一次函数的图像教学设计

合集下载

一次函数的图像教案

一次函数的图像教案

一次函数的图像教案教案:一次函数的图像一、教学目标:1. 学生理解一次函数的定义和特征;2. 学生能够根据一次函数的函数式和关键点画出函数的图像;3. 学生能够根据图像找出一次函数的函数式和关键点。

二、教学准备:1. 教师准备一些一次函数的函数式和关键点,以及对应的图像;2. 教师准备白板/黑板、彩色粉笔/白板笔。

三、教学内容及过程:Step 1:引入话题(5分钟)教师通过回顾线性函数的概念,引出一次函数的概念,并解释一次函数的定义和特征:一次函数的函数式为y = kx + b,其中k、b为常数,k是斜率,表征函数图像的倾斜程度;b是截距,表征函数图像与y轴的交点。

Step 2:展示图像(10分钟)教师依次展示几个一次函数的函数式和对应的图像,要求学生观察图像的特点,并简单描述图像的特征。

例如:y = 2x + 1,y = -3x + 2等。

Step 3:通过函数式画图(15分钟)教师选取一个一次函数的函数式,例如y = 2x + 1,提醒学生注意斜率和截距的含义,然后引导学生根据函数式画出对应的图像。

教师提醒学生考虑以下步骤:1. 确定截距:将x = 0代入函数式,求得y的值,找到图像与y轴的交点;2. 确定斜率:由于斜率表示了图像的倾斜程度,可以通过求取两个点的纵坐标之差与横坐标之差的比值来得到。

教师通过示范的方式,将函数式y = 2x + 1画出来,并与学生一起讨论改变函数式对图像的影响。

Step 4:通过关键点画图(15分钟)教师将一次函数的关键点的概念引入,解释关键点是指图像上的重要点,包括图像与坐标轴的交点,以及图像上的极值点等。

教师提醒学生考虑以下步骤:1. 确定截距:将x = 0代入函数式,求得y的值,找到图像与y轴的交点;2. 确定斜率:由于斜率表示了图像的倾斜程度,可以通过求取两个关键点的纵坐标之差与横坐标之差的比值来得到。

3. 找到其他关键点:通过确定更多的关键点,来描绘出更完整的图像。

苏科版数学八年级上册6.3《一次函数的图象》(第1课时)教学设计

苏科版数学八年级上册6.3《一次函数的图象》(第1课时)教学设计

苏科版数学八年级上册6.3《一次函数的图象》(第1课时)教学设计一. 教材分析《一次函数的图象》是苏科版数学八年级上册6.3节的内容,本节内容是在学生已经掌握了函数的概念、一次函数的定义和性质的基础上进行学习的。

本节主要让学生了解一次函数的图象特征,学会如何绘制一次函数的图象,并能够通过图象判断一次函数的性质。

二. 学情分析学生在学习本节内容之前,已经掌握了函数的概念和一次函数的定义,但对于一次函数的图象可能还比较陌生。

因此,在教学过程中,需要引导学生通过实际操作来感受一次函数的图象特征,并学会如何绘制一次函数的图象。

三. 教学目标1.让学生了解一次函数的图象特征,学会如何绘制一次函数的图象。

2.培养学生通过图象判断一次函数的性质的能力。

3.培养学生运用数学知识解决实际问题的能力。

四. 教学重难点1.一次函数的图象特征。

2.如何绘制一次函数的图象。

3.通过图象判断一次函数的性质。

五. 教学方法采用“问题驱动”的教学方法,引导学生通过实际操作来感受一次函数的图象特征,并学会如何绘制一次函数的图象。

在教学过程中,注重让学生观察、思考、交流、总结,提高学生的动手能力和思维能力。

六. 教学准备1.准备一次函数的图象示例。

2.准备绘图工具,如直尺、圆规、画图软件等。

七. 教学过程1.导入(5分钟)通过展示一次函数的图象示例,让学生初步感受一次函数的图象特征。

引导学生思考:一次函数的图象是什么样的?有哪些特点?2.呈现(10分钟)讲解一次函数的图象特征,让学生明白一次函数的图象是一条直线。

引导学生思考:一次函数的图象是如何得到的?如何绘制一次函数的图象?3.操练(10分钟)让学生分组进行实际操作,尝试绘制一次函数的图象。

教师巡回指导,解答学生遇到的问题。

4.巩固(5分钟)让学生展示自己的绘制成果,互相评价,教师点评。

引导学生总结一次函数图象的特征和绘制方法。

5.拓展(5分钟)让学生思考:如何通过一次函数的图象判断其性质?引导学生观察图象,总结一次函数的性质。

一次函数的图像和性质教案3篇

一次函数的图像和性质教案3篇

一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。

二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。

三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。

教学重点:一次函数图象的性质。

教学难点:通过图形探求性质以及分析图形的位置特征。

课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。

教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。

【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。

同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。

因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。

过(1,-)、(0,-3)两点画直线y=-x-3。

师:很好。

还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。

师:大家说说看,哪一种取法更好呢?众:乙的方法好。

师:对。

我们可以针对函数中不同的k和b的值,灵活取值。

教师要求学生画出这两函数的图象。

【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。

(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。

图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。

【2024版】《一次函数的图象第2课时》示范公开课教学设计【北师大版八年级数学上册】

【2024版】《一次函数的图象第2课时》示范公开课教学设计【北师大版八年级数学上册】

可编辑修改精选全文完整版第四章 一次函数4. 3 一次函数的图像第 2 课时 教学设计 函数是初中数学中非常重要的内容,是刻画和研究现实世界变化规律的重要模型.本节课是在学生明确一次函数图象是一条直线的基础上进行的,主要是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.与其它版本教材相比,北师大版更注重借助感性材料,让学生在具体操作中获得有关一次函数图象的变化规律,从而使学生对一次函数有了从“数”到“形” 、从“形”到“数”两方面的理解,从而展开了一个“数形结合”的新天地.作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用.并为今后继续学习一次函数图象的应用以一次函数与二元一次方程的关系打下基础. 起着承上启下的作用.1.在认识一次函数图象的基础上,掌握一次函数图象及其简单性质. 2. 经历对一次函数图象变化规律的探究过程,在知识的探究过程中,增强学生数形结合的意识,渗透分类讨论的思想;培养学生的观察能力、识图能力以及语言表达能力.3. 在一次函数图象及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;在合作与交流活动中发展学生的合作意识和团队精神,获得成功的体验.【教学重点】 一次函数与正比例函数的概念以及图像的理解.【教学难点】k 、b 的取值与一次函数图象位置的关系.◆教材分析◆教学目标 ◆教学重难点 ◆学生每人准备好草稿纸、铅笔、直尺;教师准备课件,图片.一、复习回顾内容:在前面,我们已经学会了绘制正比例函数图象,明确了正比例函数图像的有关性质,那么一次函数图象中又蕴含着什么规律,这节课我们就来研究一次函数图象的性质.首先,我们来复习一下上节课所学习的知识.复习提问:1. 什么叫一次函数?从解析式上看,一次函数与正比例函数有什么关系?2. 正比例函数的图象是什么?是怎样得到的?3. 正比例函数有哪些性质?是怎样得到这些性质的?目的:学生回顾上节课学习的内容,为进一步研究一次函数的图象和性质做好铺垫.在上节课的探究中我们得到正比例函数图象是过原点的一条直线.本节课主要内容是对一次函数y kx b =+中常数k 、b 对图象的影响进行探究.说明:学生通过知识回顾,再次明确正比例函数图象的一些特征,为学习本节课在知识上作好准备.二、合作交流,探究新知(一)一次函数的图像的画法在上一课的学习中,我们学会了正比例函数图象的画法,分为三个步骤.◆课前准备◆◆教学过程①列表②描点③连线那么你能用同样的方法画出一次函数的图象吗?例1:画出一次函数y=-2x+1的图象总结归纳一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点,再过,0).这两点画直线就可以了一般过(0,b)和(1,k+b)或(-bk一次函数y=kx+b的图象也称为直线y=kx+b.做一做用你认为最简单的方法画出下列函数的图象:(1)y=-2x-1;(2)y=0.5x+1活动:请大家用描点法在同一坐标系内画出一次函数y = x + 2,y = x - 2的图象.思考:观察它们的图象有什么特点?把一次函数y=x+2,y=x-2的图象与y=x比较,发现:1. 这三个函数的图象形状都是,并且倾斜程度______.2. 函数y=x的图象经过原点,函数y=x+2的图象与y 轴交于点,3. 即它可以看作由直线y = x 向平移个单位长度而得到函数y=x-2的图象与y 轴交于点,即它可以看作由直线y= x 向____平移____个单位长度而得到.比较三个函数的解析式,相同,它们的图象的位置关系是.要点归纳一次函数y = kx + b(k ≠ 0)的图象经过点(0,b),可以由正比例函数y = kx 的图象平移个单位长度得到. 当b>0时,向平移;当b<0时,向平移).(二)正比例函数图像的性质画一画1 在同一坐标系中作出下列函数的图象.x(1)y=13x-1(2)y=13x+1(3)y=13思考:k,b的值跟图象有什么关系?画一画2 在同一坐标系中作出下列函数的图象.x(1)y=-13x+1(2)y=-13x-1(3)y=-13思考:k,b的值跟图象有什么关系?一次函数性质:在一次函数y = kx + b 中,当k > 0 时,y 的值随着x 值的增大而增大;当k < 0 时,y 的值随着x 值的增大而减小.思考根据一次函数的图象判断k,b 的正负,并说出直线经过的象限:议一议:(1)观察图象,它们分别分布在哪些象限.(2)观察每组三个函数的图象,随着x值的变化,y的值在怎样变化?(3)从以上观察中,你发现了什么规律?归纳出一次函数图象的特点:=+中在一次函数y kx bk>时,y随x的增大而增大,当b>0时,直线必过一、二、三象限;当0当b<0时,直线必过一、三、四象限;k<时,y随x的增大而减小,当b>0时,直线必过一、二、四象限;当0当b<0时,直线必过二、三、四象限.目的:归纳出一次函数图象中系数k,b对函数图象的影响.说明:本节课主要是结合一次函数的图象,探究一次函数的简单性质,教学内容较多,为更好地突出教学重点,提高课堂教学效率,建议在上一节课的家庭作业中,要求学生绘制上述两组函数图象在作业本上.本节课首先请学生展示作出的函数图象,师生、生生互评,再让学生结合自己绘制的函数图象来探究一次函数的性质.通过问题串的精心设计,引导学生对k,b两个常数进行分类讨论,探索出k、b值的变化对图象的影响和变化规律.在此过程中渗透分类讨论的思想方法,培养学生数形结合的意识.学生拿出课前已经做好的函数图象.通过师生互动、生生互动进行批改,互评.让学生再次巩固了已学知识,调动了学生学习的自主意识.在此基础上学生进行观察并分小组对一次函=+中k,b的几何意义作了初步的探索.本环节通过独立思考和小组讨论,培养学数y kx b生的识图能力、探究能力和合作能力.初步感受到了一次函数的图象及函数的性质由常数k、b决定.三、运用新知例2 P1(x1,y1),P2(x2,y2)是一次函数y = -0.5x + 3图象上的两点,下列判断中,正确的是( )A. y1>y2C. 当x1<x2时,y1<y2B. y1<y2D. 当x1<x2时,y1>y2例3 已知一次函数y=(1-2m)x+m-1 , 求满足下列条件的m的值:(1)函数值y随x 的增大而增大;(2)函数图象与y 轴的负半轴相交;(3)函数的图象过第二、三、四象限;四、巩固新知1. 一次函数y = x - 2 的大致图象为()2. 下列函数中,y 的值随 x 值的增大而增大的函数是( )A . y =-2xB . y =-2x +1C . y =x -2D . y =-x -23. 直线 y = 3x -2可由直线 y = 3x 向 平移 单位得到.4. 直线y = x + 2 可由直线 y = x - 1向 平移 单位得到.5. 点A (-1,y 1),B (3,y 2)是直线 y = kx +b (k < 0) 上的两点,则 y 1 - y 2 0(填“>”或“<”)6. 已知一次函数y =(3m -8)x +1-m 图象与 y 轴交点在 x 轴下方,且 y 随 x 的增大而减小,其中 m 为整数,求 m 的值 .五、归纳小结内容:本节课我们结合一次函数的图象对一次函数的一些简单性质进行了探讨,通过这节课,我们学习了以下内容:1.一次函数y kx b =+中,当0k >时,y 的值随x 的增大而增大,图象经过一、三象限;当0k <时,y 的值随x 的增大而减小,图象经过二、四象限.2.同一平面内,不重合的两条直线1l :111y k x b =+与2l :222y k x b =+当12k k =时,12l l ;当12k k ≠时,1l 与2l 相交.用到了以下的数学思想和基本方法:1.本节课中用到的数学思想:数形结合、分类讨论.2.本节课中用到的基本方法:通过观察、操作、猜想、推理、类比、归纳等过程获取数学知识.目的:引导学生自己小结本节课的知识要点及数学思想、方法,教师再补充完善,使知识系统化.说明:学生畅所欲言,相互进行补充,能用自己的话进行归纳总结.略.◆教学反思。

北师大版八年级上册数学4.3《一次函数的图象》教案

北师大版八年级上册数学4.3《一次函数的图象》教案
3.重点难点解析:在讲授过程中,我会特别强调一次函数图象的绘制方法和一次函数图象与系数的关系这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数图象相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过描点法绘制一次函数的图象。
北师大版八年级上册数学4.3《一次函数的图象》教案
一、教学内容
本节课选自北师大版八年级上册数学第四章第三节《一次函数的图象》。教学内容主要包括以下方面:
1.理解一次函数图象的定义,掌握一次函数图象的特点;
2.学会使用描点法绘制一次函数的图象;
3.掌握一次函数图象与系数的关系,分析一次函数图象的增减性;
4.加强课后辅导,对学生在课堂上学到的知识进行巩固,及时发现并解决他们在学习过程中遇到的问题。
2.教学难点
-理解并掌握一次函数图象与系数的关系,尤其是斜率k和截距b对图象的影响;
-能够在实际问题中灵活运用一次函数图象进行分析和解决。
举例解释:
(1)难点在于让学生理解斜率k和截距b对一次函数图象的影响。教师可以通过动态演示或实物举例,让学生直观地感受k、b值变化时图象的动态变化;
(2)在解决实际问题时,学生可能难以将问题转化为一次函数图象进行分析。教师应引导学生学会提取关键信息,建立数学模型,并运用一次函数图象进行问题求解。
4.能够运用一次函数图象解决实际问题,提高学生的应用能力。
二、核心素养目标
1.培养学生的逻辑推理能力,通过探索一次函数图象的绘制方法,理解图象与系数之间的关系,提高学生的数据分析与抽象思维能力;
2.培养学生的空间想象能力,能够根据一次函数的解析式,想象并绘制出相应的图象,加强对一次函数图象的理解;

6.3一次函数的图像》教学设计-优秀教案

6.3一次函数的图像》教学设计-优秀教案

6.3一次函数的图像(1)班级姓名学号【学习目标】1. 了解画函数图象的一般步骤,能熟练地作出一次函数的图象知道一次函数的图象是一条直线。

2. 会选取两个适当的点画一次函数的图象。

会根据坐标判断所给的点是否在所给的图象上。

【重点难点】教学重点:掌握一次函数的图象的画法。

教学难点:会选取两个适当的点画一次函数图象。

【教学过程】一、温故知新:(1) 一次函数的定义:(2) 正比例函数的定义:(3) 函数有几种表达形式?(4) 函数图像的概念:把一个函数的自变量与对应的因变量的值作为点的坐标和坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像.那么一次函数的图象是怎样的?(导入新课)二、创设情境点燃一支香,感受它的长度随时间的变化而变化.观察上面的图片,说一说获得哪些信息?(设计意图:通过生活中的情景引入新课,提高学生的学习兴趣.)探究活动一1.将你的观察结果填在书中的表格内.2.如果用y (cm)表示香的长度、x(min)表示香燃烧的时间,你能写出y与x之间的函数表达式吗?3.操作:依次连接图片中香的顶端,你有什么发现?4.你能用平面直角坐标系,揭示图片中的信息吗?要求:学生在观察、思考的基础上填表,并与同学交流各时刻香的状态.点燃时间/分0 5 10 15 20香的长度/cm 16 12 8 4 0由图片知,点燃后香的长度越来越短,平均每分钟缩短0.8cm ,直至燃尽.所以y 与x 之间的函数表达式为y =16-0.8x (0≤x ≤20).依次连接图片的顶端,发现在一条直线上.(设计意图:通过连接图片中香的顶端,联系平面直角坐标系中的描点,引导学生初步思考一次函数的图像是否是一条直线,引导学生的探究意识,同时为学习图像的画法作必要的铺垫.)5.以x 轴表示点燃时间,以y 轴表示香的长度,建立直角坐标系,并分别描点(0,16)、 (5 ,12)、(10 ,8)、(15 ,4)、(20,0).问题:这5个点的坐标都满足y =16-0.8x 吗?这个一次函数的图像是什么?由此猜测… 要求:学生在学案上描点画图.学生讨论交流.(设计意图:将生活中的实际问题用数学的眼光,严谨的态度分析解决,引导学生利用适当的工具科学、合理地抓住其数学本质.)探究活动二按下列步骤,在平面直角坐标系中,画一次函数(1)y = -x 21(2)y = -x+3的图像 解:(1)列表1: 列表2:(2)描点:以表中各对x 、y 的值为点的坐标,在直角坐标系内描出相应的点. (3)连线:顺次连接描出的各点.x… -2 -1 0 1 2 … y=-x 21 ……x … -2 -1 0 1 2 … y =-x +3……议一议:(1)满足关系式的x ,y 所对应的点(x ,y )都在函数图象上吗?(2)函数的图象上的点(x ,y )都满足关系式吗?(3)画一次函数图像的一般步骤 (4)你能用更简便的方法作出它的图像吗?说说你的想法. (5)通常取哪两点比较方便? ①观察y=-x 21的图像可知:它的图像是一条 ,过坐标系中点 ,并经过点 , 它经过 象限.②观察y=-x+3的图像可知:它的图像是一条 ,与x 轴交于点 ,与y 轴交于点 , 它经过 象限.(设计意图:学生模仿上例,自己尝试画图,并与小组内的同学交流,对比,总结方法.学生经历画图的过程,感受画图的方法,引导学生经历作图的过程,思考每个步骤之间的联系,掌握利用描点法画出函数图像,关注其中的细节.)小结:①作一次函数图像的步骤:②由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定图像 上 的位置,再过这两点画直线即可.③一次函数y kx b =+(k 、b 为常数,且0k ≠)的图像是经过点(0, )和( ,0)的一条 .④作正比例函数y =kx (k ≠0)的图象时,一般找(0, )(1, )两点.(设计意图:学生结合自己的观察和动手实践的经验回答.根据基本事实,“两点确定一条直线”,画一次函数图像时,只要先确定这个图像上两个点的位置,再过这两点画直线就可以了.在巩固画图过程的基础上,引导学生思考如何简化作图的过程,培养学生勤学好思的良好习惯.)三、例题分析例 已知一次函数y=-3x+3:(1)画出一次函数的图象; (2)写出这个函数的图象与x 轴,y 轴的交点的坐标__________,___________;(3)若(2,a+3)在函数图象上,求a 的值. (4)判断点(71,42)是否在所画的图象上?(设计意图:学生利用总结的方法,画图实践.通过带入函数表达式结合观察图像做出判断.巩固画一次函数图像的技能.体会“数形结合”的思想方法.)四、课堂练习1.下列两点在函数y =-2x +3图像上的是 ( ).A .原点和点(1,1);B .点(1,1)和点(2,3);C .点(0,3)和点(1,1);D .点(0,3)和点(2,3). 要求:学生解答,互相交流方法.2. 在同一坐标系中(1)画出一次函数y =-2x 、y =-2x-2、y =-2x+2的图象 (2)如果(a ,4)在y =-2x +2的图象上,求a 的值。

北师大版八年级数学上册:4.3《一次函数的图象》教学设计

北师大版八年级数学上册:4.3《一次函数的图象》教学设计

北师大版八年级数学上册:4.3《一次函数的图象》教学设计一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4.3节的内容,本节课主要让学生了解一次函数的图象特征,学会如何绘制一次函数的图象,并能够分析一次函数图象与系数的关系。

教材通过具体的例子引导学生探究一次函数图象的性质,为学生提供丰富的操作、思考、交流的活动机会,从而提高他们的数学素养。

二. 学情分析学生在七年级已经学习了直线、射线、线段等基础知识,对图形的性质有一定的了解。

但他们对一次函数图象的认识还比较模糊,需要通过具体的活动和实例来加深理解。

此外,学生需要进一步掌握如何利用函数图象解决实际问题,提高他们的应用能力。

三. 教学目标1.理解一次函数图象的性质,能够绘制一次函数的图象。

2.学会分析一次函数图象与系数的关系。

3.培养学生的观察能力、操作能力、思考能力及合作交流能力。

4.提高学生解决实际问题的能力。

四. 教学重难点1.一次函数图象的性质。

2.一次函数图象与系数的关系。

3.利用一次函数图象解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生探究一次函数图象的性质。

2.利用数形结合法,让学生直观地理解一次函数图象与系数的关系。

3.采用实例分析法,培养学生解决实际问题的能力。

4.小组讨论,提高学生的合作交流能力。

六. 教学准备1.准备相关的一次函数图象素材,用于引导学生观察和分析。

2.准备一次函数图象的软件工具,如GeoGebra等,让学生实际操作。

3.准备一些实际问题,让学生尝试解决。

七. 教学过程1.导入(5分钟)利用一个实际问题,如“某商店进行打折活动,原价100元的商品打8折后售价是多少?”引导学生思考如何用数学知识解决这个问题。

2.呈现(10分钟)呈现一次函数的图象,让学生观察并描述图象的性质。

引导学生发现一次函数图象是一条直线,且具有斜率和截距等特征。

3.操练(10分钟)让学生利用软件工具,如GeoGebra,自己绘制一次函数的图象,并观察图象与系数的关系。

一次函数图像教学设计

一次函数图像教学设计

一次函数的图像【教学目标】【教学重点】能熟练地作出一次函数的图象,理解一次函数的解析式与图象之间的对应关系.【教学难点】理解一次函数的解析式与图象之间的对应关系,即坐标满足一次函数解析式的点在直线上,图像上的点的坐标满足一次函数解析式.【课时安排】一课时【教学设计】知识链接一、填空1.在一个变化过程中,我们称数值____________的量为变量;在一个变化过程中,我们称数值____________的量为常量.2.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每一个确定的值,y•都有唯一确定的值与其对应,•那么我们就说x•是_________,y是x的________.如果当x=a时y=b,那么b•叫做当自变量的值为a时的___________.3.把一个函数的自变量x与对应的因变量y的值分别作为点的______和______,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的______.4.作函数图象的一般步骤为______,______,______;一次函数的图象是一条______.5.直线y=3-x与x轴的交点坐标为______,与y轴的交点坐标为______.6.分别说出满足下列条件的一次函数的图象过哪几个象限?(1)k>0 b>0 (2)k>0 b<0 (3)k<0 b>0 (4)k<0 b<0〖设计说明〗认真观察和思考,发现千变万化的数学规律;是学好数学的关键.为了描述千变万化的世界中的变化中的数量关系,总结得出一个重要的工具——函数.数形结合是一种重要的数学思想.二、预习思考1.设置故事情节:小兔子输掉了比赛,非常不服气,于是就邀请乌龟进行第二次比赛,为了证明自己的实力,兔子决定让乌龟先跑200米(如下图).(到底谁会赢?让学生带着问题进入本节课的学习)起点〖答案〗兔子先到2.在同一直角坐标系中画出下列函数图象,并归纳y=kx+b(k、b是常数,k≠0)中b对函数图象的影响.(1)y=x-1 y=x y=x+1(2)y=-2x+1 y=-2x y=-2x-1〖设计说明〗引导学生解决如何从函数的图象中解读函数图象信息,体会学好一次函数的重要性,认识到数形结合的重要性.教学过程一、导入新课我们在前面学习了函数意义,并掌握了函数关系式的确立.但有些函数问题很难用函数关系式表示出来,然而可以通过图来直观反映.例如用图像血流量与时间的关系.有的能用关系式表示,例如表示汽车余油量与时间的关系.即使对于能列式表示的函数关系,如果也能画图表示则会使函数关系更清晰.我们这节课就来解决如何画函数图象的问题及解读函数图象信息.〖设计说明〗初二学生性格开朗活泼,对新鲜事物特别敏感,且较易接受,因此,教学过程中创设的这一问题情境较生动活泼,来源于学生的生活,学生有深切的体会,能激发学生学习数学的兴趣,对提高学生的数学素养和数学意识也是十分有意义的.二、探索新知把一个函数的自变量x与对应的因变量y的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.假设在代数表达式y=2x中,自变量x取1时,对应的因变量y=2,则我们可在直角坐标系内描出表示(1,2)的点,再给x的另一个值,对应又一个y,又可知道直角坐标系内描出另一个点,所有这些点组成的图形叫该函数y=2x的图象,由此看来,函数图象是满足函数表达式的所有点的集合.请同学们作出y=2x的图象,探索一下,能得出什么结论?〖设计说明〗y=2x是正比例函数,正比例函数是一次函数的特例.通过正比例函数的图像来探索一次函数的图像及性质.3、合作探究探究1. ①在同一坐标系内作出正比例函数y=x,y=x,y=3x,y=-2x的图象.观察所画图象,直线y=x,y=x,y=3x中,哪一个与x轴正方向所成的锐角最大?哪一个与x轴正方向所成的锐角最小?一次函数y=kx+b的图象有何的特点?拓展:问题1:画直线y=-x与y=-x+6的图象,观察直线的增减性与直线y=-x相同吗?问题2:从问题1中,你得到启发了吗?k的符号对一次函数y=kx+b的增减性有什么影响?问题3:k相同时两条直线有怎样的位置关系?掌握一次函数图像的简单画法,为后面的教学做准备(设计说明:通过活动,熟悉一次函数图象画法.经历观察发现图象的规律,并根据它归纳总结出关于数值大小的性质.体会数形结合的探究方法在数学中的重要性,进而认识理解一次函数图象特征与解析式联系.)探究2.如何由函数的图象得到函数的图象?一次函数的图象是什么形状,由直线可经过怎样的变换得到直线?(设计说明:学生讨论函数与图象的关系并发表自己的看法.教师利用《几何画板》进行演示.师生一起总结得到:(1)一次函数的图象是一条直线;(2)由直线平移个单位长度得到直线(当时,向上平移;当时,向下平移).引导学生通过比较解析式,发现两个解析式仅在常数项上有区别,其他部分完全相同,因此,对于自变量的任一值,这两个函数相应的值总差同一个常数.这反映在图象上,就是在横坐标相同的情况下,两个函数图象上对应的纵坐标总差同一个值,即将正比例函数的图象经过向上或向下的平移得到相应的一次函数的图象.由此,引导学生从“数”的角度认识一次函数图象,进而在理解正比例函数图象的基础上来认识一般的一次函数的图象.)探究3.在同一直角坐标系中画出以下函数的图象,,,;观察上面四个一次函数的图象,探究一次函数中k的正负对函数图象有什么影响,并在此基础上表述函数的性质.(设计说明:在本次活动中教师应重点关注:(1)学生在用两点法画图时是否能选择合适的点;(2)学生是否注意到一次函数的性质与有关,且与正比例函数的性质相同;(3)学生从“数”与“形”两个方面去理解和掌握一次函数的性质.通过动手实践,巩固两点法画图的方法,让学生通过观察直观地得到一次函数的随的变化而变化的情况以及的正负对函数图象的影响,培养学生观察分析的能力和从图象中获取信息的能力.通过类比正比例函数的性质,加深对一次函数的随的变化而变化的情况的理解.让学生经历画图——类比——归纳的数学活动过程.)四.课后提升一、课后练习题:1.已知直线y= —x,下列说法错误的是()A 比例系数为-1/2B 图像不在一、三象限C 图像必经过(-2 ,1)点D y随x增大而增大2.下列函数中,图像经过原点的为()A.y=5x+1 B.y=-5x-1 C.y=- D.y=3.若一次函数y=kx+b中,y随x的增大而减小,则()A.k<0,b<0 B.k<0,b>0 C.k<0,b≠0 D.k<0,b 为任意数4、画出函数y=-2x+2的图象,结合图象回答下列问题:(1)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?(2)当x取何值时,y=0?(3)当x取何值时,y>0?5.画函数y=2x+4图象,用函数y=2x+4的图象,求(1)方程2x+4=0的解(2)当x为何值时,函数y=2x+4的值大于等于0;(3)当-2≤y≤6时,求x的取值范围、反馈:渗透数形结合思想,强化函数与方程等联系,感受数学知识整体性,积累解决问题策略,提高解决问题的能力.〖设计说明〗在学生充分理解的基础上,分析图象信息,解答有关问题.明确一次函数的图象是一条直线,因此在作图时,不需要列表,只要确定两点就可以了.文档已经阅读完毕,请返回上一页!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、教材的地位和作用本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会“两点法”的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。

培养学生主动学习、主动探索、合作学习的能力。

本节课为探索一次函数性质作准备。

(一)教学目标的确定教学目标是教学的出发点和归宿。

因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

1、知识目标(1)能用“两点法”画出一次函数的图象。

(2)结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。

2、能力目标(1)通过操作、观察,培养学生动手和归纳的能力。

(2)结合具体情境向学生渗透数形结合的数学思想。

3、情感目标(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

(二)教学重点、难点用“两点法”画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。

直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响,是本节课的难点。

关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

二、学情分析1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合“两点确定一条直线”,学生能画出一次函数图象。

2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k≠0)常数k和b 的取值对于直线的位置的影响有难度。

所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。

3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

三、教学方法我采用自主探究—→合作交流式教学,让学生动手操作,主动去探索,小组合作交流。

而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

四、教学设计一、设疑,导入新课(2分钟)师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?生1:函数的解析式都是用自变量的一次整式表示的,我们称这样的函数为一次函数。

生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k≠0。

生3:正比例函数也是一次函数。

师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?这节课让我们一起来研究“一次函数的图象”。

(板书)二、自主探究——小组交流、归纳——问题升华:1、师:问(1)你们知道一次函数是什么形状吗?(4分钟)生:不知道。

师:那就让我们一起做一做,看一看:(出示幻灯片)用描点法作出下列一次函数的图象。

(1) y= 0.5x (2) y= 0.5x+2(3) y= 3x (4) y= 3x + 2师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。

画完后,小组订正,看是否画的正确?然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状?小组汇报:一次函数的图象是直线。

师:所有的一次函数图象都是直线吗?生:是。

师:那么一次函数y=kx+b(其中k、b为常数,k≠0),也可以称为直线y=kx+b(其中k、b为常数,k≠0)。

(板书)师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟)讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。

小组1:正比例函数图象经过原点。

小组2:正比例函数图象经过原点,一般的一次函数不经过原点。

师出示幻灯片3(使学生再一次加深印象)师:问(3):对于画一次函数y=kx+b(其中k)b为常数,k≠0)的图象——直线,你认为有没有更为简便的方法?(一边思考,可以和同桌交流)(2分钟)生1:用3个点。

生2:老师我这个更简单,用两个点。

因为两点确定一条直线嘛!生3:如画y=0.5x的图象,经过(0,0)点和(2,1)点这两个点做直线就行。

师:我们都认为画一次函数图象,只过两个点画直线就行。

(幻灯片4:师,动画演示用“两点法”画一次函数的过程)师:做一做,请你用“两点法”在刚才的直角坐标系中,画出其余三个一次函数的图象。

(比一比谁画的既快又好)(4分钟)师:问(4):和你的同伴比一比,看谁取的那两个点更为简便一些?组1:若是正比例函数,我们组先取(0,0)点,如画y=0.5x的图象,我们再了取(2,1)点。

这样找的坐标都是整数。

组2:我们组认为尽量都找整数。

组3:我们组认为都从两条坐标轴上找点,这样比较准确。

如y=3x+2,我们取点(0,3)和点(-2/3,0)组4:我们组认为,正比例函数经过(0,0)点和(1,k)点;一般的一次函数经过(0,b)点和(-b/k,0)点。

师:同学们说的都很好。

我觉得可以根据情况来取点。

2、师:我们现在已经用:“两点法”把四个一次函数图象准确而又迅速地画在了一个直角坐标系中,这四个函数图象之间在位置上有没有什么关系呢?问(1):(由自己所画的图象)观察下列各对一次函数图象在位置上有什么关系?(独自观察——学生回答)(3分钟)①y=0.5x与y=0.5x+2;②y=3x与y=3x+2;③y=0.5x与y=3x;④y=0.5x+2与y=3x+2。

生1:①y=0.5x与y=0.5x+2;两直线平行。

生2:②y=3x与y=3x+2;两直线平行。

生3:③y=0.5x与y=3x;两直线相交。

生4:④y=0.5x+2与y=3x+2;两直线相交。

师:其他同学有没有补充?生5:③y=0.5x与y=3x都是正比例函数;两直线相交,并且交点是点(0,0)点。

生6:老师,我也发现了④y=0.5x+2与y=3x+2的图象相交,并且交点是点(0,2)。

师:(出示幻灯片5)同学们回答都不错,我们要向生5和生6学习,学习他们的细致思考。

师:问(2),直线y=kx+b(k≠0)中常数k和b的值对于两个函数的图象的位置关系——平行或相交,有没有影响?说说你的看法。

(5分钟)(学生自主探究——小组交流、归纳——师生共同总结)组1:我们组发现,常数k和b的值对于两个函数的图象的位置关系——平行或相交,有影响,当k的值相同时,两直线平行;当k的值不同时,两直线相交。

生:我认为他的说法不确切,当k值相同,且b值不同时,两直线相交。

因为当k值相同,且b值也相同时,两个函数关系式不就成为一个函数关系式了吗?组2:我们组同意生的看法,当k值相同,且b值不同时,两直线平行;当k值不同时,两直线相交当k值相同,且b值不同时,两直线相交。

组3:我们组还发现,当k值相同,且b值不同时,两直线相交;当k值相同,且b值也相同时,两直线相交的交点特殊。

如③y=0.5x与y=3x;相交,交点是(0,0)④y=0.5x+2与y=3x+2,相交,交点是(0,2)。

我们认为,当k值相同,且b值也相同时,两直线相交的交点是(0,b)。

师:(出示小规律)同学们观察的都很仔细,回答很好,要继续努力!师:刚才同学说的,当k值相同,且b值也相同时,两个函数图象又是什么样的位置关系?(因为两直线的位置关系学生都会,所以学生很容易回答)生:重合。

师:老师考一考你,有没有信心?生:有。

师:(出示幻灯片6)不画图象,你能说出下列每对函数的图象位置上有什么关系吗?①直线y=-2x-1与直线y=-2x+5;②直线y=0.6x-3与直线y=-x-3。

生1:①两直线平行。

②两直线相交,交点是(0,-3)。

生2:①两直线平行。

②两直线相交,交点是(0,-3)。

师:一次函数的图象都是直线,它们的形状都,只是位置。

问(3):我们能不能将其中一条直线通过平移、旋转或对称性,使它们和另一条直线重合。

你试试看。

(自主探索——同桌交流)(3分钟)生1:(幻灯片5)①y=0.5x与y=0.5x+2;将y=0.5x平移能得到y=0.5x+2。

生2:③y=0.5x与y=3x;将y=0.5x旋转后能得到y=3x。

生3:②y=3x与y=3x+2;通过平移能得到y=3x+2。

④y=0.5x+2与y=3x+2。

通过旋转能得到y=3x+2。

师:同学们规律找得都很好,我们这节课只研究平移。

问(4):①y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向(向上或向下),平行移动单位得到y=0.5x+2?组②呢?(5分钟)(学生动力操作尝试——小组交流归纳——小组汇报)组1:直线y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向上(向上或向下),平行移动2个单位得到y=0.5x+2。

组2:直线y=3x向上平移2个单位能得到直线y=3x+2。

组3:直线y=3x+2向下平移2个单位能得到直线y=3x。

生4:老师,我发现直线y=0.5x+2向下平移2个单位能得到直线y=0.5x。

生5:老师,我们组发现直线y=0.5x沿y轴向上(向上或向下),平行移动2个单位得到y=0.5x+2。

在这个过程中,都是0.5,却加上了个2。

师:(同学们说的都很好,生5的发现更好,)师:出示幻灯片7,然后按↑↓来通过动画演示平行移动的过程。

问(5):在上面的2个变化过程中,观察关系式中k和b的值有没有变化?有什么样的变化?(生独立思考,回答)(3分钟)生1:k值不变,b值变化。

生2:k值不变,b值变化;当向上平移几个单位,b值就加上几;当向下平移几个单位,b就减去几。

师:出示幻灯片7上的小规律。

做一做:(独立完成——小组交流—师生总结)(4分钟)(1)将直线y= -3x沿 y轴向下平移2个单位,得到直线()。

(2)直线y=4x+2是由直线y=4x-1沿y轴向()平移()个单位得到的。

(3)将直线y=-x-5向上平移6个单位,得到直线()。

(4)先将直线y=x+1向上平移3个单位,再向下平移5个单位,得到直线()。

组1汇报结果。

师:在这些问题中还有没有需要老师帮忙解决的?生:没有。

三、你能谈谈你这节课的收获吗?(2分钟)生1:我知道了一次函数图象是直线,所以可以说直线y=kx+b(k≠0)我还学会了用“两点法”画一次函数的图象。

生2:我觉得学习一次函数,既离不开数,也离不开图形。

生3:我知道当k值相同,b值不同时,两个一次函数图象平行,当k值不同时,两个次函数图象相交。

生4:我知道一条直线通过平移可以得到另一条直线,函数关系式中k,b值的变化情况。

……四、测一测:(6分钟)师:老师觉得你们学的不错,你们认为自己学的怎么样?生:好师:让我们比一比,看一看谁是这节课学得最好的?哪个小组是最优秀的小组?师出示幻灯片,提出要求:独立完成测试题,不能偷看别人的,也不能别人看,否则按作弊处理,给个人和小组都扣分)一、填空:1、一次函数y=kx+b(k≠0)的图象是(),若该函数图象过原点,那么它是()。

相关文档
最新文档