函数概念中对应法则
常见的函数

常见的函数函数的定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。
其中核心是对应法则f,它是函数关系的本质特征。
常见的函数有以下5种。
1、幂函数一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
例如函数y=x0、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。
2、指数函数基本初等函数之一。
一般地,y=ax函数(a为常数且以a>0,a ≠1)叫做指数函数,函数的定义域是R。
注意,在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
3、对数函数对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。
函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
4、三角函数常见的三角函数包括正弦函数、余弦函数和正切函数。
在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。
不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
5、反三角函数一种基本初等函数。
它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其正弦、余弦、正切、余切,正割,余割为x 的角。
函数的概念

函数的概念基本知识点1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
注意:(1)这两个集合有先后顺序,A到B的射与B到A的函数是截然不同的.其中f表示具体的对应法则,可以用汉字叙述。
(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思2.构成函数的三要素:定义域、对应关系和值域3.两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。
当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。
因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;2)无穷区间;(3)区间的数轴表示类型一、映射函数概念1.下列图象能够成为某个函数图象的是( )2.函数的图象与直线的公共点数目是( )A.B.C.或D.或3 下列对应关系中,哪些是从A到B的映射,哪些不是?(1)A=R,B=R,对应法则f:取倒数;(2)A={平面内的三角形},B={平面内的圆},对应法则f:作三角形的外接圆;(3)A={平面内的圆},B={平面内的三角形},对应法则f:作圆的内接三角形.(4)A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则(5)A=N*,B={0,1},对应法则f:x→x除以2得的余数;6. 已知A=R,B={(x,y)|x,y R},f:A→B是从集合A到集合B的映射,f:x→(x+1,x2+1),求A中的元素的象,B中元素的原象.类型二求函数的值1.已知f(x)=2x 2-3x-25,g(x)=2x-5,求:(1)f(2),g(2); (2)f(g(2)),g(f(2)); (3)f(g(x)),g(f(x))2已知,作出f(x)的图象,求f(1),f(-1),f(0),f{f[f(-1)+1]}的值.3.已知,若,求的值4设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 不等式)1()(f x f >的解类型三 具体函数的定义域(1)如果f(x)是整式,那么函数的定义域是实数集R ;(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合; (即求各集合的交集)(5)满足实际问题有意义.1.求下列函数的定义域(用区间表示).(1); (2). (3)(4); (5);02)1(2334)(++-+-+-=x x x x x f .求抽象函数的定义域1.已知函数定义域是,求)(x f y =的定义域是2.已知函数)(x f y =定义域是,求的定义域3.已知函数定义域是,求的定义域是题型四:相同函数1.下列各组函数是否表示同一个函数? (1)(2)(3)(4)3.试判断以下各组函数是否表示同一函数? (1)f (x )=2x ,g (x )=33x ; (2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x (3)f (x )=x 1+x ,g (x )=x x +2;(4)f (x )=x 2-2x -1,g (t )=t 2-2t -1。
函数的概念及表示

函数的概念及表示知识点1:函数的概念1.函数的定义:一般地,设A,B是两个非空的数集,如果按某种对应法则f,对于集合A 中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B 的一个函数,通常记为:y=f(x),x∈A.其中,所有的输入值x组成的集合A叫做函数y=f(x)的定义域.2.规律方法:(1)判断一个对应关系是否是函数,要从以下三个方面去判断,即A、B必须是非空数集;A 中任何一个元素在B中必须有元素与其对应;A中任一元素在B中必有唯一元素与其对应.(2)函数的定义中“每一个元素”与“有唯一的元素y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.考点1:函数的判定典型例题例1 判断下列对应f是否为从集合A到集合B的函数.(1)A=N,B=R,对于任意的x∈A,x→±x;(2)A=R,B=N*,对于任意的x∈A,x→|x-2|;(3)A={1,2,3},B=R,f(1)=f(2)=3,f(3)=4;(4)A=[-1,1],B={0},对于任意的x∈A,x→0.例2 下列从集合A到集合B的对应关系中,不能构成从A到B的函数的是________.(只填序号)①集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=x2;②集合A={x|2≤x≤3},B={y|4≤y≤7},f:x→y=3x-2;③集合A={x|1≤x≤4},B={y|0≤y≤3},f:x→y=-x+4;④集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=4-x2;⑤集合A={(x,y)|x∈R,y∈R},B=R,对任意(x,y)∈A,f:(x,y)→x+y.知识点2:函数的图像1.概念:将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到坐标平面上的一个点(x0,f(x0)),当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点,所有这些点组成的集合(点集)为{(x,f(x))|x∈A},即{(x,y)|y=f(x),x∈A},所有这些点组成的图形就是函数y=f(x)的图象.2.作函数图像的方法:(1)利用描点法作函数图象的基本步骤:求定义域→化简解析式→列表→描点→连线(2)在画定义域为某一区间的函数图象时,要注意端点值的画法,闭区间画实心点,开区间画空心圈.考点1:画函数的图象 典型例题例1 作下列函数的图象(1)y =x 2+x (-1≤x ≤1); (2)y =2x (-2≤x <1,且x ≠0).(3)y =1+x (x ∈Z); (4)y =x 2-2x ,x ∈[0,3).考点2:函数图象的识别例1 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是________.(填序号)例2 如图所示,函数y =ax 2+bx +c 与y =ax +b (a ≠0)的图象可能是________(填序号).考点3:函数图象的应用例1 画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域;(4)若关于x的方程f(x)=k在[-1,2]内仅有一个实根,求k的取值范围.例2 若方程-x2+3x-m=3-x在x∈(0,3)内有唯一解,求实数m的取值范围.考点4:函数图像在实际问题中的应用例1 某商场销售一批进价是30元/件的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下关系(见表):(1)在所给的坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定y与x的一个函数关系式y=f(x);(2)设销售此商品的日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?知识点3:函数的定义域1.概念:函数的定义域是指自变量x的范围2.函数定义域的求解方法:(1)若()x f为整式,则定义域为R.(2)若()x f是分式,则其定义域是分母不为0的实数集合(3)若()x f 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合; (4)若()x f 是由几部分组成的,其定义域是使各部分都有意义的实数的集合; (5)实际问题中,确定定义域要考虑实际问题. 考点1:具体函数定义域求解 例1 求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-考点2:抽象函数定义域求解例1 设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;例 2 若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 .例3 已知()x f 的定义域为[]1,0,求函数()⎪⎭⎫⎝⎛++=342x f x f y 的定义域.例4 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围.知识点4:函数的值域1.概念:函数的值域指因变量y 的范围2.函数值域的求解方法: (1)观察法 (2)判别式法 (3)配方法 (4)换元法 (5)不等式法 (6)图像法 (7)分离常数法 考点1:用观察法求值域 例1 求下列函数的值域:(1)2415+-=x x y (2)123422--+-=x x x x y考点2:用配方法求值域例1 求函数242y x x =-++([1,1]x ∈-)的值域.考点3:用反解+判别式法求值域例1 求函数3274222++-+=x x x x y 的值域考点4:用换元法求值域 例1 求函数12--=x x y 的值域考点5:用不等式法求值域例1 求函数()22415≥+-=x x x y 的值域考点6:用图像法求值域 例1 求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈例2 画出函数[]5,1,642∈+-=x x x y 的图像,并根据其图像写出该函数的值域。
1-1函数的概念

定义1 设 D 与M 是R 中非空数集, 若有对应法则 f , 使D 内每一个数 x , 都有惟一的一个数 yM 与 它相对应,则称 f 是定义在 D上的函数,记作
f : D M,
x y. D 称为 f 的定义域; f ( D) { y y f ( x ), x D} 称为 f 的值域;
(i) 有 f ( x1 ) f ( x2 ), 则称 f 为 D 上的增函数; 特别有 f ( x1 ) f ( x2 ) 时, 称 f 为严格增函数. (ii) 有 f ( x1 ) f ( x2 ), 则称 f 为 D 上的减函数; 特别有 f ( x1 ) f ( x2 ) 时, 称 f 为严格减函数.
上有下界. M R, 令 x0 arctan( M 1),
π 则 x0 0, , 且 tan x0 M 1 M , 因此 f 在 2 π 0, 2 上无上界.
2、单调函数 定义2 设 f 是定义在 D 上的函数.
若x1 , x2 D, 当 x1 x2 时,
注1 函数的有界与无界性必须标注相应的范围. 注2 无界函数的图形可用古诗
春色满园关不住,一枝红杏出墙来
来描述.
π 例5 求证 : f ( x ) tan x 在 0, 上无上界, 有下界. 2 π π 证 L 0,则 x 0, , f ( x ) L, 因此 f 在 0, 2 2
[ x]: x 的最大整数; { x}: x 的最小整数; ( x) :
y
3
2
1
1
2
x 的非负小数部分;3 2 1 O
3
4
显然:当 x Z 时,
函数定义域,对应法则,值域

函数的定义域、值域、解析式的求法(求直接函数定义域)例1:221533x x y x --=+- 例2:021(21)4111y x x x =+-+-+-练习1:211()1x y x -=-+练习2:函数22()44f x x x =---的定义域是( )A 、[2,2]-B 、(2,2)-C 、(,2)(2,)-∞-+∞UD 、{2,2}-练习3:判断下列各组中的两个函数是同一函数的为 ( )⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, 33()g x x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
A 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸(求抽象函数定义域)例1:设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;例2:若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域练习1:若函数()y f x =的定义域是02,⎡⎤⎣⎦,则函数()()11y f x f x =++-的定义域为______________________________________________.练习2:若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。
练习3:已知函数f x ()的定义域是(]01,,则g x f x a f x a a ()()()()=+⋅--<≤120的定义域为 。
(已知定义域求未知数范围)例1:知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
谈谈函数的对应法则

二
、 引
’
“
.
,
一不 ) 石
“ t, 一 t +
l
「
十
禹
D 一 舟而 )
i
, r
L. J
把
`
换成
x
时故 有 (I
x
)
= 护一 x +
I
应 用 丙 数 对应 法则 判 断 两 函 数是否一 致 六 年制 重点 中学高 中课 本 嘴代数 》 第一 册 尸 8 0
二
,
、
解
,
:
’
:
二千 6 了( 、 ) 二 吞 劣
’ O
—
’
=
乙
’
一 二
、
D
1 2 3
.
;
,
、
一 5<
12
,
a
.
<
,
一 ;4
生少 些
些 吐 b
+
’
3
.
` 2二 s x
.
夕= o
,
(戈 < o ) ;
3 一
,
+
一 , + 2 + “ 一 ,2
,
2
’
·
4
结合图象
易 得出 万 、
一
_
佗
、
3
·
谈 谈 函 数 的对 应 法 则
( 四 川 城 口 中学 )
函 数 概 念是 由 定义域
试 指 出错误 原 因 ( 从 命题 的充分 必要
虑)
.
、
、
充 要 性来 考
(a
,
3
.
函数的对应法则 抽象函数的表达式

函数的对应法则1、待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
例5 设,)1(2)()(x xf x f x f =-满足求)(x f五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f二,练习题1、已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。
2、求一个一次函数f(x),使得f{f[f(x)]}=8x+73、设二次函数f(x)满足f(x-2)=f(-x-2),且在y 轴上的截距为1,在x 轴截得的线段长为22,求f(x )的解析式4、211f (1)1x x +=-5、2211f ()x x x x-=+6、已知f (x )为二次函数, f(x-1)= 2x -4x ,解方程f(x+1)=08、若)()()(y f x f y x f ⋅=+,且2)1(=f , 求值)2004()2005()3()4()2()3()1()2(f f f f f f f f ++++ ..10、已知f (x +x 1)=x 3+x31,求f (x )的解析式。
求函数定义域和值域方法对应法则归纳1

<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。
则称f:为A 到B 的一个函数。
2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。
由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。
3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。
(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。
4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。
(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。
(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。
5.函数的三种表示方法——解析法、图象法、列表法6.分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。
(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。
③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数概念中对应法则
【知识概述】函数知识是形成函数思想、数性结合与等价变换等数学思想方法的基础。
函数是高中数学最主要的概念之一,更是高中数学的主要内容,同时又是高考重点考查的对象。
要切实掌握函数的有关概念,并会用定义证明函数的性质。
而函数概念的掌握关键是对其中的对应法则的理解和把握。
通常教师依据课本内容,先介绍映射,然后用其来定义函数。
这从表面上看似乎解决了问题,其实则不然。
因为映射中的对应法则即对应关系并未被学生所掌握。
或者说学生对书上的图表映射例子能接受,但不深刻,不能把其运用到抽象的函数解析式中来.这一点往往被教师忽略,在以后的学习中将会产生深远的影响。
这当中有一个大的思维跨度,能否越过这个槛,将会对学生高中数学学习有着重要影响。
一般有经验的老师都通过以下的方式来理解函数中的对应关系
第一种方式,教师只停留在书本所给的几个直观例子上,或者简单的找些类似例子,特别是集合文示图的例子。
虽然有的教师也枚举诸如指数、开算术根、二次函
数等例子(22 36,y x y x y ==+=如①,②③用“定义”来进行文字解说,试着让学生通过几个不同函数中的对应法则的“定义”嵌套,就能“整合”函数对应法则,从而“内消”掌握该知识点。
但却因没有进一步对函数对应法则进行分析,易导致学生对该知识点的理解不够到位,或者说是笼统的,还是停留在“定义”字面上。
这将会制约学生对后继课程的学习。
第二种方式,函数的对应法则被看作“加工厂”,这种观点是把函数中自变量的取值看作“原材料”,而把函数值看作“产品”。
既形象又直观,类比贴切,但还不够全面。
因为用这种观点不好做“原材料”是“初级产品”的题。
也即是“自变量位置”不是某个单一字母(即不是“自变量”本身)的情形(其系数与指数都不是1时,或者说是某个字母的非正比例中系数是1的表达式时)。
在处理迭代时学生会有较大障碍。
【例如:①()()21,21f x x f t t =+=+ 是同一函数吗?②()2132,f x x +=- ()3722
f x x =-是同一函数吗?用“加工厂” 的观点易知①是真命题,但②的真假就不易判断了。
】对于②的处理通常用换元法(令21t x =+则12t x -=
,将其代入3x −2
可知②的真假)。
而有些老师则用函数“方框含义”处理(把“2x+1”看成一个整体),但就学生理解而言还是有些粗,不够到位。
相当数量的学生能模仿此思路做题,但却不能明白其中道理。
第三种方式,把函数()y f x =的对应法则“f”被看作“模具”。
这种观点是把函数()y f x =中自变量“x”的取值看作“原料”,而把相应函数值“y”看作“成品”。
此种观点类似物理学只研究物体的形状一样,注重“原料”以怎样的形式组装成“成品”,而不管“原料”是否为“初级产品”,从而避免了当所给函数的“原料”不是某个单一字母的情形时,找不到或不好找函数的对应法则。
这就好比给出一个茶壶模具,不管是用粘土还是一般的泥土,或者是用灰面等作为原料都能得到形状相同的壶。
不看其 “质”,只看其“型”。
【例如:函数()21f x x =+中的x 和()21f t t =+中的t 类似上述茶壶模具例子中的原料“粘土”与“灰面”,而其 函数表达式的形式结构特征则可类似上例中的茶壶模具。
即
()2()1/()f =+⎡⎤⎣⎦粘土粘土粘土,f(灰面)=[2(灰面)+1]/(灰面).用此观点容易判定函数()2132,f x x +=-()3722f x x =
-是同一函数<只需把函数()2132f x x +=-的右边进行配方,可得()()372132=2x+1-2
2f x x ⎡⎤+=-⎢⎥⎣⎦,从而知道所需判断的两函数满足相同的“茶壶模具”——【 ()37()-22
f =箱子箱子】,即对应法则相同,进而可以判断它们是相同的函数>。
】
通过“模具”观点的类比,要识别函数)(()y f x =中的对应法则“f”,只需认准函数解析式的形式结构特征。
例如:【已知()2x f x x -=,则()12x f x x
-=是真命题吗?只需认准其形式结构特征为f(箱子)=[(箱子)-2]/(箱子),则有
()22122x x f x x
--==,可知此命题的真假】.这样不但可以增强学生对函数对应法则理解。
还能达到既提高学生答题效率,同时又可优化教学效果的双赢目的。