数学选修2-3知识点总结

合集下载

高中数学选修2-3

高中数学选修2-3

高中数学选修2-3基础知识一.基本原理111111111111.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同元素中取出个元素的一个组合,所有组合个数记为m C n m .1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!!10=n C 规定:组合数性质:.2 nn n n n m n m nm n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++= 注:若12mm1212m =m m +m n n n C C ==则或 四.处理排列组合应用题1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

高二数学(选修2-3人教B版)-计数原理全章总结

高二数学(选修2-3人教B版)-计数原理全章总结
解:(1)第三项的二项式系数 C52 10 .
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和. 解:(2)由通项可知,展开式的第三项是
T3 C52 13 (2x)2 40x2
所以,第三项的系数为40.
例6、求 (1 2x)5的展开式的:
表示?
(a b)n (a b)(a b) (a b)
n个a b
Tr1 Cnr anr br
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
解:首先将A、B、C、D排成一排,共有 A44 种排法,每一种
排法都会产生五个“空”,在这五个“空”中任选一个,将E
放入,共有 C51 种方法;其次,E中的两个元素可以交换,有 A22
种方法.
所以,共有 A44 C51 A22 240 种不同的排法.
问题4 (a b)n 的展开式中的系数为什么可以用组合数的形式

Cm n1
ቤተ መጻሕፍቲ ባይዱ
Cmn
Cm1 n
)?
作业: 1.一个集合由8个元素组成,这个集合含有3个元素的子集有多 少个? 2.将6名应届大学毕业生分配到两个用人单位,每个单位至少 两人,一共有多少种不同的分配方案? 3.求 (9x 1 )18 展开式的常数项,并说明它是展开式的第几项.
3x
入,共有 A43 种排法. 所以,一共有A33 A43 144 种不同的排法.
例5、有6位同学站成一排,符合下列各题要求的不同排法有多 少种? (2)甲、乙相邻. 解:(2) 设除甲、乙之外的另外四个同学为A、B、C、D. 因为甲、乙要相邻,所以可以把甲、乙“绑”在一起看作一个 元素(记为E).

数学选修2-3知识点总结

数学选修2-3知识点总结

数学选修2-3知识点总结
计数原理:这部分主要讲解分类加法计数原理与分步乘法计数原理。

分类加法计数原理指的是,如果完成一件事情有N类方法,每类方法中有不同的方法数,那么完成这件事情的总方法数就是各类方法数之和。

而分步乘法计数原理则是说,如果完成一件事情需要分成N 个步骤,每个步骤中有不同的方法数,那么完成这件事情的总方法数就是各步骤方法数之积。

二项式定理:这部分主要讲解二项式定理及其通项公式,以及二项式系数的性质。

二项式定理给出了(a+b)^n的展开式,而二项式通项公式则给出了展开式中每一项的具体形式。

二项式系数的性质包括对称性、增减性与最大值以及各二项式系数和等。

概率论初步:这部分主要讲解随机事件、概率等基本概念,以及概率的基本性质。

随机事件是指在一次试验中可能出现的结果,而概率则是衡量随机事件发生的可能性的数值。

随机变量及其分布:这部分主要讲解随机变量的概念及其分布。

随机变量是随机试验可能出现的结果的数值表示,常见的随机变量分布有离散型分布和连续型分布。

以上就是数学选修2-3的主要知识点,通过学习这些内容,学生可以掌握基本的计数原理、二项式定理、概率论以及随机变量及其分布等数学知识,为进一步学习数学或其他相关学科打下基础。

人教版高中数学选修2-3知识点汇总

人教版高中数学选修2-3知识点汇总

人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。

分类要做到“不重不漏”。

分步乘法计数原理:完成一件事需要两个步骤。

做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。

分步要做到“步骤完整”。

n元集合A={a1,a2⋯,a n}的不同子集有2n个。

1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。

从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。

排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。

从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。

组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。

1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。

(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。

高中数学选修2-3知识点汇编

高中数学选修2-3知识点汇编

高中数学必修2知识点第3章 直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 表示。

即tan k α=。

斜率反映直线与轴的倾斜程度。

当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如:平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系 (ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。

高中数学选修2-2,2-3知识点、考点、典型例题

高中数学选修2-2,2-3知识点、考点、典型例题

高中数学选修2-2,2-3知识点、考点、典型例题高中数学选修2-2,2-3知识点、考点、典型例题一、2-2数列的概念、数列的通项公式及递推公式1. 数列的概念数列是按照一定规律排列的一系列数,一般用字母 an 表示第n 个数。

2. 数列的通项公式数列的通项公式是指通过数列的位置 n,直接求出该位置上的数 an 的公式。

通项公式可以是一个数学式子,也可以是一个算法。

3. 数列的递推公式数列的递推公式是指通过数列前一项或前几项的值,推导出数列下一项的公式。

递推公式是数列中相邻两项之间的关系式。

4. 常见数列的通项公式和递推公式- 等差数列:an = a1 + (n-1)d (通项公式),an = an-1 + d (递推公式)- 等比数列:an = a1 * q^(n-1) (通项公式),an = an-1 * q (递推公式)- 斐波那契数列:an = an-1 + an-2 (递推公式)二、2-3数列的求和、数列的性质及应用1. 数列的求和- 等差数列的前 n 项和:Sn = (a1 + an) * n / 2- 等比数列的前 n 项和(q ≠ 1):Sn = a1 * (1 - q^n) / (1 - q) - 斐波那契数列的前 n 项和:Sn = Fn+2 - 12. 数列的性质- 常数列:数列中的每一项都是一个常数。

- 奇数列:数列中的每一项都是奇数。

- 偶数列:数列中的每一项都是偶数。

- 单调递增数列:数列中的每一项都比前一项大。

- 单调递减数列:数列中的每一项都比前一项小。

- 正项数列:数列中的每一项都是正数。

- 负项数列:数列中的每一项都是负数。

3. 数列的应用- 利用数列的递推关系,求解实际问题中的特定数值。

- 利用数列的性质,进行数学推理和证明。

- 利用数列的规律,设计算法解决问题。

典型例题:1. 已知等差数列的前三项分别为 1,5,9,求数列的通项公式和第 n 项的值。

解:设数列的首项为 a,公差为 d,则有以下等差数列的递推公式:a2 = a1 + d = 1 + da3 = a2 + d = (1 + d) + d = 1 + 2d将 a1,a2,a3 分别代入等差数列的通项公式,可得:a1 = a = 1a2 = a + d = 1 + d = 5 --> d = 4a3 = a1 + 2d = 1 + 2(4) = 9所以该等差数列的通项公式为 an = a + (n-1)d = 1 + 4(n-1) = 4n - 3第 n 项的值为:an = 4n - 32. 求等差数列 3,6,9,...,101 的前 n 项和。

选修2-3离散型随机变量及其分布知识点

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布知识点一:离散型随机变量的相关概念;随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。

若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ⋅⋅⋅⋅⋅⋅、ξ取每一个值()1,2,i x i =⋅⋅⋅的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质;任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:(1) 01,2,i p i ≥=⋅⋅⋅,;12(2) 1P P ++=特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+知识点二:两点分布:若随机变量X 的分布列: 则称X 的分布列为两点分布列.特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率.(2)两点分布又称为0-1分布或伯努利分布(3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究.知识点三:超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则(),0,1,,min{,},,,.k n kM N MnNC C P X k k m m M n n N M N C --===⋅⋅⋅=≤≤其中称超几何分布列.为超几何分布列,知识点四:离散型随机变量的二项分布;在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是kn k k n n q p C k P -==)(ξ,(0,1,2,3,k =…, p q -=1)于是得到随机变量ξ的概率分布如下:由于k k n knC p q -恰好是二项式展开式: 00111()n n n k k n kn n n n n n p q C p q C p q C p q C p q --+=+++++中的各项的值,所以称这样的随机变量ξ服从二项分布,记作(,)B n p ξ,其中n ,p 为参数,并记(,,)k k n kn C p q b k n p -=知识点五:离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =,(), (1)k p A q q p ==-,那么112311231()()()()()()()k k k k k P k P A A A A A P A P A P A P A P A q p ξ---====(0,1,2,k =…,p q -=1)于是得到随机变量ξ的概率分布如下:称这样的随机变量ξ服从几何分布, 记作1(,),0,1,2,,1.k g k p q p k q p -===-其中知识点六:求离散型随机变量分布列的步骤;(1)要确定随机变量ξ的可能取值有哪些.明确取每个值所表示的意义;(2)分清概率类型,计算ξ取得每一个值时的概率(取球、抽取产品等问题还要注意是放回抽样还是不放回抽样;(3)列表对应,给出分布列,并用分布列的性质验证. 几种常见的分布列的求法:(1)取球、投骰子、抽取产品等问题的概率分布,关键是概率的计算.所用方法主要有划归法、数形结合法、对应法等对于取球、抽取产品等问题,还要注意是放回抽样还是不放回抽样.(2)射击问题:若是一人连续射击,且限制在n 次射击中发生k 次,则往往与二项分布联系起来;若是首次命中所需射击的次数,则它服从几何分布,若是多人射击问题,一般利用相互独立事件同时发生的概率进行计算.(3)对于有些问题,它的随机变量的选取与所问问题的关系不是很清楚,此时要仔细审题,明确题中的含义,恰当地选取随机变量,构造模型,进行求解. 知识点六:期望数学期望:则称=ξE +11p x 22p x n n 数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平。

高三数学选修2-3知识点

高三数学选修2-3知识点

高三数学选修2-3知识点高三数学选修2-3是高中数学课程中的一部分,主要讲解了数学中的一些应用问题和数学建模的技巧。

这一部分的内容比较具体,其中包括了概率统计、三角函数、向量和解析几何等知识点。

下面我将分别介绍这些知识点的重点内容和应用。

一、概率统计概率统计是实际生活中常常用到的一门数学知识。

它主要研究随机事件的发生概率及其统计规律。

在概率统计中,最常见的一种问题是求解事件发生的概率。

为了求解概率,我们需要掌握一些基本概念和方法。

首先,我们需要了解事件的概念以及事件之间的关系。

事件通常用一个大写字母表示,而事件之间的关系通过并、或等运算来描述。

例如,如果事件A和事件B是互不相容的,那么它们的并就是两事件之和;如果它们是相容的,那么它们的并就是两事件的交集。

其次,我们需要学会如何计算概率。

概率有两种计算方法,一种是几何概率,一种是统计概率。

几何概率常用来解决几何问题,并通过实验次数的频率来估计概率。

统计概率则是通过一系列试验结果的频率来估计概率,常用于描述随机事件在长期实验中出现的可能性。

在实际生活中,概率统计可以应用于很多领域,例如金融、保险、科学实验等。

它可以帮助我们评估风险、预测趋势,对决策和规划起到重要的指导作用。

二、三角函数三角函数是数学中的一类特殊函数,它们描述的是角度和长度之间的关系。

在高三数学选修2-3中,我们主要学习了正弦函数、余弦函数和正切函数。

正弦函数描述的是一个角对应的直角三角形中,斜边与对边的比值。

余弦函数描述的是一个角对应的直角三角形中,斜边与邻边的比值。

正切函数则描述的是一个角对应的直角三角形中,对边与邻边的比值。

三角函数的应用广泛,包括工程、物理、天文等多个领域。

例如在三角测量中,可以利用三角函数计算出不可达区域的高度和距离;在物理中,三角函数可以用于描述波动、振动等现象。

三、向量和解析几何向量和解析几何是高三数学选修2-3中比较抽象和复杂的一部分。

它们主要研究的是空间中的点和直线的性质以及它们之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章概率总结一、知识结构二、知识点1.随机试验的特点:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.2.分类随机变量(如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等或希腊字母ξ、η等表示。

)离散型随机变量在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.连续型随机变量对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.连续型随机变量的结果不可以一一列出.3.离散型随机变量的分布列一般的,设离散型随机变量X可能取的值为x1,x2, ,xi, ,xnX取每一个值 xi(i=1,2, )的概率P(ξ=xi )=Pi,则称表为离散型随机变量X 的概率分布,简称分布列性质:① pi≥0, i =1,2,…;② p1 + p2+…+pn= 1.③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。

4.求离散型随机变量分布列的解题步骤例题:篮球运动员在比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.7,求他罚球一次的得分的分布列.解:用随机变量X表示“每次罚球得的分值”,依题可知,X可能的取值为:1,0且P(X=1)=0.7,P(X=0)=0.3因此所求分布列为:引出二点分布如果随机变量X的分布列为:其中0<p<1,q=1-p,则称离散型随机变量X服从参数p的二点分布二点分布的应用:如抽取彩票是否中奖问题、新生婴儿的性别问题等.超几何分布一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N MnNC C P X k k m C --===L ,其中{}min ,m M n =,且*,,,,n N M N n M N N ∈≤≤ 则称随机变量X 的分布列为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布注意:(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的总数、样本容量解题步骤:例题、在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.游戏者一次从中摸出5个球.至少摸到3个红球就中奖,求中奖的概率解:设摸出红球的个数为X,则X 服从超几何分布,其中30,10,5N M n === X 可能的取值为0,1,2,3,4, 5. 由题目可知,至少摸到3个红球的概率为(3)(3)(4)(5)P X P X P X P X ==+=+=≥324150102010201020555303030C C C C C C C C C =++ ≈0.191答:中奖概率为0.191.nNn MN MCC C -0nNn MN MCC C 11--nNm n MN m MCC C --条件概率1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.P(B|A),读作A 发生的条件下B 的概率2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B 的交(或积作D=A ∩B 或D=AB3.条件概率计算公式:P(B|A)相当于把A 看作新的基本事件空间,求A∩B发生的概率:解题步骤:例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二取到次品的概率.解:设 A = {第一个取到次品}, B = {第二个取到次品},所以,P(B|A) = P(AB) / P(A)= 2/9 答:第二个又取到次品的概率为2/9..0)(,)()()|(>=A P A P AB P A B P .1)|(0)()|()(0)A (P ≤≤⋅=>A B P A P A B P AB P (乘法公式);,则若.151)(21023==⇒C C AB P .103)(=A P相互独立事件1.定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立2.相互独立事件同时发生的概率公式两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

则有如果事件A1,A2,…An 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。

即:P (A1·A2·…·An )=P (A1)·P (A2)·…·P(An)3.两事件是否互为独立事件的判断与证明4.解题步骤例题、一袋中有2个白球,2个黑球,做一次不放回抽样试验,从袋中连取2个球,观察球的颜色情况,记“第一个取出的是白球”为事件A ,“第二个取出的是白球”为事件B,试问A 与B 是不是相互独立事件?答:不是,因为件A 发生时(即第一个取到白球),事件B 的概率P (B )=1/3,而当事件A 不发 生时(即第一个取到的是黑球),事件B 发生的概率P (B )=2/3,也就是说,事件A 发生与否影响到事件B 发生的概率,所以A 与B 不是相互独立事件。

证明:由题可知, P(B|A) =1/3,P(B|A 的补集)=2/3因为 P(B|A)≠P(B|A 的补集) 所以 A 与B 不是相互独立事件则称A ,B 相互独立 )()()(B P A P AB P =)()()(B P A P B A P ⋅=⋅独立重复试验1.定义:在同等条件下进行的,各次之间相互独立的一种试验2.说明:①这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中的概率都是一样的②每次试验是在同样条件下进行;③每次试验间又是相互独立的,互不影响.前提二项分布1.引入:一般地,如果在1次实验中某事件A 发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是P(A Pn(k)是[(1-P)+P]n 的通项公式,所以也把上式叫做二项分布公式.2.二项分布定义:设在n 次独立重复试验中某个事件A 发生的次数,A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独立重复试验中)(k P =ξk n k k n q p C -=(其中 k=0,1, ,n ,q=1-p )于是可得随机变量ξ的概率分布如下:由于kn k k nqp C -恰好是二项展开式b C b a C b a C a C b a nn nrrn rn n n nn n+++++=--+ΛΛ111)(中的第 k+1 项,所以,称这样的随机变量ξ服从二项分布,记作ξ~B(n ,p) ,其中n ,p 为参数, 并记:kn k k n q p C -),;(p n k B =k n k k n n p p C k P --=)1()(nn qp C 00111-n n qp Ckn k k n qp C -qp C n n n3.解题步骤例题、某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布. 解:依题意,随机变量ξ~B(2,5%).∴P(ξ=0)= (95%)2=0.9025,P(ξ=1)= (5%)(95%)=0.095, P(ξ=2)= (5%)2=0.0025.因此,次品数ξ的概率分布是几何分布1.定义:在独立重复试验中,某事件A 第一次发生时所作的试验次数ξ也是一个取值为正整数的随机变量。

“ξ =k ”表示在第k 次独立重复试验时事件A 第一次发生。

如果把第k 次实验时事件A 发生记为Ak , p( Ak)=p ,事件A 不发生记为 ,P( )=q(q=1-p),那么p q p p A P A P A P A P A P A A A A A P k P k k k K k K ⋅=⋅-=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅==----1113211321)1()()()()()()()(ξ(k=0,1,2…,q=1-p.)于是得到随机变量ξ的概率分布如下:称ξ服从几何分布,并记g(k,p)=p ·qk-112C22C 02C ξ 0 1 2 P0.90250.0950.0025k A kA ξ 1 2 3 … k …P p pqpq2 … pqk-1 …离散型随机变量的期望和方差一般地,若离散型随机变量ξ的概率分布为则称 E ξ=x1p1+x2p2+…+xnpn +… 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量 说明:(1)数学期望的一个特征数,它反映了离散型随机变量取值的平均水平 (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令p1=p2=…=pn ,则有p1=p2=…=pn = ,E ξ=(x1+x2+…+xn) ,所以ξ的数学期望又称为平均数、均值(3)随机变量的数学期望与样本的平均值的关系:前者是常数,不依赖样本抽取;后者是一个随机变量.D ξ=(x 1-E ξ)2·P 1+ (x 2-E ξ)2·P 2 + … + (x n -E ξ)2·Pn + … 叫随机变量ξ的均方差,简称方差。

说明:①、D ξ的算术平方根√D ξ—— 随机变量ξ的标准差,记作σξ; ②、标准差与随机变量的单位相同;③、随机变量的方差与标准差都反映了随机变量取值的稳定与波动,集中与分散的程度。

集中分布的期望与方差一览期望方差两点分布 E ξ=pD ξ=pq ,q=1-p超几何分布的超几何分布服从参数为n ,M ,N ξNMn ⋅=ξED (X )=np (1-p )* (N-n )/(N-1)不要求二项分布ξ ~ B (n,p ) E ξ=np D ξ=qE ξ=npq ,q=1-p几何分布p(ξ=k)=g(k ,p)1/p2p q D =ξ =E(ξ-E ξ)2=E ξ2—(E ξ正态分布连续型随机变量若数据无限增多且组距无限缩小,那么频率分布直方图的顶边缩小乃至形成一条光滑的曲线,我们称此曲线为概率密度曲线.概率密度曲线的形状特征:中间高,两头低正态分布若概率密度曲线就是或近似地是函数),(,21)(222)(+∞-∞∈=--x e x f x σμσπ的图像,其中解析式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差. 则其分布叫正态分布,记作f( x )的图象称为正态曲线2,σξμξ==D E=),(2σμN。

相关文档
最新文档