直角三角形的性质习题

合集下载

直角三角形的性质练习题

直角三角形的性质练习题

直角三角形的性质练习题一、选择题1. 在直角三角形ABC中,角A为90°,且满足AB = 3,AC = 4,BC = 5,那么∠B的度数是:A) 30°B) 45°C) 60°D) 90°2. 直角三角形PQR中,∠P = 90°,PR = 5,RQ = 12,那么∠Q的度数是:A) 30°B) 45°C) 60°D) 90°3. 若一个直角三角形的一个锐角的度数是30°,那么另一个锐角的度数是:A) 30°B) 45°C) 60°D) 90°4. 若三角形ABC是直角三角形,其中∠A = 90°,AB = 8,AC = 15,则BC的长度为:A) 7B) 9C) 17D) 245. 直角三角形XYZ中,∠X = 90°,XY = 5,YZ = 12,则∠Y的正弦值是:A) 5/12B) 12/13C) 5/13D) 12/5二、填空题1. 直角三角形ABC中,∠C = 90°,AC = 7,BC = 24,则AB的长度为 ________。

2. 设直角三角形XYZ中,∠Y = 90°,XY = 6,则YZ的长度为________。

3. 直角三角形PQR中,PR = 5,RQ = 12,则∠P的度数为________。

4. 若直角三角形ABC中,∠B = 90°,AB = 14,则AC的长度为________。

5. 若直角三角形XYZ中,∠Y = 90°,XY = 9,则∠Z的度数为________。

三、解答题1. 已知直角三角形ABC,其中∠A = 90°,AB = 5,AC = 12,求BC的长度。

解析:根据直角三角形的性质,可使用勾股定理求解。

根据勾股定理,若AC、BC、AB分别表示直角三角形ABC的三条边的长度,则有AC² = AB² + BC²。

解直角三角形知识点及跟踪习题

解直角三角形知识点及跟踪习题

解直角三角形知识点及跟踪习题 考点一、直角三角形的性质1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30° 可表示如下: ⇒BC=21AB ∠C=90°3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点 知识点二.三角函数对于锐角A 的每一个确定的值,其对边与斜边、邻边与斜边、邻边与对边的比值也是惟一确定的. 因此这几个比值都是锐角∠A 的函数,记作sin A 、cos A 、tan A 、cot A ,即sin A =斜边的对边A ∠, cos A =斜边的邻边A ∠, tan A =的邻边的对边A A ∠∠, cot A = 的对边的邻边A A ∠∠分别叫做锐角∠A 的正弦、余弦、正切、余切,统称为锐角∠A 的三角函数.知识点三。

锐角三角函数的特征与性质:(1)锐角三角函数的值都是正实数,并且0<sin A <1,0<cos A <1 (2)tan A •cot A =1(3)补充:sin tan cos AAA,cos cot sin AA A (视情况定) (4)补充:已知锐角∠A ,则22sin cos 1AA(视情况定)(5)锐角三角函数的增减性当角度在0°~90°之间变化时,①.正弦值随着角度的增大(或减小)而增大(或减小) ②.余弦值随着角度的增大(或减小)而减小(或增大) ③.正切值随着角度的增大(或减小)而增大(或减小) ④.余切值随着角度的增大(或减小)而减小(或增大 知识点四、一些特殊角的三角函数值三角函数 0° 30°45°60°90° sinα 0 21 22 23 1 cos α 1 23 22 21 0 tan α 0 33 1 3不存在 cot α不存在3133 0︒15020米30米从上往下看,视线与水平线的夹角叫做俯角.(2在修路、挖河、开渠和筑坝时,设计纸上都要注明斜坡的倾斜程度. 如图19.4.5,坡面的铅垂高度(h )和水平长度(l )的比叫做坡面坡度 (或坡比).记作i ,即i =lh . 坡度通常写成1∶m 的形式,如i =1∶6. 坡面与水平面的夹角叫做坡角,记作a ,有i =lh=tan a 显然,坡度越大,坡角a 就越大,坡面就越陡. 知识点六.1.解直角三角形:在直角三角形中,除一个直角外,还有2个角和3条边共5个元素,由已知元素求出未知元素 的过程,叫做解直角三角形。

含30°角的直角三角形的性质练习题

含30°角的直角三角形的性质练习题

1 1 CEF(AAS),∴BE=CF,∵CF=2CE,∴BE=2CE,又∵BE+CE=8,∴ 16 16 8 CE= 3 ,∴BD= 3 ,∴AD=3
16.已知∠DAB=120°,AC平分∠DAB,∠B+∠D=180°.
(1)如图①,当∠B=∠D时,求证:AB+AD=AC;
(2)如图②,当∠B≠∠D时,(1)中的结论是否仍然成立?并说明理由.
) C
A.30° B.60°
C.30°或150° D.不能确定
11.某市在旧城改造中,计划在一块如图所示的△ABC空地上种植草皮
以美化环境,已知∠A=150°,这种草皮每平方米售价 a元,则购买这 种草皮至少需要( B)
A.300a元 B.150a元 C.450a元 D.225a元
12.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分 6. 别交BC,AB于点M,N,且BM=3,则CM=____
14.台风是一种自然灾害,如图,气象部门观测到距A市正北方向200千
米的B处有一台风中心,其中心最大风力为12级,该台风中心正以18千
米/时的速度沿直线向C移动,且台风中心风力不变.已知每远离台风中
心20千米,风力就减弱一级,若A市所受风力不到4级,则称不受台风影
响.根据以上信息回答下列问题: (1)A市是否会受到这次台风影响?请说明理由. (2)若A市受影响,所受最大风力是几级?
解:(1)作 AD⊥BC 于点 D,在 Rt△ABD 中,∠B=30°,AB=200 1 千米,∴AD=2AB=100 千米.由题意知,受台风影响范围的半径为 20× (12-4)=160(千米),∵AD=100 千米<160 千米,∴A 市将受到台风影响 100 (2)当台风中心位于 D 处时,A 市所受风力最大,其风力为 12- 20 =7(级)

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

【点拨】
∵1 宣=12矩,1 欘=112宣,1 矩=90°,∠A=1 矩,
∠B=1


∴∠A
= 90°,

B

1
1 2
1 ×2
×90°=
67.5°,
∴∠C=90°-∠B=90°-67.5=22.5°.
3 (母题:教材P34复习题T5)若三角形三个内角的比为 1 ∶2 ∶3,则这个三角形是__直__角____三角形.
(2)若AE是△ABC的角平分线,AE,CD相交于点F,求证: ∠CFE=∠CEF. 【证明】∵AE是△ABC的角平分线,∴∠DAF=∠CAE. ∵∠FDA=90°,∠ACE=90°, ∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°. ∴∠AFD=∠CEA. ∵∠AFD=∠CFE, ∴∠CFE=∠CEA,即∠CFE=∠CEF.
解:如图②,延长 MN 至点 C′,使 NC′=NC,连接 AC′, 则 AC′的长即为蚂蚁爬行的最短路程. 在 Rt△AMC′中,AM=3×2=6(cm), MC′=20+2=22(cm). 由勾股定理,得 AC′2=AM2+MC′2=62+222=520, 则 AC′=2 130 cm. 答:蚂蚁需要爬行的最短路程是 2 130 cm.
∵∠C=90°,∴∠4+∠5=90°. ∴∠3+∠5=90°,即∠FBG=90°. 又∵DF⊥EG,DE=DG,∴FG=EF. 在Rt△FBG中,BG2+BF2=FG2,∴AE2+BF2=EF2.
【点方法】
欲证AE2+BF2=EF2,应联想到勾股定理,把AE, BF和EF转. 化. 为同一个直角三角形的三边.
【点拨】
∵直角三角形的三边a,b,c满足c>a>b,∴该直角三 角形的斜边为c,∴c2=a2+b2,∴c2-a2-b2=0,∴S1= c2-a2-b2+b(a+b-c)=ab+b2-bc. ∵S2=b(a+b-c)= ab+b2-bc,∴S1=S2,故选C.

直角三角形性质练习题

直角三角形性质练习题

直角三角形性质练习题一、选择题1. 在直角三角形中,斜边的长度总是()A. 等于两直角边长度之和B. 大于两直角边长度之和C. 小于两直角边长度之和D. 等于两直角边长度之差2. 直角三角形的勾股定理表述为:直角三角形的斜边的平方等于()A. 两直角边的平方和B. 两直角边的平方差C. 两直角边的和的平方D. 两直角边的差的平方3. 如果直角三角形的两条直角边分别为3和4,那么斜边的长度是()A. 5B. 6C. 7D. 84. 直角三角形的内角和为()A. 120°B. 150°C. 180°D. 360°5. 直角三角形的高是指()A. 从直角顶点向斜边作垂线段B. 从直角顶点向对边作垂线段C. 从斜边顶点向直角边作垂线段D. 从对边顶点向斜边作垂线段二、填空题6. 直角三角形的两条直角边分别为a和b,斜边为c,根据勾股定理,c²=________。

7. 若直角三角形的一条直角边为5,斜边为13,则另一条直角边的长度为________。

8. 在直角三角形中,若一个角为30°,则另一个非直角的锐角为________。

9. 直角三角形的面积公式为________。

10. 如果直角三角形的斜边长度为10,一条直角边为6,那么另一条直角边的长度为________。

三、计算题11. 已知直角三角形的两条直角边分别为6cm和8cm,求斜边的长度。

12. 一个直角三角形的斜边长度为17cm,若已知其中一条直角边为15cm,求另一条直角边的长度。

13. 一个直角三角形的高为4cm,底边为6cm,求这个三角形的面积。

14. 一个直角三角形的斜边长度为20cm,其中一条直角边为xcm,另一条直角边为(20-x)cm,求x的值。

15. 已知一个直角三角形的斜边长度为25cm,其中一条直角边的长度为15cm,求这个三角形的周长。

四、解答题16. 证明直角三角形的内角和为180°。

八下第1章直角三角形1-1直角三角形的性质与判定Ⅰ1-1-2含30°角的直角三角形的性质及其应用习题

八下第1章直角三角形1-1直角三角形的性质与判定Ⅰ1-1-2含30°角的直角三角形的性质及其应用习题

解:过点D作DC⊥AB于点C.∵∠DAB=15°, ∠DBC=30°,∴∠ADB=15°,∴DB=AB=100 m, ∴在Rt△DBC中,DC= ×100=50(m). 答:河宽是50 m.
8.[临湘期中]如图,已知在△ABC中,∠C=90°,∠B=60°,D是BC上一点,过点D作DE∥AC,交AB于点E,若BD=3,CD=2,则AE的长为________.
D
6.[教材改编题]如图是某建筑物的屋顶架的示意图,D是斜梁AB的中点,立柱BC,DE都垂直于横梁AC,DE=2 m,∠A=30°,则AB等于________m.
8
【点拨】∵∠A=30°,DE⊥AC,∴DE= AD.又DE=2 m,∴AD=4 m.∵D是.[教材改编题]如图,吴敏在河岸的点A测得看对岸点D的视线与其所在河岸的直线成15°角,然后沿该直线行走100 m到达点B,此时测得看对岸点D的视线与前进方向成30°角,问河宽是多少米?
4
9.设计一张折叠型方桌如图所示,若AO=BO=50 cm,CO=DO=30 cm,将桌子放平后,要使AB离地面的高度为40 cm,则两条桌腿需要叉开的角度(∠AOB)应为( ) A.60° B.90° C.120° D.150°
C
【点拨】过点D作DE⊥AB交AB于点E.在Rt△ADE中,AD=OA+OD=50+30=80(cm),易知DE=40 cm,∴DE= AD.∴∠BAD=30°.∵OA=OB,∴∠ABC=∠BAD=30°.∴∠AOB=180°-2×30°=120°.故选C.
10.[邵阳洞口期中]如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于点D,DE是AB的垂直平分线,垂足为点E.若BC=9,则DE的长是( ) A.3 B.4 C.4.5 D.5

直角三角形练习题

直角三角形练习题

直角三角形练习题直角三角形是三角形中最基本的一种形式,由于其特殊性质,我们可以通过使用三角函数来解决各种与直角三角形相关的问题。

本文将提供一些直角三角形的练习题,通过解答这些问题,将更好地理解直角三角形的性质与应用。

1. 给定一个直角三角形,已知两个边长分别为5cm和12cm,求解第三边的长度。

解答:由勾股定理可得,直角三角形的两直角边的平方和等于斜边的平方。

设斜边长度为c,则有5² + 12² = c²,解得c = √(5² + 12²) =√(25 + 144) = √169 = 13。

因此,第三边的长度为13cm。

2. 在一个直角三角形中,已知一条直角边的长度为8cm,斜边的长度为17cm,求解另一条直角边的长度。

解答:同样利用勾股定理,设另一直角边的长度为b,则有b² + 8²= 17²,解得b = √(17² - 8²) = √(289 - 64) = √225 = 15。

因此,另一条直角边的长度为15cm。

3. 已知一个直角三角形的一条直角边的长度为3cm,斜边的长度为7cm,求解第二条直角边的长度。

解答:同样应用勾股定理,设另一直角边的长度为a,则有a² + 3²= 7²,解得a = √(7² - 3²) = √(49 - 9) = √40 = 2√10。

因此,第二条直角边的长度为2√10 cm。

4. 在一个直角三角形中,已知一条直角边的长度为10cm,第二条直角边的长度为24cm,求解斜边的长度。

解答:应用勾股定理,设斜边的长度为c,则有10² + 24² = c²,解得c = √(10² + 24²) = √(100 + 576) = √676 = 26。

因此,斜边的长度为26cm。

八下第1章直角三角形1-1直角三角形的性质和判定Ⅰ第2课时含30°角的直角三角形的性质习题新版湘教版

八下第1章直角三角形1-1直角三角形的性质和判定Ⅰ第2课时含30°角的直角三角形的性质习题新版湘教版
一个等腰三角形模型(示意图如图所示),它的顶角为120°,
腰长为12 m,则底边上的高是( B
A.4 m
B.6 m
C.10 m
D.12 m
)
(第6题)
7.(母题:教材P8习题T6)如图,在△ABC中,∠C=90°,点
E是边AC上的点,且∠1=∠2,DE垂直平分边AB,垂足
为点D.若EC=3 cm,则AE的长为 6 cm

∴∠B=30°,∴∠BAC= (180°-∠B)=75°.
②如图(b),AC=BC,AD⊥BC交BC的延长线于点D,

AD在三角形的外部,∴∠CAB=∠B.由题意知AD= BC=


AC,∴∠ACD=30°=∠B+∠CAB.


∵∠B=∠CAB,∴∠BAC= ∠ACD=15°.

③如图(c),AC=AB,AD⊥BC,BC边为等腰三角形底
交BC于点D,E为AB上一点,连接DE,则下列说法错误的
是( D
)
A.∠CAD=30°
B.AD=BD
C.BD=2CD
D.CD=ED
3.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC
绕点C按顺时针方向旋转一定角度得到△DEC,点D恰好在
AB上.
(1)若AC=4,求DE的长度;
【解】在△ABC中,∠ACB=90°,
形状
12. [新考法 分类判断法]如图,在Rt△ABC中,∠C=90°,
∠A=30°,BC=12 cm.动点P从点A出发,沿AB向点B运
动,动点Q从点B出发,沿BC向点C运动.如果动点P以2
cm/s,动点Q以1 cm/s的速度同时出发,设运动时间为t
s,解答下面的问题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.8 (1) 直角三角形的性质(一)
1.在直角三角形ABC中,∠ACB=90度,CD是AB边上中线,若CD=5cm,则AB=_____ 三角形ABC的面积=____________
2.在直角三角形ABC中,∠ACB=90度,CD是AB边上中线,图中有__________等
腰三角形.
3.如图,在△ABC中,∠B=∠C,D、E分别是BC、AC的中点,AB=6,求DE的长。

4.
已知:四边形ABCD中,∠ABC= ∠ADC=90度,
E、F分别是AC、BD的中点。

求证:EF⊥BD
1、如图,在△ABC中,∠B= 2∠C,点D在BC 边上,
且AD ⊥AC.
求证:CD=2AB
19.8(2)直角三角形性质(二)
E
1、 在直角三角形ABC 中,∠C=90°,∠BAC=30°,BC=10,则AB=________.
2、 顶角为30度的等腰三角形,若腰长为2,则腰上的高__________,三角形面积是
________
3、 等腰三角形顶角为120°,底边上的高为3,则腰长为_________
4、 三角形ABC 中,AB=AC=6,∠B=30°,则BC 边上的高AD=_______________
5、 Rt △ABC 中,∠C=90°,∠A=15°,AB 的垂直平分线交AC 于D,AB 于E,
求证AD=2BC.
6、 已知:△ABC 中,AB=AC ,∠B=30°,AD ⊥AB ,
求证:2DC=BD
7.如图,△ABC 中,∠C=90°,∠A=60 °,EF 是AB 的垂直平分线,判断CE 与BE 之间的关系
19.8(3)直角三角形的性质(三)
D
A
C
B
A
E
F
C
B
A
1.在直角三角形中,有一个锐角为52度,那么另一个锐角度数为 ;
2、在直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为________.
3、在△ABC 中, ∠ACB=90 °,CE 是AB 边上的中线,那么与CE 相等的线段有_________,与∠A 相等的角有_________,若∠A=35°,那么∠ECB= _________.
4、已知:∠ABC=∠ADC=90 度,E 是AC 中点。

求证:(1)ED=EB (2)图中有哪些等腰三角形?
5、如图,AB 、CD 交与点O,且BD=BO ,CA=CO ,E 、F 、M 分别是OD 、OA 、BC 的中点。

求证:ME=MF.
6、在等边三角形ABC 中,点D 、EF 分别在AB 、AC 边上,AD=CE ,CD 与BE 交与F, DG ⊥BE 。

求证:(1)BE=CD;(2)DF=2GF
M
F
E D C B A
G E
F
D
C
B
A。

相关文档
最新文档