等腰三角形存在性(讲义+练习含答案)

合集下载

(完整word版)等腰三角形存在性问题(带答案).doc

(完整word版)等腰三角形存在性问题(带答案).doc

等腰三角形存在性问题(两圆一线)类型一、格点中的等腰三角形1、在如图所示的 5×5方格中,每个小方格都是边长为 1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是()2、 .如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB 为其中一腰.这样的 C 点有 ()个.3 、如图, A、B 是网格中的两个格点,点 C 也是网格中的一个格点,连接AB、 BC、AC,当△ ABC为等腰三角形时,格点 C 的不同位置有处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于.4、如图,在图中能画出与△ABC全等的格点三角形有几个?类型二、定边几何法讨论:两圆一线5、以线段AB 为一边的等腰直角三角形有个,请在下列图中画出来6、( 1)如图所示,线段OD 的一个端点O 在直线 AB 上,以 OD 为一边的等腰三角形ODP,并且使点P 也在 AB 上,这样的等腰三角形能画个(在图中作出点P)( 2)若∠ DOB=60°,其它条件不变,则这样的等腰三角形能画个,(只写出结果)( 3)若改变( 2)中∠ DOB的度数,其他条件不变,则等腰三角形ODP的个数和( 2)中的结果相同,则改变后∠DOB=.7、如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△ PAB 是等腰三角形,则这样的点P 最多能确定()个.8、线段 AB 和直线 l 在同一平面上.则下列判断可能成立的有个直线 l 上恰好只有个 1 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 2 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 3 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 4 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 5 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 6 点 P,使△ ABP为等腰三角形.9、如图AOB ,当AOB为 30 , 60 , 120 时,请在射线OA 上找点 P,使POB 为等腰三角形,并分析出当AOB 发生变化时,点P 个数的情况;类型三、三角形、长方形和正方形中的等腰三角形10、如图,在长方形ABCD中, AB=4, AD=10,点 Q 是 BC的中点,点P 在 AD 边上运动,若△ BPQ 是腰长为 5 的等腰三角形,则满足题意的点P有()个11、如图所示,在长方形ABCD 的对称轴上找一点P,使得△ PAB,△ PBC均为等腰三角形,则满足条件的点P 有()个12、如图,边长为 6 的正方形 ABCD内部有一点P,BP=4,∠ PBC=60°,点 Q 为正方形边上一动点,且△ PBQ是等腰三角形,则符合条件的Q 点有 ____个.13、在等边△ ABC所在的平面内求一点P,使△ PAB,△ PBC,△ PAC都是等腰三角形,请画出所有满足条件的点;等腰三角形存在性问题(两圆一线)答案类型一、格点中的等腰三角形1、在如图所示的 5×5方格中,每个小方格都是边长为 1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是(4)2、 .如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB 为其中一腰.这样的 C 点有 ( B)个.A.8B.9C.10D.113 、如图, A、B 是网格中的两个格点,点 C 也是网格中的一个格点,连接AB、 BC、AC,当△ ABC为等腰三角形时,格点 C 的不同位置有3处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC 的面积之和等于15.【解答】解:格点 C 的不同位置分别是:C、C′、 C″,∵网格中的每个小正方形的边长为1,∴S△ABC= × 4× 3=6,S△ABC′=20﹣2× 3﹣=6.5,S△ABC″=2.5,∴S△ABC+S△ABC′+S△ABC″=6+6.5+2.5=15.故答案分别为: 3; 15.4、如图,在图中能画出与△ABC全等的格点三角形有几个?类型二、定边几何法讨论:两圆一线5、以线段AB 为一边的等腰直角三角形有个,请在下列图中画出来6、( 1)如图所示,线段OD 的一个端点O 在直线 AB 上,以 OD 为一边的等腰三角形ODP,并且使点P 也在 AB 上,这样的等腰三角形能画4个(在图中作出点P)( 2)若∠ DOB=60°,其它条件不变,则这样的等腰三角形能画2个,(只写出结果)( 3)若改变( 2)中∠ DOB的度数,其他条件不变,则等腰三角形ODP的个数和( 2)中的结果相同,则改变后∠DOB= 90 °.7、如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△ PAB 是等腰三角形,则这样的点P 最多能确定()个.8、线段 AB 和直线 l 在同一平面上.则下列判断可能成立的有 5 个直线 l 上恰好只有个 1 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 2 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 3 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 4 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 5 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 6 点 P,使△ ABP为等腰三角形.9、如图AOB ,当AOB为 30 , 60 , 120 时,请在射线OA 上找点 P,使POB 为等腰三角形,并分析出当AOB 发生变化时,点P 个数的情况;【结论】当AOB 为锐角,AOB60 ,有三个点,当AOB =60,只有一个点;当 AOB 为钝角或直角,只有一个点;类型三、三角形、长方形和正方形中的等腰三角形10、如图,在长方形ABCD中, AB=4, AD=10,点Q 是BC的中点,点P 在AD 边上运动,若△ BPQ 是腰长为 5 的等腰三角形,则满足题意的点P 有 ( B )A.2 个B.3 个C.4 个D.5 个11、如图所示,在长方形ABCD 的对称轴上找一点P,使得△ PAB,△ PBC均为等腰三角形,则满足条件的点P 有(C )A.1 个B.3 个C.5 个D.无数多个12、如图,边长为 6 的正方形 ABCD内部有一点P,BP=4,∠ PBC=60°,点 Q 为正方形边上一动点,且△ PBQ是等腰三角形,则符合条件的Q 点有 ____个.13、在等边△ ABC所在的平面内求一点P,使△ PAB,△ PBC,△ PAC都是等腰三角形,请画出所有满足条件的点;。

专题11 存在性-等腰直角三角形(解析版)

专题11 存在性-等腰直角三角形(解析版)

中考数学压轴题--二次函数--存在性问题第11节等腰直角三角形的存在性方法点拨第一步:易证ΔBAD∽ΔECB,如果再加一个条件BD=BE,此时ΔBAD≌ΔECB (AAS)所以,AB=CE,AD=CB第二步:根据点坐标来表示线段长度,列等式求解。

例题演练1.如图所示,抛物线y=a(x+1)(x﹣5)(a≠0)的图象与x轴交于A、B两点,与y轴交于点C.(1)当a=﹣时,①求点A、B、C的坐标;②如果点P是抛物线上一点,点M是该抛物线对称轴上的点,当△OMP是以OM为斜边的等腰直角三角形时,求出点P的坐标;(2)点D是抛物线的顶点,连接BD、CD,当四边形OBDC是圆的内接四边形时,求a 的值.【解答】解:对于y=a(x+1)(x﹣5)(a≠0),令y=a(x+1)(x﹣5)=0,解得x =5或﹣1,令x=0,则y=﹣5a,故点A、B、C的坐标分别为(5,1)、(﹣1,0)、(0,﹣5a),当x=2时,y=a(x+1)(x﹣5)=﹣9a,顶点的坐标为(2,﹣9a).(1)①当a=﹣时,函数的表达式为y=﹣(x+1)(x﹣5),则点A、B、C的坐标分别为(5,1)、(﹣1,0)、(0,2);②过点P作y轴的平行线交过点M与x轴的平行线于点F,交x轴于点E,设点P的坐标为(x,﹣(x+1)(x﹣5)),∵∠MPO=90°,∴∠MPF+∠OPE=90°,∵∠OPE+∠POE=90°,∴∠POE=∠MPF,∵∠PFM=∠OEP=90°,PM=PO,∴△PFM≌△OEP(AAS),∴PE=MF,则﹣(x+1)(x﹣5)=x﹣2,解得x=﹣或4,故点P的坐标为(﹣,﹣)或(4,2);(2)点B、C的坐标分别为(﹣1,0)、(0,﹣5a),顶点D的坐标为(2,﹣9a).当四边形OBDC是圆的内接四边形时,则BC的中点为该圆的圆心,设BC的中点为点Q,由中点坐标公式得,点Q(,﹣a),则OQ=DQ,即()2+(﹣)2=(2﹣)2+(﹣9a+a)2,解得a=±.2.如图,已知抛物线y=ax2+4x+c与直线AB相交于点A(0,1)和点B(3,4).(1)求该抛物线的解析式;(2)设C为直线AB上方的抛物线上一点,当△ABC的面积最大时,求点C的坐标;(3)将该抛物线向左平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点D,是否存在点E使得△ADE是以AD为腰的等腰直角三角形?若存在,直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)将A、B两点代入到解析式中,得,,解得,∴抛物线的解析式为:y=﹣x2+4x+1;(2)设直线AB为:y=k1x+1,代入点B,得,3k1+1=4,解得k1=1,∴直线AB为:y=x+1,设C(m,﹣m2+4m+1),过C作CM∥y轴交AB于M,如图1,则M(m,m+1),∴CM=﹣m2+4m+1﹣m﹣1=﹣m2+3m,∴S△ABC=S△ACM+S△BCM==,∵C为直线AB上方抛物线上一点,∴0<m<3,∴时,△ABC的面积最大值为,此时C();(3)∵抛物线y=﹣(x﹣2)2+5,∴将抛物线向右平移2个单位后得到的抛物线为:y=﹣x2+5,联立,解得,∴D(1,4),①如图2,当DA=DE,∠EDA=90°,E在AD右侧时,过D作x轴平行线交y轴于N,过E作y轴平行线,两线交于F点∵∠DAN+∠NDA=∠NDA+∠EDF=90°∴∠DAN=∠EDF,又∠DNA=∠EFD=90°,DA=DE,∴△DNA≌△EFD(AAS),∴DN=EF=1,AN=DF=3,∴E(4,3),②当DA=DE,∠EDA=90°,E在AD左侧,同理可得,E(﹣2,5),③当AD=AE,∠DAE=90°,E在AD左侧时,同理可得,E(﹣3,2),④当AD=AE,∠DAE=90°,E在AD右侧时,同理可得,E(3,0),综上所述,E(4,3)或(﹣2,5)或(﹣3,2)或(3,0).3.如图,已知抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,其中A(﹣1,0),C(0,3).(1)求该抛物线的函数表达式;(2)抛物线与直线y=﹣x﹣1交于A、E两点,P是x轴上点B左侧一动点,当以P、B、C为顶点的三角形与△ABE相似时,求点P的坐标;(3)若F是直线BC上一动点,在抛物线上是否存在动点M,使△MBF为等腰直角三角形,若存在,请直接写出点M的坐标;否则说明理由.【解答】解:(1)把A(﹣1,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数表达式为y=﹣x2+2x+3;(2)联立直线AE和抛物线的函数关系式成方程组,得:,解得:,,∴点E的坐标为(4,﹣5),∴AE==5,在y=﹣x2+2x+3中,令y=0,得:﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴点B的坐标为(3,0),∵C(0,3),∴OB=OC=3,∵∠BOC=90°,∴∠CBO=45°,BC=3,∵直线AE的函数表达式为y=﹣x﹣1,∴∠BAE=45°=∠CBO.设点P的坐标为(m,0),则PB=3﹣m,∵以P、B、C为顶点的三角形与△ABE相似,∴=或=,∴=或=,解得:m=或m=﹣,∴点P的坐标为(,0)或(﹣,0);(3)∵∠CBO=45°,∴存在两种情况(如图2).①取点M1与点A重合,过点M1作M1F1∥y轴,交直线BC于点F1,∵∠CBM1=45°,∠BM1F1=90°,∴此时△BM1F1为等腰直角三角形,∴点M1的坐标为(﹣1,0);②取点C′(0,﹣3),连接BC′,延长BC′交抛物线于点M2,过点M2作M2F2∥y 轴,交直线BC于点F2,∵点C、C′关于x轴对称,∠OBC=45°,∴∠CBC′=90°,BC=BC′,∴△CBC′为等腰直角三角形,∵M2F2∥y轴,∴△M2BF2为等腰直角三角形.∵点B(3,0),点C′(0,﹣3),∴直线BC′的函数关系式为y=x﹣3,联立直线BC′和抛物线的函数关系式成方程组,得:,解得:,,∴点M2的坐标为(﹣2,﹣5),综上所述:点M的坐标为(﹣1,0)或(﹣2,﹣5).4.如图,抛物线y=ax2+bx﹣3(a>0)与x轴交于A、B两点,交y轴于点C,OB=3,抛物线经过点(2,5).(1)求该抛物线解析式;(2)如图1,该抛物线顶点D,连接BD、BC,点P是线段BD下方抛物线上一点,过点P作PE∥y轴,分别交线段BD、BC于点F、E,过点P作PG⊥BD于点G,求2PG+EF 的最大值,及此时点P的坐标;(3)如图2,在y轴左侧抛物线上有一动点M,在y轴上有一动点N,是否存在以AN 为直角边的等腰直角三角形AMN?若存在,请直接写出点M的坐标.【解答】解:(1)∵OB=3,∴B(﹣3,0)把C(﹣3,0)和点(2,5),代入抛物线y=ax2+bx﹣3,得,解得,∴抛物线解析式为y=x2+2x﹣3;(2)延长PE与x轴交于点M,FM⊥x轴,PG⊥BD,如图所示,∠FMB=90°,∠PGF=90°,∵∠BFM=∠PFG,∴∠MBF=∠GPF,∴B(﹣3,0),D(﹣1,﹣4),B、D两点的横坐标距离为2,纵坐标距离为4,由勾股定理得BD==2,∴cos∠MBF=cos∠GPF=,∴2PG+EF=EF+2FP,∴C(0,﹣3),设直线BC解析式为l BC:y=kx+b(b≠0),把B(﹣3,0)和C(0,﹣3)代入得,,解得,∴l BC:y=﹣x﹣3,同理,直线BD得解析式为:y=﹣2x﹣6,设E(m,﹣m﹣3),P(m,m2+2m﹣3),F(m,﹣2m﹣6),∴EF+2FP=[﹣m﹣3﹣(﹣2m﹣6)]+2[(﹣2m﹣6)﹣(m2+2m﹣3)]=﹣2(m+)2+,∴当m=﹣时,EF+2FP有最大值,∵2PG+EF=EF+2FP,∴此时,P点坐标为P(﹣,﹣);(3)存在,设N(0,y1),M(x2,+2x2﹣3),当y=0时,代入抛物线y=x2+2x+3中,解得两根为﹣3和1,A在y轴右侧,∴A(1,0),∴AN2=OA2+ON2=1+y12,AM2=(x2﹣1)2+(+2x2﹣3)2,MN2=+(+2x2﹣3﹣y1)2,①当AN⊥MN时,此时由AN=MN,等腰直角三角形各边比为1:1:,∴M点横坐标为﹣﹣1或﹣3﹣1,将M的横坐标为﹣﹣1或﹣3﹣1,代入y=x2+2x﹣3中得,∴M点坐标为(﹣﹣1,﹣2)或(﹣3﹣1,14),②由AN⊥MA得:M点横坐标为﹣2﹣2或﹣2﹣2,将M点横坐标为﹣2﹣2或﹣2﹣2代入y=x2+2x+3中,得M点坐标为(﹣2﹣2,17+8﹣4﹣4)或(﹣2﹣2,33+8﹣4﹣4),综上所述,M点坐标为(﹣﹣1,﹣2)或(﹣3﹣1,14),(﹣2﹣2,17+8﹣4﹣4)或(﹣2﹣2,33+8﹣4﹣4),5.如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到物度C2,C2交x轴于A、B两点(点A在点B的左边),交y轴于点C.(1)求抛物线C1的解析式及顶点坐标;(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式及D点坐标.【解答】解:(1)∵抛物线C1经过原点,与x轴的另一个交点为(2,0),∴,解得,∴抛物线C1的解析式为y=x2﹣2x,∴抛物线C1的顶点坐标(1,﹣1).(2)如图,∵抛物线C1的向右平衡m(m>0)个单位得到抛物线C2,∴C2的解析式为y=(x﹣m﹣1)2﹣1,∴A(m,0),B(m+2,0),C(0,m2+2m),过点C作CH⊥对称轴DE,垂足为H,∵△ACD为等腰直角三角形,∴AD=CD,∠ADC=90°,∴∠CDH+∠ADE=90°,∴△HCD=△ADE,∵∠DEA=90°,∴△CHD≌△DEA,∴AE=HD=1,CH=DE=m+1,∴EH=HD+DE=1+m+1=m+2,由OC=EH得m2+2m=m+2,解得m1=1,m2=﹣2(舍去),∴抛物线C2的解析式为:y=(x﹣2)2﹣1,∴D点坐标(2,2).6.已知:如图,抛物线y=ax2+bx+6与x轴交于点B(6,0),C(﹣2,0),与y轴交于点A,点P是线段AB上方抛物线上的一个动点.(1)如图,连接P A、PB.设△P AB的面积为S,点P的横坐标为m.请说明当点P运动到什么位置时,△P AB的面积有最大值?(2)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+6与x轴交于点B(6,0),C(﹣2,0),∴可设抛物线的表达式为:y=a(x+2)(x﹣6),∴﹣12a=6,解得a=﹣,∴抛物线的表达式为:y=﹣x2+2x+6,∴A(0,6)∴直线AB的表达式为:y=﹣x+6,点P的横坐标为m,则P(m,﹣m2+2m+6),过点P作x轴的垂线,交线段AB于点D,则D(m,﹣m+6),∴S=×OB×PD=×6×(﹣m2+2m+6+m﹣6)==﹣(m﹣3)2+,∴当m=3时,S的值取最大,此时P(3,);(2)存在,理由如下:由题意可知,PD⊥PE,若△PDE是等腰直角三角形,则PE=PD,由(1)可得,PD=﹣m2+2m+6+m﹣6=﹣m2+3m,∵PE∥x轴,∴E(4﹣m,﹣m2+2m+6),∴PE=|2m﹣4|,∴|2m﹣4|=﹣m2+3m,解得m1=﹣2(舍),m2=4,m3=5+(舍),m4=5﹣,∴当△PDE是等腰直角三角形时,点P的坐标为(4,6),(5﹣,3﹣5).7.如图1.二次函数y=﹣x2+6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求出点A,B,C的坐标;(2)连接AC,求直线AC的表达式;(3)如图2,点D为线段AC上的一个动点,连接BD,以点D为直角顶点,BD为直角边,在x轴的上方作等腰直角三角形BDE,若点E在y轴上时,求点D的坐标;(4)若点D在线段AC上,点D由A到C运动的过程中,以点D为直角顶点,BD为直角边作等腰直角三角形BDE,当抛物线的顶点C在等腰直角三角形BDE的边上(包括三角形的顶点)时,请直接写出顶点E的坐标.【解答】解:(1)当x=0时,y=6.∴C点坐标为(0,6).当y=0时,.解得x1=﹣4,x2=4.∵A点在B点左侧,∴点A坐标为(﹣4,0),点B坐标为(4,0).(2)设直线AC的表达式为:y=kx+b.∵点A坐标为(﹣4,0),点C坐标为(6,0).∴.解得.∴直线AC的表达式为.(3)如答图1,过点D分别作DF⊥x轴于点F,DG⊥y轴于G. ∴四边形DGOF为矩形,∠FDG=90°.∵△BDE为等腰直角三角形,BD为直角边.∴BD=ED,∠EDB=90°.∴∠EDB﹣∠GDB=∠FDG﹣∠GDB.即∠EDG=∠BDF.在△BDF和△EDG中,.∴△BDF≌△EDG(AAS).∴DF=DG.设点D的坐标为(m,).∴.解得m=,∴点D的坐标为().(4)由(2)可得直线AC的表达式为.∵点D在直线AC上,∴设点D坐标为().设直线BC的解析式为:y=kx+b.将B(4,0),C(0,6)代入得.解得.∴直线BC的解析式为.①当C位于斜边BE上时,∵点E在直线BC上,∴设点E坐标为(b,).如答图2所示.作EM⊥x轴于点M,DQ⊥x轴于点Q,DN⊥EM于点N.易知四边形DQMN为矩形.∴∠QDN=90°.∵△BDE为等腰直角三角形,BD为直角边.∴BD=ED,∠EDB=90°.∴∠EDB﹣∠NDB=∠QDN﹣∠NDB.即∠EDN=∠BDQ.在△BDQ和△EDN中,.∴△BDQ≌△EDN(AAS).∴DN=DQ,EN=BQ.∵E坐标为(b,),D坐标为().∴DN=b﹣a,EN=.DQ=,BQ=4﹣a.∴.解得.∴=.∴点E的坐标是().②当点D在直角边DE上时,BD交y轴于点F,如答图3所示.∵∠CDF=∠BOF=90°,∠CFD=∠BFO.∴∠DCF=∠OBF.∴tan∠DCF=tan∠OBF.即.亦即.∴OF=.∴点F坐标为(0,).设直线BF解析式为y=kx+b.将B(4,0),F(0,)代入得.解得.∴直线BF解析式为y=.∵B、F、D三点共线,亦即直线BD解析式为y=.联立直线AC解析式得解得.故点D坐标为().∵BD⊥AC,BD=DE,∴BD2=DE2.∴.解得b=.∴=.∴点E的坐标为().③当点D与点C重合时,即点C为直角顶点时.如答图4所示.作EG⊥y轴于点G.∵∠BCE=90°.∴∠ECG+∠BCO=90°.又∵∠ECG+∠GEC=90°∴∠BCO=∠GEC.在△GEC和△OCB中,.∴△GEC≌△OCB(AAS).∴GE=OC=6,GC=OB=4.∴点E的坐标为(6,10).由图知点E关于点C对称的点E'亦满足题意.则由中点坐标公式可得点E'的横坐标为2×0﹣6=﹣6,纵坐标为2×6﹣10=2.故点E'坐标为(﹣6,2).综上所述,点E的坐标为()或()或(6,10)或(﹣6,2).8.如图,抛物线y=ax2+bx+5交x轴于A(﹣1,0)、B(5,0)两点,交y轴于点C.(1)求抛物线的解析式;(2)点P是对称轴上一点,当P A+PC达到最小值时,求点P的坐标;(3)M、N为线段BC上两点(N在M的右侧,且M、N不与B、C重合),MN=2,在第一象限的抛物线上是否存在这样的点R,使△MNR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+5交x轴于A(﹣1,0),B(5,0),∴,解得:,∴抛物线的解析式为:y=﹣x2+4x+5;(2)当x=0时,y=5,∴C(0,5),∵A与B关于抛物线的对称轴对称,∴直线BC与对称轴的交点就是点P,此时P A+PC达到最小值,∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为直线x=2,设直线BC的解析式为:y=kx+b(k≠0),∵点B坐标为(5,0),则,解得:,∴直线BC的解析式为y=﹣x+5,与对称轴的交点为(2,3),∴点P的坐标(2,3);(3)分三种情况:①以点M为直角顶点,如图1,∵MN=2,∴RN=MN=4,∵C(0,5),B(5,0),∴OC=OB=5,∴∠OCB=∠OBC=45°,∵∠RNM=45°=∠BCO,∴RN∥OC,由(2)知:直线BC的解析式为y=﹣x+5,设R(m,﹣m2+4m+5),则N(m,﹣m+5),则RN=(﹣m2+4m+5)﹣(﹣m+5)=4,解得m1=4,m2=1,∵点N在点M右侧,∴m=4,∴R(4,5);②以点R为直角顶点,如图2,∵MN=2,∴RN=MN=2,设R(m,﹣m2+4m+5),则Q(m,﹣m+5),∴RN=(﹣m2+4m+5)﹣(﹣m+5)=2,解得m1=,m2=,∵点N在点M右侧,∴m=,∴R(,);③以点N为直角顶点,如图3,∵MN=2,∴RM=MN=4,∵∠RMN=∠OBC=45°,∴MR∥OB,设R(m,﹣m2+4m+5),则M(m﹣4,﹣m2+4m+5),把M(m﹣4,﹣m2+4m+5)代入y=﹣x+5,得﹣(m﹣4)+5=﹣m2+4m+5,解得m1=4,m2=1,此时点M(0,5),因为点M在线段BC上运动,且不与B、C重合,所以不存在以N为直角顶点的情况;综上所述:当R(4,5)或(,)时,△MNR为等腰直角三角形.9.抛物线y=ax2﹣6ax+4(a≠0)交y轴正半轴于点C,交x轴负半轴于点A,交x轴正半轴于点B,且AB=10.(1)如图(1),求抛物线的解析式;(2)如图(2),连接BC,点P为第一象限抛物线上一点,设点P横坐标为t,△PBC 的面积为S,求S与t之间的函数关系式(不用写出自变量t的取值范围);(3)如图(3),在(2)的条件下,连接P A交y轴于点D,过点P作x轴的垂线,交x轴于点E,交BC于点F,连接DF,当∠APE+∠CFD=90°时,在抛物线上是否存在点Q,使得点Q、PE的中点N、点C、是构成以CN为斜边的等腰直角三角形?若存在,请求出点Q的坐标,若不存在,请说明理由.【解答】解:(1)如图1中,设A(m,0),B(n,0),由题意:,解得,∴A(﹣2,0),B(8,0),把A(﹣2,0)代入y=ax2﹣6ax+4,得到a=﹣,∴抛物线的解析式为y=﹣x2+x+4.(2)如图2中,连接OP.设P(t,﹣t2+t+4),∵B(8,0),C(0,4),∴OB=8,OC=4,∴S=S△POC+S△POB﹣S△OBC=×4×t+×8×(﹣t2+t+4)﹣×4×8=﹣t2+8t(0<t<8).(3)存在.理由:如图3中,设P(t,﹣t2+t+4),∵A(﹣2,0),B(8,0),C(0,4),∴直线P A的解析式为y=﹣(t﹣8)x﹣t+4,直线BC的解析式为y=﹣x+4,∵PE⊥x轴,∴F(t,﹣t+4),∵D(0,﹣t+4),∴FD∥AB,∴∠CFD=∠CBA,∵∠APF+∠CFD=90°,∠APF+∠P AE=90°,∴∠P AB=∠CFD=∠CBO,∴tan∠CBO=tan∠P AB==,∴=,∵OA=2,∴OD=1,∴﹣t+4=1,∴t=6,∴P(6,4),E(6,0),∵PN=NE,∴N(6,2),∵C(0,4),△CNQ是等腰直角三角形,CN是斜边,当点Q在CN的上方时,如图3,过点Q作x轴的平行线交y轴于点G,交EP的延长线于点H,设点Q(s,k),易证△QGC≌△NHQ(AAS),则GC=QH,GQ=HN,即s=k﹣2,k﹣4=6﹣s,解得,∴点Q的坐标为(4,6),∵当x=4时,y=﹣×42+×4+4=6,∴点Q在抛物线y=﹣x2+x+4上,∴满足条件的点Q的坐标为(4,6).10.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标和△ABC的面积.(3)点P是抛物线对称轴上一点,且使得P A﹣PC最大,求点P的坐标.(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【解答】解:(1)∵抛物线y=ax2+bx过A(4,0),B(1,3)两点,∴,解得,∴抛物线的解析式为y=﹣x2+4x.(2)如图1中,∵y=﹣x2+4x=﹣(x﹣2)2+4,∴对称轴x=2,∵B,C关于对称轴对称,B(1,3),∴C(3,3),∴S△ABC=×2×3=3.(3)如图1中,∵A(4,0),C(3,3),∴直线AC的解析式为y=﹣3x+12,∵P A﹣PC≤AC,∴当点P在直线AC上时,P A﹣PC的值最大,此时P(2,6).(4)如图4﹣1中,如图,当∠CNM=90°,NC=NM时,可知N(4,0),M(1,﹣1),CN=NM=,∴S△MNC=×CN×MN=5.如图4﹣2中,当∠CMN=90°,MN=MC时,M(1,﹣2),N(﹣4,0),可知MN =MC==,∴S△MNC=.如图4﹣3中,当∠CMN=90°,MC=MN时,可知M(1,2),N(2,0),MN=CM ==,∴S△MNC=××=,如图4﹣4中,当∠CNM=90°,CN=MN时,N(﹣2,0),M(1,﹣5),可得S△MNC =17.综上所述,满足条件的△MNC的面积为5或或或17.。

一次函数之等腰直角三角形的存在性 (讲义及答案)

一次函数之等腰直角三角形的存在性  (讲义及答案)

一次函数之等腰直角三角形的存在性(讲义及答案).1. 在正方形网格中,网格线交点称为格点。

已知A、B是两个格点,若点C也是格点且使△ABC为等腰直角三角形,则符合条件的点C只有一个。

2. 做讲义第一题时,先看知识点,再用铅笔计算并将演算保留在讲义上。

如果思路受阻(例如某个点做了2-3分钟),重复上述动作。

如果仍无法解决,重点听课堂讲解。

知识点:1. 解决存在性问题的处理思路①分析不变特征:分析所求图形中的定点、定线、定角等不变特征。

②分类、画图:结合所求图形的形成因素,依据其判定、定义等确定分类,并画出符合题意的图形。

通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形。

③求解、验证:围绕不变特征、画图依据来设计方案进行求解。

验证时,要回归点的运动范围,画图或推理,判断是否符合题意。

注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点、线、角;函数背景研究点坐标、表达式等。

2. 等腰直角三角形存在性的特征分析及操作要点:三角形的三个顶点分别为直角顶点进行分类,在直角的基础上,再考虑等腰。

通常借助构造弦图模型进行求解。

精讲精练:1. 如图,直线y=-2x+6与x轴、y轴分别交于点A、B。

点P是第一象限内的一个动点,若以A、B、P为顶点的三角形为等腰直角三角形,则点P的坐标为。

2. 如图,直线y=-x+b与x轴、y轴分别交于点A、B。

点C在直线y=-x+b上,且其纵坐标为1。

△___的面积为。

(1)求直线y=-x+b的表达式及点C的坐标。

(2)点P是第二象限内的一个动点,若△ACP是等腰直角三角形,则点P的坐标为。

3. 如图,在平面直角坐标系中,点A的坐标为(2,0)。

点P是y轴正半轴上的一个动点,Q是直线x=3上的一个动点。

若△APQ为等腰直角三角形,则点P的坐标为。

4. 如图,直线y=3x+4与y轴交于点A,点P是直线x=6上的一个动点,点Q是直线y=3x+4上的一个动点,且点Q在第一象限。

等腰直角三角形存在性(通用版)(含答案)

等腰直角三角形存在性(通用版)(含答案)

等腰直角三角形存在性(通用版)试卷简介:考查在动态框架和函数框架下等腰直角三角形存在性的处理原则,调用存在性问题的处理手段,分析定点、动点,从直角入手,确定分类,借助等腰三角形自身的性质或构造弦图模型解决问题。

一、单选题(共5道,每道20分)1.如图,抛物线交x轴于A,C两点(点A在点C的右侧),交y轴于点B.点D的坐标为(-1,0),若在直线AB上存在点P,使得以A,D,P为顶点的三角形是等腰直角三角形,则点P的坐标为( )A. B.(-1,3)或(1,2)C.(-1,4)或(1,2)D.(-1,4),(1,2)或(5,-2)答案:C解题思路:1.解题要点①观察题目特征,确定为等腰直角三角形存在性问题.②分析定点、动点、不变特征.从直角入手,分类讨论.③画图,表达线段长,借助等腰直角三角形性质建等式.2.解题过程由题意得,A(3,0),B(0,3),AO=BO=3.在△ADP中,A,D为定点,P为直线AB上的动点.①当点A是直角顶点时,在直线AB上不存在点P,使△ADP为等腰直角三角形.②如图,当点D为直角顶点时,过点D作⊥DA,交直线AB于点.由∠1=45°可得,为等腰直角三角形,点满足题意.此时,点的坐标为(-1,4).③如图,当点P为直角顶点时,过点D作⊥AB于点.易知为等腰直角三角形,点满足题意.过点作轴于点M.易得,OM=1,∴点的坐标为(1,2).综上得,点P的坐标为(-1,4)或(1,2).试题难度:三颗星知识点:等腰直角三角形存在性2.如图,抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.P是线段AC上的一个动点(不与点A,C重合),过点P作平行于x轴的直线,交BC于点Q,若在x轴上存在点R,使得△PQR是等腰直角三角形,则点R的坐标为( )A. B.C. D.答案:C解题思路:1.解题要点①观察题目特征,确定为等腰直角三角形存在性问题.②分析定点、动点、不变特征.从直角入手,分类讨论.③画图,表达线段长,借助等腰直角三角形性质建等式.2.解题过程由题意,得A(-1,0),B(3,0),C(0,2),则,.设,则,PQ=-2m+4.①如图,当点Q为直角顶点时,PQ=RQ.,,由-2m+4=m,得,∴.②如图,当点P为直角顶点时,PQ=PR.,,由-2m+4=m,得,∴.③如图,当点R为直角顶点时,RP=RQ.过点R作RD⊥于点D,则,由,得m=1,∴.综上得,点R的坐标为.试题难度:三颗星知识点:等腰直角三角形存在性3.如图,二次函数的图象与x轴交于A,B两点(点A在点B的左侧),以AB为边在x轴上方作正方形ABCD,P是x轴上的一动点(不与点A重合),连接DP,过点P作PE⊥DP交y轴于点E.当△PED是等腰直角三角形时,点P的横坐标为( )A.-4B.-3C.-3或-4D.-4或4答案:D解题思路:∵,∴A(-3,0),B(1,0).∵四边形ABCD是正方形,∴D(-3,4).∵∠DPE=90°,要使得△PED是等腰直角三角形,只能是DP=PE.设点P的横坐标为.①如图,当时,∵∠DAP=∠DPE=90°,∴∠ADP+∠DPA=∠OPE+∠DPA,∴∠ADP =∠OPE.又∵∠DAP=∠POE=90°,DP=PE,∴△ADP≌△OPE,∴OP=AD=4,∴.②如图,当时,易证△DAP≌△POE,∴OP=AD=4,∴(不合题意,舍去).③如图,当时,易证△DAP≌△POE,∴OP=AD=4,∴.综上得,当△PED是等腰直角三角形时,点P的横坐标为-4或4.试题难度:三颗星知识点:等腰直角三角形存在性4.如图,已知直线经过A(0,1),B(1,0)两点,P是x轴正半轴上的一动点,且OP的垂直平分线交直线于点Q,交x轴于点M,直线经过点A且与x轴平行.若在直线上存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形,则点C的坐标为( )A.(1,1)B.(1,1)或(2,1)C.(2,1)D.(1,1)或(0,1)答案:A解题思路:1.解题要点①观察题目特征,确定为等腰直角三角形存在性问题.②分析定点、动点、不变特征.③从已知出发,借助等腰直角三角形的性质(直角和两腰相等)和坐标系处理斜放置直角的原则,构造弦图模型解决问题.2.解题过程由题意得,OA=OB=1,△AOB为等腰直角三角形,点C的纵坐标为1.①如图,当点Q在x轴上方时,延长MQ交直线于点E,则ME⊥.易证△CEQ≌△QMP,△QMB为等腰直角三角形,四边形AOME为矩形,∴CE=QM=MB,AE=OM,∴AC=AE+CE=OM+MB=OB=1,∴点C的坐标为(1,1).②如图,当点Q在x轴下方时,延长QM交直线于点F.同理,得CF=QM=MB,AF=OM,∴AC=AF-CF=OM-MB=OB=1,∴点C的坐标为(1,1).综上得,点C的坐标为(1,1).试题难度:三颗星知识点:等腰直角三角形存在性5.如图,在平面直角坐标系xOy中,直线y=x+4与x轴、y轴分别交于点A,B,D为线段AB 上一动点,过点D作x轴的垂线,垂足为点C,CD的延长线交抛物线于点E,连接BE.若△DBE为等腰直角三角形,则点D的坐标为( )A.(-2,2)B.(-2,6)C.(-3,4)或(-2,6)D.(-3,1)或(-2,2)答案:D解题思路:由题意得,A(-4,0),B(0,4),∴OA=OB.又∵∠AOB=90°,∴∠BAO=45°.∵CD⊥x轴,∴∠ADC=45°,∴EDB=45°.在△DBE中,B是定点,D,E均为动点,要使得△DBE为等腰直角三角形,需从直角出发进行分类讨论.①如图,当点E为直角顶点时,BE∥AO.此时点E的纵坐标为4,代入二次函数表达式可得点E的坐标为(-3,4),∴,∴.②如图,当点B为直角顶点时,BE⊥AB.由直线AB的斜率为1可知直线BE的斜率为-1,结合点B的坐标(0,4),可求得直线BE的表达式为y=-x+4.由得,,∴点E的坐标为(-2,6),∴,∴.综上得,点D的坐标为(-3,1)或(-2,2).试题难度:三颗星知识点:等腰直角三角形存在性。

一次函数之等腰直角三角形的存在性 (讲义及答案).

一次函数之等腰直角三角形的存在性  (讲义及答案).

一次函数之等腰直角三角形的存在性(讲义)➢课前预习1.如图所示的正方形网格中,网格线的交点称为格点.已知A,B 是两个格点,若点C 也是图中的格点,且使得△ABC 为等腰直角三角形,则符合条件的点C 有个.2.用铅笔做讲义第1 题,并将计算、演草保留在讲义上,先看知识点睛,再做题,思路受阻时(某个点做了2~3 分钟)重复上述动作,若仍无法解决,课堂重点听.➢知识点睛1.存在性问题的处理思路①分析不变特征分析所求图形中的定点、定线、定角等不变特征.②分类、画图结合所求图形的形成因素,依据其判定、定义等确定分类,并画出符合题意的图形.通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形.③求解、验证围绕不变特征、画图依据来设计方案进行求解;验证时,要回归点的运动范围,画图或推理,判断是否符合题意.注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点,线,角;函数背景研究点坐标,表达式等.2.等腰直角三角形存在性的特征分析及特征下操作要点:三角形的三个顶点分别为直角顶点进行分类,在直角的基础上,再考虑等腰,通常借助构造弦图模型进行求解.➢精讲精练1.如图,直线y=-2x+6 与x 轴、y 轴分别交于点A,B,点P 是第一象限内的一个动点,若以A,B,P 为顶点的三角形是等腰直角三角形,则点P 的坐标为.2.如图,直线y =-1x +b 与x 轴、y 轴分别交于点A,B,点C 3在直线y =-1x +b 上,且其纵坐标为1,△OAC 的面积为3.3 2(1)求直线y =-1x +b 的表达式及点C 的坐标;3(2)点P 是第二象限内的一个动点,若△ACP 是等腰直角三角形,则点P 的坐标为.3.如图,在平面直角坐标系中,点A 的坐标为(2,0),点P 是y轴正半轴上一个动点,Q是直线x=3 上的一个动点,若△APQ 为等腰直角三角形,则点P 的坐标为.4.如图,直线y=3x+4 与y 轴交于点A,点P 是直线x=6 上的一个动点,点Q 是直线y=3x+4 上的一个动点,且点Q 在第一象限,若△APQ 为等腰直角三角形,则点Q 的坐标为.5. 如图,直线 l 1:y =x +6 与 x 轴、y 轴分别交于点 A ,B ,直线 l 2:y = - 1 x - 3 与 x 轴交于点 A ,点 M 是线段 AB 上的一动点,2过点 M 作 y 轴的平行线交直线 l 2 于点 N ,在 y 轴上是否存在点 P ,使△MNP 为等腰直角三角形?若存在,求出点 P 的坐标;若不存在,请说明理由.【参考答案】➢ 课前预习1. 6➢ 精讲精练1. (9,3),(6,9),( 9 , 9 )2 22. (1) y = - 1 x -1,C (-6,1)3(2)(-2,3),(-5,4),(-4,2)3. (0,1),(0,3),(0,4)4. (2,10),(3,13),( 3 , 17 )2 2 5. 存在,点 P 的坐标为(0, 12 ),(0, - 6 ),(0, 6 )5 5 7。

最短路径问题及等腰三角形的存在性(讲义)文档

最短路径问题及等腰三角形的存在性(讲义)文档

最短路径问题及等腰三角形的存在性(讲义)一、知识点睛1.五种基本作图:①作一条线段等于已知线段;②作一个角等于已知角;③作已知角的角平分线;④作已知线段的垂直平分线;⑤过平面内一点,作已知直线的垂线.2.轴对称最值问题:(1)特征:有定点,有动点,动点在____________上运动,求动点与定点连接组成的线段和(周长)最小.(2)解决方法:以动点所在的直线为对称轴,作定点的对称点,________________,利用两点之间线段最短进行处理.例题:在直线l上找一点P,使得在直线同侧的点A,B到点P的距离之和AP+BP最小.BAl二、精讲精练1.作已知线段的垂直平分线.已知:线段MN.求作:直线AB,使AB垂直平分MN.N作法:(1)分别以_______,______为圆心,___________为半径作弧,两弧相交于点A和点B;(2)_______________________________________._______________________________________.2.(1)过直线上一点,作已知直线的垂线.已知:A为直线MN上一点.求作:直线AB,使AB⊥MN.A作法:①________________________________________________________________________________________________;②________________________________________________________________________________________________;③________________________________________________.________________________________________________.(2)过直线外一点,作已知直线的垂线.已知:A为直线MN外一点.求作:直线AB,使AB⊥MN.AM N作法:①________________________________________________;②________________________________________________________________________________________________;③________________________________________________________________________________________________;④________________________________________________.________________________________________________.3.电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路m,n的距离也必须相等,发射塔P应修建在什么位置?4. 为打造“宜居城市”,某市拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A ,B 的距离相等,且到广场管理处C 的距离等于A ,B 之间距离的一半,A ,B ,C的位置如图所示.请在题目给的原图上利用尺规作图作出音乐喷泉M 的位置.5. 已知:如图,点P ,Q 分别是△ABC 的边AB ,AC 上的两个定点,在BC 上求作一点R ,使△PQR 的周长最小.6. 已知:如图,∠ABC =30°,P 为∠ABC 内部一点,BP =4,如果点M ,N 分别为边AB ,BC 上的两个动点,请画图说明当M ,N 在什么位置时使得△PMN 的周长最小,并求出△PMN 周长的最小值.7. 如图,在四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,在BC ,CD 上分别找一点M ,N .当△AMN 的周长最小时, ∠AMN +∠ANM 的度数为_________.ABCDNMD C B A8. 已知:如图,点P ,Q 为∠AOB 内部两点,点M ,N 分别为OA ,OB 上的两个动点,作四边形PMNQ ,请作图说明当点M ,N 在何处时,四边形PMNQ 的周长最小.9. 已知:如图,线段AB 的端点A 在直线l 上,AB 与l 的夹角为30°,请在直线l 上另找一点C ,使△ABC 是等腰三角形.这样的点能找几个?求出每个等腰三角形顶角的度数.10.如图,在Rt △点P,使得△。

八年级数学一次函数之等腰直角三角形存在性(人教版)(专题)(含答案)

八年级数学一次函数之等腰直角三角形存在性(人教版)(专题)(含答案)

一次函数之等腰直角三角形存在性(人教版)(专
题)
一、单选题(共4道,每道25分)
1.如图,直线y=2x+2与x轴、y轴分别交于点A,点B,点P是平面内一点且在直线AB下方,若使△ABP为等腰直角三角形,则点P的坐标为( )
A.(-3,1),(-2,3)或
B.(1,-1),(2,1)或
C.(1,-1),(2,1),(-3,1)或(-2,3)
D.(1,-1),(2,1)(-3,1),(-2,3),或
答案:B
解题思路:
试题难度:三颗星知识点:略
2.如图,直线与x轴、y轴分别交于点A、点B,点D是线段OA的中点,点P 是第一象限内一点,且使△BDP是等腰直角三角形,则点P的坐标为( )
A. B.
C.(2,8),(8,2),(4,4)
D.(2,5),(5,3),(4,4)
答案:B
解题思路:
试题难度:三颗星知识点:略
3.如图,直线与x轴、y轴分别交于点A、点B,其中点.点P 是平面内一点,若△ABP是以点A为直角顶点的等腰直角三角形,则点P的坐标为( )
A.
B.
C.
D.
答案:A
解题思路:
试题难度:三颗星知识点:略
4.如图,直线y=2x-4与x轴、y轴分别交于点A,点B,点P是平面内一点,若△ABP是以线段AB为直角边的等腰直角三角形,则点P的坐标为( )
A.(6,-2)或(4,-6)
B.(-2,2),(4,-6)或(3,-3)
C.(-2,2),(6,-2),(-4,-2)或(4,-6)
D.(-2,2),(6,-2),(-4,-2),(4,-6),(3,-3)或(1,-1)
答案:C
解题思路:
试题难度:三颗星知识点:略。

等腰三角形的存在性问题

等腰三角形的存在性问题

等腰三角形的存在性问题专题攻略如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.针对训练1.如图,在平面直角坐标系xOy中,已知点D在坐标为(3,4),点P是x轴正半轴上的一个动点,如果△DOP是等腰三角形,求点P的坐标.2.如图,在矩形ABCD中,AB=6,BC=8,动点P以2个单位/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1个单位/秒的速度从点C出发,沿CB向点B移动,当P、Q两点中其中一点到达终点时则停止运动.在P、Q两点移动过程中,当△PQC为等腰三角形时,求t的值.3.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P是x轴正半轴上的一个动点,直线PQ与直线AB垂直,交y轴于点Q,如果△APQ是等腰三角形,求点P的坐标.三年真题4.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.5.如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC 的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从O向C运动时,点H也随之运动.请直接写出点H所经过的路长(不必写解答过程).图1 图26.如图,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?两年模拟7.如图,在△ABC 中,AB =AC =10,BC =16,DE =4.动线段DE (端点D 从点B 开始)沿BC 以每秒1个单位长度的速度向点C 运动,当端点E 到达点C 时运动停止.过点E 作EF //AC 交AB 于点F (当点E 与点C 重合时,EF 与CA 重合),联结DF ,设运动的时间为t 秒(t ≥0).(1)直接写出用含t 的代数式表示线段BE 、EF 的长;(2)在这个运动过程中,△DEF 能否为等腰三角形?若能,请求出t 的值;若不能,请说明理由;(3)设M 、N 分别是DF 、EF 的中点,求整个运动过程中,MN 所扫过的面积.8.如图,在平面直角坐标系xoy 中,矩形ABCD 的边AB 在x 轴上,且AB =3,BC =32,直线y =323-x 经过点C ,交y 轴于点G .(1)点C 、D 的坐标分别是C ( ),D ( );(2)求顶点在直线y =323-x 上且经过点C 、D 的抛物线的解析式;(3)将(2)中的抛物线沿直线y =323-x 平移,平移后的抛物线交y 轴于点F ,顶点为点E (顶点在y 轴右侧).平移后是否存在这样的抛物线,使△EFG 为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.自编原创9.如图,已知△ABC 中,AB =AC =6,BC =8,点D 是BC 边上的一个动点,点E 在AC 边上,∠ADE =∠B .设BD 的长为x ,CE 的长为y .(1)当D 为BC 的中点时,求CE 的长;(2)求y 关于x 的函数关系式,并写出x 的取值范围;(3)如果△ADE 为等腰三角形,求x 的值.备用图 备用图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与等腰三角形存在性问题重点内容梳理一、等腰三角形存在核心思想:——分类讨论(顶点未知,讨论顶点即可)1. A为顶点:AP=AB→以A为圆心B为半径画圆(E为共线点)为顶点:BP=BA→以B为圆心A为半径画圆(F为共线点)为顶点:PA=PB→AB的中垂线(o为共线点)求取方法:1.采用两圆一线找到特殊位置点——找交点2.两点之间距离公式表示等长线段,求取点坐标¥3.最终结论注:该类问题相对较综合,点坐标的求取方法较灵活,需综合运用几何与代数相关定理。

引例:已知,平面内点A(0,2),B(2,0)(1)求,AB所在直线解析式(2)若坐标轴上存在一点,使△ABC①—②A为顶点,AB=AC,A为圆心,AB为半径画圆,③B为顶点,AB=BC,B为圆心,AB为半径画圆④C为圆心,AB中垂线例题例题1.——x轴上的点1.(2019秋•金水区校级月考)如图,直线y=kx+b与x轴、y轴分别交于点A,B,且OA=8,OB=6.(1)求直线AB的解析式.(2)在x轴上是否有在点Q,使以A,B,Q为顶点的三角形是等腰三角形若存在,请直接写出点Q的坐标;若不存在,请说明理由.|【解答】解:(1)∵OA=8,OB=6,∴A(8,0)、B(0,6),把点A、B的坐标代入一次函数表达式:y=kx+b,∴b=6,k=﹣,∴直线AB的表达式为:y=﹣x+6;(2)设点Q(s,0),则AB2=100,AQ2=(8﹣s)2,BQ2=s2+36,①当AB=AQ时,100=(8﹣s)2,解得:s=18或s=﹣2;②当AB=BQ时,100=s2+36,可得:s=±8(舍去8);③当AQ=BQ时,(8﹣s)2=s2+36,可得:s=,、综上,点Q的坐标为:(18,0)或(﹣2,0)或(﹣8,0)或(,0).易错:1. 两圆一线找交点,看清点的位置保证不重不漏2.求取点的坐标,注意舍根(2019秋•昌江区校级期末)如图,长方形AOBC,以O为坐标原点,OB、OA分别在x轴、y 轴上,点A的坐标为(0,8),点B的坐标为(10,0),点E是BC边上一点,把长方形AOBC沿AE翻折后,C点恰好落在x轴上点F处.(1)求点E、F的坐标;(2)求AF所在直线的函数关系式;(3)在x轴上求一点P,使△PAF成为以AF为腰的等腰三角形,请直接写出所有符合条件的点P的坐标.(2019秋•金牛区期末)如图,在平面直角坐标系xOy中,直线l1:y=kx+b与x轴交于点A(﹣6,0),与y轴交于点B(0,4),与直线l2:y=x相交于点C.(1)求直线l1的函数表达式;(2)求△COB的面积;…(3)在x轴上是否存在一点P,使△POC是等腰三角形.若不存在,请说明理由;若存在,请直接写出点P的坐标.例题2.——y轴上的点(2019秋•普宁市期末)一次函数y=kx+b的图象经过点A(0,9),并与直线y=x相交于点B,与x轴相交于点C,其中点B的横坐标为3.(1)求B点的坐标和k,b的值;(2)在y轴上是否存在点P使△PAB是等腰三角形若存在,请直接写出点P坐标;若不存在,请说明理由.【【解答】解:(1)y=x相交于点B,则点B(3,5),将点A、B的坐标代入一次函数表达式并解得:k=﹣,b=9;(2)设点P(0,m),而点A、B的坐标分别为:(0,9)、(3,5),则AB2=25,AP2=(m﹣9)2,BP2=9+(m﹣5)2,当AB=AP时,25=(m﹣9)2,解得:m=14或4;当AB=BP时,同理可得:m=9(舍去)或﹣1;当AP=BP时,同理可得:m=;综上点P的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,)》练习如图,一次函数y=﹣x+3的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD 对折,使点A与点B重合,直线CD与x轴交于点C,与AB交于点D.连接BC.(1)求点A和点B的坐标;(2)求S△BOC;(3)在y轴上有一点P,且△PAB是等腰三角形,求出点P的坐标.~练习(2017秋•金华期末)如图,已知直线l:y=kx+b(k≠0)的图象与x轴、y轴交于A、B两点,A(﹣2,0),B(0,1).(1)求直线l的函数表达式;(2)若P是x轴上的一个动点,请直接写出当△PAB是等腰三角形时P的坐标;((3)在y轴上有点C(0,3),点D在直线l上,若△ACD面积等于4,求点D的坐标.例题3——平行于坐标轴的点23.(2018秋•景德镇期末)如图,已知直线y=2x+b交x轴于点A(﹣2,0),交y轴于点B,直线y=2交AB于点C,交y轴于点D,P是直线y=2上一动点,设P(m,2).(1)求直线AB的解析式和点B,点C的坐标;(2)直接写出m为何值时,△ABP是等腰三角形;;【解答】解:(1)将点A的坐标代入y=2x+b得:0=2×(﹣2)+b,解得:b=4,故直线AB的表达式为:y=2x+4,则点B(0,4),当y=2时,x=﹣1,即点C(﹣1,2);(2)点A(﹣2,0)、点B(0,4),点P(m,2),则AB2=20,AP2=(m+2)2+4,PB2=m2+4,)①当AB=AP时,即20=(m+2)2+4,解得:m=2或﹣6,②当AB=BP时,同理可得:m=4或﹣4,③当AP=BP时,同理可得:m=﹣1,综上,m=﹣4或﹣6或2或4或﹣1;(2019秋•太仓市期末)如图,平面直角坐标系中,直线AB:y=kx+3(k≠0)交x轴于点A(4,0),交y轴正半轴于点B,过点C(0,2)作y轴的垂线CD交AB于点E,点P从E出发,沿着射线ED向右运动,设PE=n.(1)求直线AB的表达式;(2)当△ABP为等腰三角形时,求n的值;((2015秋•上城区期末)A(0,4)是直角坐标系y轴上一点,P是x轴上一动点,从原点O 出发,沿正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)当t=3时,平面直角坐标系内有一点M(3,a),请直接写出使△APM为等腰三角形的点M的坐标.》例题4——动点相关(2014秋•屏南县校级期末)直线AB:y=﹣x+b分别与x,y轴交于A(8、0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=4:3(1)求点B的坐标为;(2)求直线BC的解析式;(3)动点M从C出发沿CA方向运动,运动的速度为每秒1个单位长度.设M运动t秒时,当t为何值时△BCM为等腰三角形./【解答】解:(1)y=﹣x+b分别与x轴交于A(8、0),得﹣8+b=0.解得b=8,即函数解析式为y=﹣x+8,当x=0时,y=8,B点坐标是(0,8);(2)由OB:OC=4:3,BC=8,得8:BC=4:3,解得BC=6,即C(﹣6,0),设直线BC的解析式为y=kx+b,图象经过点B,C,得,解得,直线BC的解析式为y=x+8;*(3)设M点坐标(a,0),由勾股定理,得BC==10,①当MC=BC=10时,由路程处以速度等于时间,得10÷1=10(秒),即M运动10秒,△BCM为等腰三角形;②当MC=MB时,MC2=MB2,即(a+6)2=a2+82,化简,得12a=28,解得a=即M(,0).MC=﹣(﹣6)=+6=,由路程除以速度等于时间,得÷1=(秒),即M运动秒时,△BCM为等腰三角形;③当BC=BM时,得OC=OM=6,|即MC=6﹣(﹣6)=6+6=12,由路程除以速度等于时间,得12÷1=12(秒),即M运动12秒时,△BCM为等腰三角形,综上所述:t=10(秒),t=(秒),t=12(秒)时,△BCM为等腰三角形.练习(2017秋•平阴县期末)如图,直线L1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P (m,3)为直线L1上一点,另一直线L2:y2=x+b经过点P.(1)求点P坐标和b的值:(2)若点C是直线L2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动,设点Q的运动时间为t秒.}①请写出当点Q运动过程中,△APQ的面积S与t的函数关系式;②求出t为何值时,△APQ的面积等于3;③是否存在t的值,使△APQ为等腰三角形若存在,请直接写出t的值;若不存在,请说明理由.(2018春•新田县期末)如图,在平面直角坐标系中,直线y=﹣分别交x,y轴于A,B两点,C为线段AB的中点,D(t,0)是线段OA上一动点(不与A点重合),射线BF ∥x轴,延长DC交BF于点E.(1)求证:AD=BE;*(2)连接BD,记△BDE的面积为S,求S关于t的函数关系式;(3)是否存在t的值,使得△BDE是以BD为腰的等腰三角形若存在,求出所有符合条件的t的值;若不存在,请说明理由.(2019秋•顺德区期末)如图,在平面直角坐标系中,点D是边长为4cm的正方形ABCO的边AB的中点,直线y=x交BC于点E,连接DE并延长交x轴于点F.(1)求出点E的坐标;(2)求证:△ODE是直角三角形;(3)过D作DH⊥x轴于点H,动点P以2cm/s的速度从点D出发,沿着D→H→F方向运动,设运动时间为t,当t为何值时,△PEH是等腰三角形—提升1.如图,直线y=﹣x+6与坐标轴交于A、B两点,与直线y=2x交于C点,直线是过A点且垂直x轴的直线,点P是直线l上的一动点.(1)求C点的坐标;(2)当△APC是等腰三角形时,直接写出P点的坐标;'(3)当PC⊥OC时,求四边形OAPC的面积.提升2.如图,直线y=kx﹣2与x轴,y轴分别交于点B,C,且OC=2OB,A为直线BC上一动点.(1)求B点的坐标和k的值;(2)当△AOB的面积是4时,求A点在第一象限的坐标;(3)在(2)的条件下,在x轴上是否存在一点P,使△POA是等腰三角形若存在,请直接写出满足条件的所有P点的坐标;若不存在,请说明理由.提升3.(2012•沙坪坝区校级模拟)如图,已知平行于y轴的动直线a的解析式为x=t,直线b的解析式为y=x,直线c的解析式为y=﹣x+2,且动直线a分别交直线b、c于点D、E (E在D的上方),P是y轴上一个动点,且满足△PDE是等腰直角三角形,则点P的坐标是.提升4.(2018秋•吴江区期末)如图,在平面直角坐标系中,一次函数y=kx+b的图象与y轴的正半轴交于点A,与x轴交于点B(﹣2,0),△ABO的面积为2.动点P从点B出发,以每秒1个单位长度的速度在射线BO上运动,动点Q从O出发,沿x轴的正半轴与点P同时以相同的速度运动,过P作PM⊥X轴交直线AB于M.(1)求直线AB的解析式.(2)当点P在线段OB上运动时,设△MPQ的面积为S,点P运动的时间为t秒,求S与t的函数关系式(直接写出自变量的取值范围).(3)过点Q作QN⊥x轴交直线AB于N,在运动过程中(P不与B重合),是否存在某一时刻t(秒),使△MNQ是等腰三角形若存在,求出时间t值.。

相关文档
最新文档