加减乘除运算法则

合集下载

数学加减乘除运算法则

数学加减乘除运算法则

数学加减乘除运算法则数学加减乘除运算法则是一种日常生活中最常用的数学知识,也是人们学习数学的基础。

它不仅仅用于日常数学计算,而且也在科学研究中扮演着重要的角色。

因此,学习数学加减乘除运算法则是每个学习数学的人必须掌握的基本知识。

一、加法运算法则加法运算法则是学习数学的第一步,它涉及将多个数相加,并获得总和的运算过程。

一般来说,加法运算法则有两个基本原则,即加法结合律和加法交换律。

1、加法结合律:若有a + b = c,则c + d = a + (b + d),即两个加数的和不受加数的次序的影响。

2、加法交换律:若有a + b = c,则b + a = c,即两个加数的和不受加数的位置的影响。

二、减法运算法则减法运算法则是学习数学的第二步,它涉及将一个数从另一个数中减去,并获得差的运算过程。

减法运算法则有一个基本原则,即减法分配律。

1、减法分配律:若有a - b = c,则a - (b - d) = c + d,即减数的差不受减数的次序的影响。

三、乘法运算法则乘法运算法则是学习数学的第三步,它涉及将两个数相乘,并获得乘积的运算过程。

乘法运算法则有两个基本原则,即乘法结合律和乘法交换律。

1、乘法结合律:若有a * b = c,则c * d = a * (b * d),即两个乘数的乘积不受乘数的次序的影响。

2、乘法交换律:若有a * b = c,则b * a = c,即两个乘数的乘积不受乘数的位置的影响。

四、除法运算法则除法运算法则是学习数学的最后一步,它涉及将一个数除以另一个数,并获得商的运算过程。

除法运算法则有两个基本原则,即除法结合律和除法分配律。

1、除法结合律:若有a / b = c,则c / d = a / (b / d),即两个除数的商不受除数的次序的影响。

2、除法分配律:若有a / b = c,则a / (b - d) = c + d,即除数的商不受除数的位置的影响。

以上就是数学加减乘除运算法则的基本原则,学会这些数学原则之后,我们就可以开始着手学习更复杂的数学知识了。

加减乘除算法运算法则

加减乘除算法运算法则

运算法则加减(笔算):1、整数①列竖式时,各个位数对其;②加法时,从低位算起,满十就往前进一;③减法时,从低位算起,哪一位上的数不够减,就从前一位借1当10,再和该位上的数加在一起减。

2、小数①列竖式时,小数点对其;②加法时,从低位算起,满十就往前进一;③减法时,从低位算起,哪一位上的数不够减,就从前一位借1当10,再和该位上的数加在一起减;④相加减是,得数中的小数点和竖式中的小数点对齐;⑤小数部分末尾有0 的,一般利用小数的性质把末尾的0 去掉。

3、分数①同分母分数相加减,分母不变,分子相加减;②异分母分数相加减,先通分,在按照同分母分数的加减法进行计算;③计算结果化成最简分数。

乘法:1、整数①从最低位乘起,依次用第二个乘数上的每一位去乘第一个乘数;②用第二个乘数上的哪一位数去乘的,积的末尾就写在哪一位数上;③最后将各部分的积相加。

(补充:算理:12*3 ,可以看成1 个10 乘以3,加上 2 个1 乘以3)2、小数①从最低位乘起,依次用第二个乘数上的每一位去乘第一个乘数;②用第二个乘数上的哪一位数去乘的,积的末尾就写在哪一位数上;③最后将各部分的积相加;④看两个乘数中有几位小数,就从积的右边数出几位小数,小数部分末尾有0的,把末尾0去掉,位数不够时,在前面用0 补足。

(补充:算理:0.5*0.7 ,可以看成 5 个十分位,乘以7 个十分位,最后乘数一共有几位小数,积也要有几位小数)3、分数①分数与整数相乘,整数与分子相乘,积为分子,分母不变,计算结果化成最简分数(可以在计算中进行约分);②分数与分数相乘,分子相乘积为分子,分母相乘积为分母,结果化成最简分数(可以在计算中进行约分)。

除法:1、整数①从最高位除起,除数几位,就看被除数前几位,如果商不够1,就多看一位被除数再进行试商,除数除到被除数哪一位,商就写在哪一位上;②每次得到的余数要比除数小;③如果除到末尾仍有余数,就在余数的后面添“0”继续除。

先加减还是先乘除

先加减还是先乘除

先加减还是先乘除
先乘除在加减。

有加减和乘除的先算加减还是乘除:按照算术的运算法则:先乘除后加减,如有括号,先内后外
在加减乘除里,加和减是同级的,所有谁在前就先算谁,乘和除也是同
级的,也应该是尊重先后顺序,加和减是低级运算,他的运算等级低于乘和除,一般在没有括号的情况下应该先算乘除,有括号的话就先算括号里面的,因为括号运算等级在数学中是最高的。

算式中加减运算和乘除运算的顺序是:把加减叫一级运算,把乘除叫二级运算。

只有同级运算时,从左往右依次计算。

异级运算时,先乘除后加减。

有括号时,先算小括号里的,再算中括号里的,最后算括号外的。

加减乘除的四则运算定律

加减乘除的四则运算定律

四则运算口诀+常见题型四则运算其实也就是孩子经常遇到的“加减乘除”,看起来知识点很简单,但是涉及的内容非常广。

在小学一年级至六年级,每学期都离不开它。

四则运算是数学的最基本运算法则,在学习基本运算法则时,还会有一些基本的运算关系式。

今天的内容就来总结一下四则运算的那些事!加法一、什么叫加法?把两个或两个以上的数合并到一个数的运算叫做加法。

二、组成加数+加数=和加数=和-另一个加数三、运算定律①加法交换律:a+b=b+a②加法结合律:a+b+c=a+(b+c)例如:12+99+38=(12+38)+99=50+99=149减法一、什么叫减法?已知两个数的和与其中一个加数,求另一个加数的运算。

二、组成被减数-减数=差减数=被减数-差被减数=减数+差三、运算定律减法的性质a-b-c=a-(b+c)例如:756-193-207=756-(193+207)=756-400=356乘法一、什么是乘法?求几个相同加数的和的简便运算。

二、组成因数×因数=积因数=积÷另一个因数三、运算定律乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)=(a×b)×c乘法分配律:a×(b+c)=a×b+a×ca×(b-c)=a×b-a×c例如:4×(25+50)=4×25+4×50=100+200=300除法一、什么是除法?已知两个因数的积与其中一个因数,求另一个因数的运算。

二、组成被除数÷除数=商······余数被除数=除数×商+余数除数=(被除数-余数)÷商三、易错点①余数不能比除数大②0不能做除数四、运算定律除法的性质a÷b÷c=a÷(b×c)例如:4800÷25÷4=4800÷(25×4)=4800÷100=48错中求解加法1.晴姐姐在做一道加法时,把一个加数47看作成69,结果计算的和为93。

加减乘除运算法则

加减乘除运算法则

加减乘除运算法则四则运算是数学中最基础和常见的运算方式,其中包括加法、减法、乘法和除法。

这些基本的运算法则是我们在日常生活和学习中经常会用到的。

下面我将详细介绍这些运算法则及其应用。

首先,我们来讨论加法。

加法是指将两个或多个数值相加得到一个总和的运算。

它遵循以下法则:1. 加法交换律:a + b = b + a。

无论改变加数的顺序,结果都是相同的。

2. 加法结合律:(a + b) + c = a + (b + c)。

无论怎样加括号改变运算的顺序,结果都是相同的。

通过加法,我们可以计算两个或多个数值的和。

例如,3 + 4 = 7,表示将3和4相加得到7。

加法也可以表示合并的概念,比如"2个苹果加上3个苹果等于5个苹果"。

接下来,我们来讨论减法。

减法是从一个数值中减去另一个数值,得到一个差值的运算。

它遵循以下法则:1. 减法的定义:a - b = c,其中c是一个数,满足b + c = a。

这意味着如果我们知道被减数和减数,就可以通过减法求得差值。

减法常常用于解决计算差值的问题。

比如,"10减去3等于7"表示从10中减去3得到7。

然后,我们来讨论乘法。

乘法是将两个或多个数值相乘得到一个积的运算。

它遵循以下法则:1. 乘法交换律:a * b = b * a。

无论改变因数的顺序,结果都是相同的。

2. 乘法结合律:(a * b) * c = a * (b * c)。

无论怎样加括号改变运算的顺序,结果都是相同的。

乘法常常用于表示相同数值的重复次数。

例如,"3乘以4等于12"表示将3重复4次得到12。

乘法也应用于面积、体积等计算中。

最后,我们来讨论除法。

除法是将一个数值分成若干等分的运算。

它遵循以下法则:1. 除法的定义:a除以b等于c,表示 a = b * c。

这意味着如果我们知道除数和商,就可以通过除法求得被除数。

除法常常用于表示比值和均分的概念。

加减乘除算法运算法则

加减乘除算法运算法则

加减乘除算法运算法则 The latest revision on November 22, 2020加减乘除的运算法则加减(笔算):1、整数①列竖式时,各个位数对齐;②加法时,从低位算起,满十就往前进一;③减法时,从低位算起,哪一位上的数不够减,就从前一位借1当10,再和该位上的数加在一起减。

2、小数①列竖式时,小数点对齐;②加法时,从低位算起,满十就往前进一;③减法时,从低位算起,哪一位上的数不够减,就从前一位借1当10,再和该位上的数加在一起减;④相加减时,得数中的小数点和竖式中的小数点对齐;⑤小数部分末尾有0的,一般利用小数的性质把末尾的0去掉。

3、分数①同分母分数相加减,分母不变,分子相加减;②异分母分数相加减,先通分,再按照同分母分数的加减法进行计算;③计算结果化成最简分数。

乘法:1、整数①从最低位乘起,依次用第二个乘数上的每一位去乘第一个乘数;②用第二个乘数上的哪一位数去乘的,积的末尾就写在哪一位数上;③最后将各部分的积相加。

(补充:算理:12*3,可以看成1个10乘以3,加上2个1乘以3)2、小数①从最低位乘起,依次用第二个乘数上的每一位去乘第一个乘数;②用第二个乘数上的哪一位数去乘的,积的末尾就写在哪一位数上;③最后将各部分的积相加;④看两个乘数中有几位小数,就从积的右边数出几位小数,小数部分末尾有0的,把末尾0去掉,位数不够时,在前面用0补足。

(补充:算理:*,可以看成5个十分位,乘以7个十分位,最后乘数一共有几位小数,积也要有几位小数)①分数与整数相乘,整数与分子相乘,积为分子,分母不变,计算结果化成最简分数(可以在计算中进行约分);②分数与分数相乘,分子相乘积为分子,分母相乘积为分母,结果化成最简分数(可以在计算中进行约分)。

除法:1、整数①从最高位除起,除数几位,就看被除数前几位,如果商不够1,就多看一位被除数再进行试商,除数除到被除数哪一位,商就写在哪一位上;②每次得到的余数要比除数小;③如果除到末尾仍有余数,就在余数的后面添“0”继续除。

加减乘除算法(运算法则)

加减乘除算法(运算法则)

加减乘除的运算法则加减(笔算):1、整数①列竖式时,各个位数对齐;②加法时,从低位算起,满十就往前进一;③减法时,从低位算起,哪一位上的数不够减,就从前一位借 1 当 10,再和该位上的数加在一起减。

2、小数①列竖式时,小数点对齐;②加法时,从低位算起,满十就往前进一;③减法时,从低位算起,哪一位上的数不够减,就从前一位借 1 当 10,再和该位上的数加在一起减;④相加减时,得数中的小数点和竖式中的小数点对齐;⑤小数部分末尾有 0 的,一般利用小数的性质把末尾的 0 去掉。

3、分数①同分母分数相加减,分母不变,分子相加减;②异分母分数相加减,先通分,再按照同分母分数的加减法进行计算;③计算结果化成最简分数。

乘法:1、整数①从最低位乘起,依次用第二个乘数上的每一位去乘第一个乘数;②用第二个乘数上的哪一位数去乘的,积的末尾就写在哪一位数上;③最后将各部分的积相加。

(补充:算理: 12*3 ,可以看成 1 个 10 乘以 3,加上 2 个 1 乘以3)2、小数①从最低位乘起,依次用第二个乘数上的每一位去乘第一个乘数;②用第二个乘数上的哪一位数去乘的,积的末尾就写在哪一位数上;③最后将各部分的积相加;④看两个乘数中有几位小数,就从积的右边数出几位小数,小数部分末尾有0 的,把末尾0去掉,位数不够时,在前面用 0 补足。

(补充:算理: 0.5*0.7 ,可以看成5 个十分位,乘以 7 个十分位,最后乘数一共有几位小数,积也要有几位小数)3、分数①分数与整数相乘,整数与分子相乘,积为分子,分母不变,计算结果化成最简分数(可以在计算中进行约分);②分数与分数相乘,分子相乘积为分子,分母相乘积为分母,结果化成最简分数(可以在计算中进行约分)。

除法:1、整数①从最高位除起,除数几位,就看被除数前几位,如果商不够 1,就多看一位被除数再进行试商,除数除到被除数哪一位,商就写在哪一位上;②每次得到的余数要比除数小;③如添“ 0 ”继续除。

加减乘除四则混合运算法则

加减乘除四则混合运算法则

加减乘除四则混合运算法则四则混合运算法则是数学中的基础知识,我们在日常生活和学习中经常会用到。

它包括了加法、减法、乘法和除法四种运算,这些运算规则和方法都有其特定的要求和限制。

在本文中,我们将详细介绍加减乘除四则混合运算的法则和技巧。

一、加法运算加法是指将两个或多个数值相加得到一个结果的运算。

在加法运算中,有以下几个法则:1. 加法交换律:对于任意的实数a和b,a + b = b + a。

2. 加法结合律:对于任意的实数a、b和c,(a + b) + c = a + (b + c)。

3. 零元素法则:对于任意的实数a,a + 0 = a。

二、减法运算减法是指从一个数中减去另一个数得到一个结果的运算。

在减法运算中,有以下几个法则:1. 减法的定义:a - b = a + (-b)。

其中,-b表示b的相反数,即-b是与b相加后结果为0的数。

2. 减法的简便运算法则:当减去的数是一个整数时,可以将减法转换为加法,例如:a - b = a + (-b)。

三、乘法运算乘法是指将两个或多个数值相乘得到一个结果的运算。

在乘法运算中,有以下几个法则:1. 乘法交换律:对于任意的实数a和b,a * b = b * a。

2. 乘法结合律:对于任意的实数a、b和c,(a * b) * c = a * (b * c)。

3. 乘法分配律:对于任意的实数a、b和c,a * (b + c) = (a * b) + (a * c)。

4. 乘法的零元素法则:对于任意的实数a,a * 0 = 0。

四、除法运算除法是指将一个数除以另一个数得到一个结果的运算。

在除法运算中,有以下几个法则:1. 除法的定义:a ÷ b = a * (1/b)。

其中,1/b表示b的倒数,即1/b 是与b相乘后结果为1的数。

2. 除法的简便运算法则:当被除数和除数都是整数时,可以将除法转换为乘法,例如:a ÷ b = a * (1/b)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理1、整数加、减计算法则:
1)要把相同数位对齐,再把相同计数单位上的数相加或相减;
2)哪一位满十就向前一位进。

2)分母不相同时,要先通分成同分母分数再相加、减。

4、整数乘法法则:
1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐;
2)然后把几次乘得的数加起来。

(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。


5、小数乘法法则:
2)除到被除数的哪一位,就在那一位上面写上商;
3)每次除后余下的数必须比除数小。

8、除数是整数的小数除法法则:
1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;
2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。

9、除数是小数的小数除法法则:
2、在一个没有括号的算式里,如果只含同一级运算,要从左往右依次计算;如果含有两级运算,要先做第一级运算,后做第二级运算。

3、在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。

相关文档
最新文档