单层厂房建筑结构抗震
建筑钢结构工程技术 单层钢结构厂房抗震构造措施

来源:建筑抗震设计规范2016版(Ⅲ)抗震构造措施9.2.12厂房的屋盖支撑,应符合下列要求:1 无檩屋盖的支撑布置,宜符合表9.2.12-1的要求。
2 有檩屋盖的支撑布置,宜符合表9.2.12-2的要求。
3 当轻型屋盖采用实腹屋面梁、柱刚性连接的刚架体系时,屋盖水平支撑可布置在屋面梁的上翼缘平面。
屋面梁下翼缘应设置隅撑侧向支承,隅撑的另一端可与屋面檩条连接。
屋盖横向支撑、纵向天窗架支撑的布置可参照表9.2.12的要求。
4 屋盖纵向水平支撑的布置,尚应符合下列规定:1)当采用托架支承屋盖横梁的屋盖结构时,应沿厂房单元全长设置纵向水平支撑;2)对于高低跨厂房,在低跨屋盖横梁端部支承处,应沿屋盖全长设置纵向水平支撑;3)纵向柱列局部柱间采用托架支承屋盖横梁时,应沿托架的柱间及向其两侧至少各延伸一个柱间设置屋盖纵向水平支撑;4)当设置沿结构单元全长的纵向水平支撑时,应与横向水平支撑形成封闭的水平支撑体系。
多跨厂房屋盖纵向水平支撑的间距不宜超过两跨,不得超过三跨;高跨和低跨宜按各自的标高组成相对独立的封闭支撑体系。
5 支撑杆宜采用型钢;设置交叉支撑时,支撑杆的长细比限值可取350。
表9.2.12-1 无檩屋盖的支撑系统布置(表9.2.12-2移下页)9.2.13 厂房框架柱的长细比,轴压比小于0.2时不宜大于150;轴压比不小于0.2时,不宜大于120ay f /235。
9.2.14 厂房框架柱、梁的板件宽厚比,应符合下列要求:1 重屋盖厂房,板件宽厚比限值可按本规范第8.3.2条的规定采用,7、8、9度的抗震等级可分别按四、三、二级采用。
2 轻屋盖厂房,塑性耗能区板件宽厚比限值可根据其承载力的高低按性能目标确定。
塑性耗能区外的板件宽厚比限值,可采用现行《钢结构设计规范》GB 50017弹性设计阶段的板件宽厚比限值。
注:腹板的宽厚比,可通过设置纵向加劲肋减小。
表9.2.12-2 有檩屋盖的支撑系统布置9.2.15 柱间支撑应符合下列要求:l 厂房单元的各纵向柱列,应在厂房单元中部布置一道下柱柱间支撑;当7度厂房单元长度大于120m(采用轻型围护材料时为150m)、8度和9度厂房单元大于90m(采用轻型围护材料时为120m)时,应在厂房单元1/3区段内各布置一道下柱支撑;当柱距数不超过5个且厂房长度小于60m时,亦可在厂房单元的两端布置下柱支撑。
钢结构房屋抗震设计规定

目录(三)
8.主要构造规定 8.1 构件长细比和板件宽厚比 8.2 节点设计 8.2.1 美、日大震后框架梁-柱连接节 点设计的改进
中国建筑标准设计研究所
(1)震害情况 (2)对节点破坏原因的分析 (3)两国的构造差异 (4)美、日的改进措施 (5)我国采取的对策 8.2.2 梁-柱连接的弹性阶段抗震设计 8.2.3 拼接计算 8.2.4 中心支撑的节点设计
一、多层和高层钢结构房屋-4
5.结构布置的一般规定
与《高钢规程》相比,主要有以下变更:
1. 关于楼板,8.1.7条规定了超过12层的钢结构房屋, 宜采用压型钢板组合楼板和现浇或整体式钢筋混 凝土楼板,并与钢梁有可靠连接;必要时可设置 水平支撑。不超过12层的钢结构房屋,除上述形 式外,尚可采用装配整体式钢筋混凝土楼板、装 配式楼板或其它轻型楼盖,但强调了应将楼板预 埋件与钢梁焊接,或采取其它保证楼盖整体性的 措施。
一、多层和高层钢结构房屋-6
6.3 弹塑性位移增大系数
对钢框架和框架-支撑结构弹塑性位移增大
系数,在大量算例的基础上编制成表,对10~ 中
目录(四)
二、多层钢结构厂房 1.一般规定 2.计算要点 3.构造措施
中国建筑标准设计研究所
三、单层钢结构厂房 1.一般规定 2.计算要点 3.构造措施
一、多层和高层钢结构房屋-1
1、前言 我国《钢结构设计规范》GBJ17不含抗震内容。
因此,地震区的房屋钢结构设计,除应符合钢结 构设计规范外,还应符合抗震规范的有关规定。 今后,凡是《高钢规程》中与抗震规范不一致之 处,应按抗震规范的规定执行,且不应比其低。 但抗震规范中未列入而《高钢规程》中已列入的 ,在该规程修订前仍可执行。
中国建筑标准设计研究所
单层工业厂房抗震验算

十三抗震验算抗震计算的一般原则:(1)、《建筑抗震设计规范》规定:对于7度I、II类场地,柱高不超过10m且结构单元两端均有山墙的单跨及等高多跨厂房(锯齿形厂房除外),当按此规范的规定采取抗震构造措施时,可不进行横向及纵向的截面抗震验算。
本厂房所在地为7度II类场地,不过柱高超过10m,故应进行抗震验算。
(2)、厂房抗震计算时,采用单质点模型计算地震作用。
有吊车的厂房,当按平面框(排)架进行抗震计算时,对设置一层吊车的厂房,在每跨取两台吊车。
(3)、轻质墙板或与柱柔性连接的预制钢筋混凝土墙板,应计入墙体的全部自重,但不应计入刚度。
与柱贴砌且与柱拉结的砌体围护墙,应计入全部自重,在平行于墙体方向计算时可计入等效刚度,其等效刚度系数可根据柱列侧移的大小取0.2~0.6(详见后)。
(4)、一般单层厂房需要进行水平地震作用下的横向和纵向抗侧力构件的抗震强度验算。
沿厂房横向的主要抗侧力构件是由柱、屋架(屋面梁)组成的排架和刚性横墙;沿厂房纵向的主要抗侧力构件是由柱、柱间支撑、吊车梁、连系梁组成的柱列和刚性纵墙。
(5)、在8度和9度地震区,对跨度大于24m的屋架,尚需考虑竖向地震作用。
8度III、IV类场地和9度时,对高大的单层钢筋混凝土柱厂房的横向排架应进行弹塑性变形验算。
本工程为7度II类场地,故不需要进行弹塑性变形验算,只需进行横向抗震验算。
13.1 横向抗震验算13.1.1 柱顶横向水平地震作用的计算取一个柱距的单榀平面排架为计算单元,质量集中在柱顶标高处的单质点系,用原结构体系的最大动能和质量集中到柱顶质点的折算体系的最大动能相等的原则求的等效重力荷载代表值。
单层排架厂房墙、柱、吊车梁等质量集中于屋架下弦处时的质量集中系数汇见下表:集中到柱顶的各部分结构重力等效集中系数周期内力位于柱顶以上部位的结构及屋面重力荷载(屋盖、雪、檐墙等)1.0 1.0单跨厂房柱 0.25 0.5 与柱等高的纵墙0.25 0.5 吊车梁 0.5 0.75 吊车桥架0 0.5计算自振周期时的质量集中:吊车梁纵墙柱雪载屋盖G G G G G 5.025.025.0)5.0(0.1G ++++= 计算地震作用时的质量集中:吊车桥架吊车梁纵墙柱雪载屋盖G G G G G G 5.075.05.05.0)5.0(0.1G +++++=注:上面各式中,G 屋盖等均为重力荷载代表值(屋盖的重力荷载代表值包括作用于屋盖处的活荷载和檐墙的重力荷载代表值)。
建筑工程抗震设防分类标准

5.4.3 邮电通信建筑的抗震设防类别
1 国际海缆登陆战、国际卫星地球站、中央级的电信枢纽(含卫 星地球站),抗震设防类别应划为甲类。 2 大区中心和省中心的长途电信枢纽、邮政枢纽、海缆登陆局, 重要市话局(汇接局,承担重要通信任务和终局容量超过五万门的 局),卫星地球站,地区中心和抗震设防烈度为8、9 7度及以上的 县及县级市的长途电信枢纽楼的主机房和天线支撑物,抗震设防类 别应划为乙类。
4.0.3医疗建筑的抗震设防类别
1. 三级医院中承担特别重要医疗任务的门诊、医技、住院 用房,抗震设防类别应划为甲类。
2. 二、三级医院的门诊、医技、住院用房,具有外科手术 室或急诊科的乡镇卫生院的医疗用房,县级及以上急救 中心的指挥、通信、运输系统的重要建筑,县级及以上 的独立采供血机构的建筑,抗震设防类别应划为乙类。 3. 工矿企业的医疗建筑,可比照城市的医疗建筑确定其抗 震设防类别。
2.
3. 4. 5.
城镇的大小和地位、行业的特点、工矿企业的规模。
建筑使用功能失效后,对全局的影响范围大小、抗震 救灾影响及恢复的难以程度。 建筑各区段的重要性有显著不同时,可按区段划分抗 震设防类别。 不同行业的相同建筑,当处地位及地震破坏所产生的 后果和影响不同时,其抗震设防类别可不相同。
3.0.2建筑工程应根据其使用功能的重要性 和地震后果的严重性分类
4.0.5
大中城市和抗震设防烈度为8、9度的县级及县级中抗震防
灾应急指挥中心的主要建筑,抗震设防类别不应低于乙
类。 工矿企业的抗震防灾指挥系统建筑,可比照城市抗震防灾 指挥系建筑确定其抗震设防类别。
[修订说明]
本条将8、9度的县级防灾指挥中心,扩大到6、7度,
即所有烈度。
4.0.7
抗震结构

动力系数:体系最大加速度反应与地面最大加速度之比(体系加速度放大系数)三水准目标:小震不坏,中震可修,大震不倒,P11三个水准的抗震设防目标:第一水准:当遭受低于本地区抗震设防烈度的多遇地震影响时,建筑物主体结构一般不受损坏或不需修理可继续使用;第二水准:当遭受相当于本地区抗震设防烈度的地震影响时,建筑物可能发生损坏,但经一般修理仍可正常使用;第三水准:当遭受高于本地区抗震设防烈度的罕遇地震影响时,建筑物不致倒塌或发生危,及生命安全的严重破坏。
建筑结构抗震设计包含三个层次内容?三者关系?概念设计,抗震计算,构造措施,概念设计在总体上把握抗震设计的基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性、加强局部薄弱环节等意义上保证抗震计算结果的有效性。
三者不可分割,忽略任何一个部分,都可能造成抗震设计的失败。
鞭鞘效应:当建筑有局部突出小建筑且该部分重量和刚度变小在底部剪力发如何考虑?作用在小建筑上的地震作用乘以增大系数抗震规范规定该增大系数取3,向主体传递时不乘。
圈梁的作用(砌体结构中)•可以增强纵横墙的连接,增强楼盖的整体性,增强墙体的稳定性•可从有效的约束墙体裂缝的开展,从而提高墙体的抗震能力•可以有效地抵抗由于地震或其他原因所引起的地基不均匀沉降对房的破坏作用。
基本烈度:是指一个地区在一定时期(50年)内一般场地条件下按一定概率(10%)可能遭到的最大地震烈度。
等效地震荷载:工程中为了应用方便,有时将地震作用等效为某种形式的荷载作用。
减震:隔震系统通过降低结构系统的固有频率提高系统阻尼来降低结构的加速度反应,从而大幅度降低结构的地震内力。
震源:地球内部断层错动并引起周围介质振动的部位。
隔震:在结构物地面以上的部分的底部设置隔震层,使之固结于地基中的基础顶面分离开,从而限制地震动向结构物的传递。
强柱弱梁:节点处柱弯矩之和比梁端弯矩之和大。
地震反应谱:方便于地震作用,将单自由度体系的地震最大绝对加速度反应与其自振周期T的关系定义为地震加速度反应谱。
13第十三讲钢结构房屋抗震设计规定

第十三讲钢结构房屋抗震设计规定蔡益燕一、多层和高层钢结构房屋1.前言我国89年版抗震规范,除单层钢结构厂房外,没有其它钢结构内容。
我国过去钢材产量有限,钢结构在工程中应用很少。
随着钢材产量的增加,国家要求积极发展钢结构,新规范除保留单层钢结构房屋外,还增加了第八章“多层与高层钢结构房屋”,使钢结构抗震设计的内容大大充实,以适应钢结构发展的需要。
我国《钢结构设计规范》GBJ17不包含抗震内容。
因此,地震区的房屋钢结构设计,除应符合钢结构设计规范外,还应符合抗震规范的有关规定。
与行业标准《高层民用建筑钢结构技术规程》(以下简称《高钢规程》)相比,新的抗震规范第八章对高层钢结构的设计与施工作出了不少新规定。
今后,凡是《高钢规程》中与抗震规范不一致之处,应按抗震规范的规定执行,且不应比其低。
但抗震规范中未列入而《高钢规程》中已列入的,在该规程修订前仍可执行。
本章在适用的高层钢结构体系中未列入钢框架-混凝土剪力墙(核心筒),是考虑到对这种体系的性能尚未进行系统研究。
1994年的美国北岭(Northridge)地震和1995年的日本阪神地震是两次震害特别严重的地震,尤其是钢结构焊接刚架连接的破坏十分严重。
美国该地区的钢框架房屋破坏达100多幢,日本破坏的也不少,震后两国都进行了大量研究,对破坏原因进行了分析,采取了相应措施,制订了新标准。
由于美、日是钢结构应用最多的国家,它们的新标准引起了各国钢结构设计、施工和研究人员的关注,在这次我国抗震规范修订中也有若干反映。
本介绍对于行业标准《高层民用建筑钢结构技术规程》中已有规定而这次变更不大的内容只作一般介绍,着重说明这次修订中的新内容。
多层工业建筑钢结构的抗震设计另有规定,列入本章附录,这里不拟作介绍。
2.材料对抗震钢结构钢材的基本要求, 是参考AISC钢结构房屋抗震规定提出的。
这些要求是:⑴强屈比大于1.2; ⑵有明显的屈服台阶;⑶伸长率大于20%(标距50mm); ⑷有良好可焊性。
抗震结构设计第七章单层工业厂房的抗震设计

第三节 单层钢筋混凝土柱厂房的抗震设计
一、地震作用分析
单层厂房地震作用分析应考虑平面内的弹性变形和山墙可 能引起的扭转,所以规范给出的地震作用分析都是以空间分 析为基础的简化方法。
(1)厂房的横向抗震分析以平面排架为主,但要考虑屋盖 平面内的变形和砌体山墙在地震中开裂后的内力重分布,尤 其要考虑仅在一端有山墙时带来的扭转效应。
架与柱顶采用刚性焊接、柱顶范围箍筋配置少以及连接节点处 于弯矩、水平剪力和竖向轴力的共同作用等。
此外,在纵向地震作用下,个别厂房吊车梁与柱连接破坏, 使吊车梁纵向发生位移,甚至掉落。山墙柱上端与屋架的连接 处,震后也有不同程度的破损现象。
(5)支撑系统
➢ 震害现象:
地震时普遍发生杆件压屈、部分节点扭折、焊缝撕开、 锚件拉脱、锚筋拉断等现象,也有个别杆件拉断的。使支 撑系统部分失效或完全失效,造成主体结构错位或倾倒。 以天窗架垂直支撑最为严重,其次是屋盖垂直支撑和柱间 支撑。
柱子高度很大时,交叉支撑要有多节。
2.结构体系
(5)围护结构
①砌体围护墙的破坏比轻质墙板或大型钢筋混凝土墙板要 严重的多,有条件的情况下应采用轻质墙板或大型钢筋混 凝土墙板; ②高大的山墙,要用到顶的抗风柱和墙顶沿屋面的卧梁来 改善其抗震性能; ③砌体内隔墙要与柱脱开,以减少对柱子的不利影响,可 利用压顶梁和钢筋混凝土构造柱来增加其稳定性,提高抗 震性能; ④除单跨厂房外,围护砌体墙均应采用外贴式,以减轻墙 体给排架柱带来的不利影响,但应加强砌体墙与厂房柱之 间的锚拉。山墙更应增强其顶部与厂房屋盖构件和抗风柱 的锚拉。
(1)屋盖体系 ➢ 震害现象:
7度区基本完好;8度区发生屋面板错动、位移、震落,造 成屋盖局部倒塌;9度区发生屋架倾斜、位移、屋盖部分塌落, 屋面板大量开裂、错位;9度以上地区则发生屋盖大面积倒塌。
单层砖柱厂房的抗震设计

单层砖柱厂房的抗震设计在工业建筑领域,单层砖柱厂房因其建造简单、成本相对较低等优点,曾被广泛应用。
然而,由于砖柱的抗震性能相对较弱,这类厂房在地震作用下容易遭受破坏。
因此,进行科学合理的抗震设计对于保障单层砖柱厂房的安全至关重要。
首先,我们需要了解单层砖柱厂房的结构特点。
这类厂房通常由砖柱、屋架(或屋面梁)、屋面板等主要构件组成。
砖柱作为主要的竖向承重构件,其承载能力和稳定性直接影响厂房的整体抗震性能。
屋架(或屋面梁)则将屋面荷载传递给砖柱,屋面板则起到覆盖和防水的作用。
在抗震设计中,场地选择是一个重要的前提。
应尽量避免在地震活动频繁、地质条件不良的区域建设单层砖柱厂房。
如果无法避开,就需要采取更加严格的抗震措施。
同时,场地的地形地貌也会对地震作用产生影响,例如,在山谷、山坡等地形复杂的区域,地震波的传播和放大效应可能更加明显。
确定合理的结构布置是抗震设计的关键之一。
砖柱的布置应均匀、对称,避免出现局部薄弱环节。
厂房的长高比应适当控制,过长或过高的厂房在地震作用下容易产生较大的变形和破坏。
此外,纵横墙的连接应牢固可靠,以增强厂房的整体性。
对于砖柱本身,其截面尺寸和材料强度应满足抗震要求。
一般来说,砖柱的截面尺寸不宜过小,以保证其有足够的承载能力和稳定性。
同时,选用的砖和砂浆应具有良好的质量和强度,确保砖柱的整体性和抗震性能。
在砖柱的构造方面,应设置足够的圈梁和构造柱。
圈梁可以增强砖柱之间的连接,提高厂房的整体性;构造柱则可以增加砖柱的延性,改善其抗震性能。
屋架(或屋面梁)与砖柱的连接节点也是抗震设计的重点。
连接节点应具有足够的强度和变形能力,能够有效地传递地震作用。
常见的连接方式有焊接、螺栓连接等,在设计时应根据实际情况选择合适的连接方式,并确保连接节点的施工质量。
在计算地震作用时,应根据厂房所在地区的地震设防烈度、场地类别等因素,采用合适的地震反应谱或时程分析方法。
同时,要考虑地震作用的扭转效应和竖向地震作用,以全面评估厂房在地震中的受力情况。