C =D E ,1BC CC ,于点C ),且为的中点. AD DE F ⊥,11B C 1B ABCSEF1A 1C FE求证:(1)平面平面;ADE ⊥11BCC B (2)直线平面ADE .1//A F 【例6】(2012山东)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB=60°,FC ⊥平面ABCD ,AE ⊥BD ,CB=CD=CF .(Ⅰ)求证:BD ⊥平面AED ;(Ⅱ)求二面角F-BD-C 的余弦值.1.【解析】二面角F-BD-C 的余弦值为.55【例7】(2012江西)在三棱柱中,已知,点在底面的投111ABC A B C -1AB AC AA ===4BC =1A ABC 影是线段的中点。

BC O (1)证明在侧棱上存在一点,使得平面,并求出的1AA E OE ⊥11BB C C AE 长;(2)求平面与平面夹角的余弦值。

11A B C 11BB C C 【解析】,551030【例8】(2012湖南)四棱锥P-ABCD 中,PA ⊥平面ABCD ,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E 是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P-ABCD的体积.【解析】111633V S PA =⨯⨯=⨯=【例9】(2012广东)如图所示,在四棱锥中,平面,,是中P ABCD -AB ⊥PAD //,AB CD PD AD =EPB1CDABPABCED点,是上的点,且,为中边上的高。

F DC 12DF AB =PH PAD ∆AD (1)证明:平面;PH ⊥ABCD (2)若,求三棱锥的体积;1,2,1PH AD FC ===E BCF -(3)证明:平面.EF ⊥PAB 【解析】三棱锥的体积EBCF -11111133262BCF V S h FC AD h ∆=⨯=⨯⨯⨯⨯=⨯=【例10】(2012新课标)如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=AA 1,D 是棱AA 1的中点,DC 1⊥BD .21(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.【解析】二面角的大小为11C BD A --30︒【例11】如图所示,在四棱锥中,底面为矩形,平面点在线段上,P ABCD -ABCD PA ⊥ABCD E PC PC ⊥平面.BDE (1)证明:平面;BD ⊥PAC (2)若,,求二面角的正切值.1PA =2AD =B PC A --【解析】二面角的平面角的正切值为3B PC A --【例12】(2012天津)如图,在四棱锥中,丄平面,丄,丄,P ABCD -PA ABCD AC AD AB BC 0=45ABC ∠,,.==2PA AD =1AC (Ⅰ)证明丄;PC AD (Ⅱ)求二面角的正弦值;A PC D --(Ⅲ)设E 为棱上的点,满足异面直线BE 与CD 所成的角为,求AE 的长.PA 030【解析】,6301010DBAPA 1【课堂练习】1、(2012上海)若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (用反三角函数值表示)2、(2012四川)如图,在正方体中,、分别是、的中点,则异面直线与1111ABCD A B C D -M N CD 1CC 1A M DN 所成角的大小是____________。

3、(2012全国卷)如图,四棱锥中,底面为菱形,底面,,P ABCD -ABCD PA ⊥ABCD AC =2PA =是上的一点,。

E PC 2PE EC =(Ⅰ)证明:平面;PC ⊥BED (Ⅱ)设二面角为,求与平面所成角的大小。

A PBC --90 PD PBC 4、(2010辽宁理)已知三棱锥P -ABC 中,PA ⊥ABC ,AB ⊥AC ,PA=AC=½AB ,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点.(Ⅰ)证明:CM ⊥SN ;(Ⅱ)求SN 与平面CMN 所成角的大小.5、(2010辽宁文)如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥(Ⅰ)证明:平面1AB C ⊥平面11A BC ;(Ⅱ)设D 是11A C 上的点,且1//A B 平面1B CD ,求11:A D DC 的值.16、(2010全国文)如图,直三棱柱ABC-A 1B 1C 1 中,AC=BC , AA 1=AB ,D 为BB 1的中点,E 为AB 1上的一点,AE=3EB 1(Ⅰ)证明:DE 为异面直线AB 1与CD 的公垂线;(Ⅱ)设异面直线AB 1与CD 的夹角为45°,求二面角A 1-AC 1-B 1的大小7、(2010江西理)如图△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =(1)求点A 到平面MBC 的距离;(2)求平面ACM 与平面BCD 所成二面角的正弦值。

8、(2010重庆文)四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,PA AB ==,点E 是棱PB的中点.(Ⅰ)证明:AE ⊥平面PBC ;(Ⅱ)若1AD =,求二面角B EC D --的平面角的余弦值.9、(2010浙江文)如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°。

E为线段AB的中点,将△ADE沿直线DE 翻折成△A’DE,使平面A’DE⊥平面BCD,F为线段A’C的中点。

(Ⅰ)求证:BF∥平面A’DE;(Ⅱ)设M为线段DE的中点,求直线FM与平面A’DE所成角的余弦值。

10、(2010重庆理)四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,,点E是棱PB的中点。

(1)求直线AD与平面PBC的距离;(2)若A-EC-D的平面角的余弦值。

11、(2010北京理)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE;(Ⅲ)求二面角A-BE-D的大小。

12、如图,弧AEC是半径为a的半圆,AC为直径,点E为弧AC的中点,点B和点C为线段AD的三等分点,平面AEC 外一点F满足FC⊥平面BED,FB=a5(1)证明:EB⊥FD(2)求点B到平面FED的距离.13、(2010江苏卷)如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900。

(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离。

14、(2012上海)如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥底面2,AD=22,PA=2.求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.15、(2012四川)如图,在三棱锥中,,,,平面平面。

P ABC -90APB ∠= 60PAB ∠= AB BC CA ==PAB ⊥ABC (Ⅰ)求直线与平面所成角的大小;PC ABC (Ⅱ)求二面角的大小。

B APC --16、(2012安徽)长方体中,底面是正方形,是的中点,是棱上任意一点。

1111D C B A ABCD -1111D C B A O BD E 1AA (Ⅰ)证明: ;BD 1EC ⊥(Ⅱ)如果=2,=,,求 的长。

AB AE 21EC OE ⊥1AA16图图17、(2012北京文)如图1,在中,,分别为的中点,点为线段上的一点,Rt ABC ∆90C ∠= ,D E ,AC AB F CD 将沿折起到的位置,使,如图2。

相关文档
最新文档