单闭环直流调速系统

合集下载

单闭环直流调速系统

单闭环直流调速系统

单闭环直流调速系统是一种常见的控制系统,用于控制直流电机的转速。

以下是单闭环直流调速系统的基本组成和工作原理:
基本组成:
1. 直流电机:负责将电能转换为机械能。

2. 编码器或传感器:用于测量电机的实际转速。

3. 控制器:通常使用PID控制器,根据实际转速和设定转速之间的误差进行调节。

4. 功率放大器:将控制器输出的信号放大后送至电机,控制电机的转速。

工作原理:
1. 测量阶段:编码器或传感器测量电机的实际转速,并将这个信息反馈给控制器。

2. 比较阶段:控制器将实际转速与设定的目标转速进行比较,计算出误差值。

3. 控制阶段:根据误差值,控制器通过PID算法计算出控制信号,控制电机的转速。

4. 执行阶段:功率放大器根据控制信号控制电机的转速,使实际转速逐渐接近设定转速。

调速过程:
-如果实际转速低于设定转速,控制器会增加电机的供电,使电机加速。

-如果实际转速高于设定转速,控制器会减小电机的供电,使电机减速。

-控制器通过不断地调整电机的供电,使得实际转速稳定在设定的目标转速附近。

通过单闭环直流调速系统,可以实现对直流电机转速的精确控制,广泛应用于工业生产中的传动系统、自动化设备等领域。

单闭环直流调速系统的基本工作原理PPT课件

单闭环直流调速系统的基本工作原理PPT课件
(1) 控制的目的是什么?对这个问题的回答,有助于 分析者找到被控制对象及被控量(输出量)。 (2) 控制的装置是什么?对这个问题的回答,有助于 分析者找到控制量及执行控制过程的执行元件或驱 动装置。
(3) 被控制量与控制量之间是否存在关联?对这个问 题的回答,有助于分析者找到反馈装置及反馈量。
•5
相关知识
2.自动控制系统组成框图中的信号与环节
图1-12表示了一个典型的反馈控制系统的基本组成 模型。一般自动控制系统组成模型中大致包括两类 元素,即信号流与环节(或元件)。
1) 信号流 2) 环节或元件
•6
任务 单闭环直流调速系统基本工作原理分析
任务引导
所谓调速就是指通过某种方法来调节(改变)电动机的转速。 如果这种调节电动机的方法是通过人工调节完成的,那么 这种系统就是在本章相关知识(一)中所讨论过的人工控制系 统,可称之为人工调速系统;而如果这种调节电动机转速 的方法是通过某种装置自动完成的,那么它就是一个自动 控制系统,称之为自动调速系统。
(2) 自动控制系统从控制方案上来说,可分为开环控 制与闭环控制。
(3) 尽管组成自动控制系统的物理装置各有不同,但 究其控制作用来看,不外乎几种基本元件或环节。对 一个实际的自动控制系统进行组成装置上的抽象,有 助于对自动控制系统的工作原理、调节过程进行分析, 也有助于为进一步分析自动控制系统性能而建立数学 模型。
通过对单闭环直流调速系统基本工作原理分析的学 习,掌握一般自动控制系统的工作原理的基本分析 方法,并初步形成自动控制系统问题分析的基本思 路。
•3
ቤተ መጻሕፍቲ ባይዱ相关知识
(一)什么是自动控制系统
(二)自动控制系统的控制方案——开环与闭环 (反馈)控制

单闭环直流调速系统实验报告

单闭环直流调速系统实验报告

单闭环直流调速系统实验报告单闭环直流调速系统实验报告一、引言直流调速系统是现代工业中常用的一种电机调速方式。

本实验旨在通过搭建单闭环直流调速系统,探究其调速性能以及对电机转速的控制效果。

二、实验原理单闭环直流调速系统由电机、编码器、电流传感器、控制器和功率电路等组成。

电机通过功率电路接受控制器的指令,实现转速调节。

编码器用于测量电机转速,电流传感器用于测量电机电流。

三、实验步骤1. 搭建实验电路:将电机、编码器、电流传感器、控制器和功率电路按照实验原理连接起来。

2. 调试电机:通过控制器设置电机的运行参数,如额定转速、最大转矩等。

3. 运行实验:根据实验要求,设置不同的转速指令,观察电机的响应情况。

4. 记录实验数据:记录电机的转速、电流等数据,并绘制相应的曲线图。

5. 分析实验结果:根据实验数据,分析电机的调速性能和控制效果。

四、实验结果分析1. 转速响应特性:通过设置不同的转速指令,观察电机的转速响应情况。

实验结果显示,电机的转速随着指令的变化而变化,且响应速度较快。

2. 稳态误差分析:通过观察实验数据,计算电机在不同转速下的稳态误差。

实验结果显示,电机的稳态误差较小,说明了系统的控制效果较好。

3. 转速控制精度:通过观察实验数据,计算电机在不同转速下的控制精度。

实验结果显示,电机的转速控制精度较高,且随着转速的增加而提高。

五、实验总结本实验通过搭建单闭环直流调速系统,探究了其调速性能和对电机转速的控制效果。

实验结果表明,该系统具有较好的转速响应特性、稳态误差较小和较高的转速控制精度。

然而,实验中也发现了一些问题,如系统的抗干扰能力较弱等。

因此,在实际应用中,还需要进一步优化和改进。

六、展望基于本实验的结果和问题,未来可以进一步研究和改进单闭环直流调速系统。

例如,可以提高系统的抗干扰能力,提升转速控制的稳定性和精度。

同时,还可以探索其他调速方式,如双闭环调速系统等,以满足不同的工业应用需求。

直流调速系统单闭环

直流调速系统单闭环

单闭环直流调速系统 -- 有静差系统
结论: 1. 单闭环有静差晶闸管直流调速系统的动态稳定性
单闭环直流调速系统 -- 一般概念
对主电路微分方程右侧在相同区间积分;有:
1
2
6623EidRLddtiddt
3
式中方括号内;
第一项平均值为:E = Cen = Cen ; 第二项平均值为:IdR ; 第三项平均值为:零;
单闭环直流调速系统 -- 一般概念
因此得到: 1.17U2cosCenIdR n1.17U2cosIdR
(1K) (1K)
1K
单闭环直流调速系统 -- 有静差系统
闭环系统特征方程即为:
T m T T ss3 T m (T T s)s2 T m T ss 1 0 1 K 1 K 1 K
应用劳斯稳定判据可以得到系统的动态稳定条件:
KTm(TTs )Ts2 TTs
式中右侧即为系统临界放大系数 Kcr ;
nminnmin nN(1s)
单闭环直流调速系统 -- 有静差系统
单闭环直流调速系统 -- 有静差系统
在假设忽略各种非线性因素等条件下;系统中各环节 的稳态关系为:
➢ 电压比较器 UnUn *Un
➢ 放大器 UcKpUn
➢ 晶闸管触发整流装置 ➢ 调速系统开环机械特性
➢ 测速发电机
Ud0KsUc nUd0 IdR
Id(s)
1 R (1)
Ud0(s)E(s) Ts1
单闭环直流调速系统 -- 有静差系统
电动机轴上转矩与转速之间的关系符合电气传动系统
运动方程:
GD 2 dn
T e T L C m I d C m I dL 375 dt
GD 2 R 1 dn I d I dL 375 C m R dt

单闭环直流调速系统

单闭环直流调速系统

① 闭环静特性比开环机械特性硬得多。负载电流相等时
nb
nk 1 K
sk s ② 闭环系统的静差率要比开环小得多。理想空载转速相等时, b 1 K
③ 闭环系统可比开环有更大的调速范围。静差率相等时, Db 1 K Dk ④ 闭环系统比开环系统的抗干扰性能好。
3、如右图所示,设电机开始工 作于A点,当负载电流增大时, 开环和闭环系统工作的原理是不 同的: (1)开环系统,给定不变,电枢电 压就不变,电流增加,工作点将 沿最下面那条机械特性向下移动
(2)而对于闭环调速系统,给定不变,电流增加时,系统有维持转速不 下降的趋势,通过调节,电枢电压升高,工作点将移至B、C或D。 ABCD所在直线就是闭环系统的在该给定电压下的一条静特性曲线。
U d Id R n Ce
由上述四式不难得出
R n Id Ce 1 K Ce 1 K
该式称为系统的静特性方程。
* K p KsU n
K
K p K s Ce
称为系统的开环放大系数。
静特性与机械特性的比较-1
1、机械特性调速系统对开环而言;静特性是对闭环系统而言的。两者 都表示电机转速与负载电流之间的关系,即n=f(Id)。 2、一条机械特性曲线对应于一个不变的电枢电压;而一条静特性曲线 对应于 一个不变的给定电压。
Ud Id R U d↓→ n ↓→ U n ↓→ U↑→ U ct↑→ U d↑→ n↑ Ce
3、单闭环调速系统的静特性
闭环调速稳定工作时,电机转速与负载电流之间的关系称为闭 环调速系统的静特性。 由稳态结构图可知
* U U n Un
U ct K p U
U d K sU ct
当然,转速上升,转速反馈电压会升高,但其升值小于 给定电压增值,电压差总体上是增大的,转速是上升的。

单闭环直流调速系统介绍课件

单闭环直流调速系统介绍课件

智能化:引入 人工智能技术, 实现系统的自 适应控制和自 学习能力
网络化:通过 互联网和物联 网技术,实现 远程监控和故 障诊断
集成化:将多 个子系统集成 为一个整体, 提高系统的集 成度和可靠性
节能和环保的发展趋势
01
提高能源利用率:通过优化控制策略和算法,降低能耗,提高能源利用率
02
减少污染排放:采用环保材料和工艺,减少生产过程中的污染排放
单闭环直流调速 系统介绍课件
目录
01. 单闭环直流调速系统的基本 概念
02. 单闭环直流调速系统的控制 方式
03. 单闭环直流调速系统的应用 领域
04. 单闭环直流调速系统的发展 趋势
1
单闭环直流调速 系统的基本概念
直流调速系统的组成
01
整流器:将交流 电转换为直流电
02
滤波器:去除直 流电中的交流成
04
应用场合:适用于对转速要求不高,但对响应速度要求较高的场合
电流控制方式
STEP1
STEP2
STEP3
STEP4
电压控制方式: 通过控制电压 来调节电流, 实现调速
电流控制方式: 通过控制电流 来调节电压, 实现调速
速度控制方式: 通过控制速度 来调节电流, 实现调速
位置控制方式: 通过控制位置 来调节电流, 实现调速
网络化:实现远程监控 和控制,提高系统的可 维护性和可扩展性
谢谢
速度控制方式
1
电压控制方式:通过调节直流电源的输出电压来控制电机的转速
2
电流控制方式:通过调节直流电源的输出电流来控制电机的转速
3
转速控制方式:通过调节电机的转速来控制电机的转速
4
位置控制方式:通过调节电机的位置来控制电机的转速

单闭环直流调速系统

单闭环直流调速系统

第十七单元 晶闸管直流调速系统第二节 单闭环直流调速系统一、转速负反馈直流调速系统转速负反馈直流调速系统的原理如图l7-40所示。

转速负反馈直流调速系统由转速给定、转速调节器ASR 、触发器CF 、晶闸管变流器U 、测速发电机TG 等组成。

直流测速发电机输出电压与电动机转速成正比。

经分压器分压取出与转速n 成正比的转速反馈电压Ufn 。

转速给定电压Ugn 与Ufn 比较,其偏差电压ΔU=Ugn-Ufn 送转速调节器ASR 输入端。

ASR 输出电压作为触发器移相控制电压Uc ,从而控制晶闸管变流器输出电压Ud 。

本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统。

1.转速负反馈调速系统工作原理及其静特性设系统在负载T L 时,电动机以给定转速n1稳定运行,此时电枢电流为Id1,对应转速反馈电压为Ufn1,晶闸管变流器输出电压为Udl 。

n n I C R R C U C R R I U n d e d e d e d d d ∆+=+-=+-=0)(φφφ 当电动机负载T L 增加时,电枢电流Id 也增加,电枢回路压降增加,电动机转速下降,则Ufn 也相应下降,而转速给定电压Ugn 不变,ΔU=Ugn-Ufn 增加。

转速调节器ASR 输出电压Uc 增加,使控制角α减小,晶闸管整流装置输出电压Ud 增加,于是电动机转速便相应自动回升,其调节过程可简述为:T L ↑→Id ↑→Id(R ∑+Rd)↑→n ↓→Ufn ↓→△U↑→Uc ↑→α↓→Ud ↑→n ↑。

图17-41所示为闭环系统静特性和开环机械特性的关系。

图中①②③④曲线是不同Ud之下的开环机械特性。

假设当负载电流为Id1时,电动机运行在曲线①机械特性的A点上。

当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud 也不会变,但由于电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至B’点,转速只能相应下降。

单闭环直流调速系统课程设计

单闭环直流调速系统课程设计

《单闭环直流调速系统课程设计》摘要:本课程设计旨在深入研究单闭环直流调速系统的原理、设计方法和实现技术。

通过对系统的理论分析和实际设计,掌握直流调速系统的基本特性和性能指标的优化方法。

课程设计包括系统的方案选择、参数计算、硬件电路设计、软件编程以及系统调试与性能测试等环节。

通过本次课程设计,培养学生的工程实践能力、创新思维和解决实际问题的能力,为今后从事相关领域的工作打下坚实的基础。

一、概述直流调速系统在工业生产、交通运输、电力电子等领域具有广泛的应用。

它能够实现对直流电动机转速的精确控制,满足不同工况下对转速稳定性和调速精度的要求。

单闭环直流调速系统是一种常见的调速系统结构,具有简单可靠、性能稳定等优点。

本课程设计将围绕单闭环直流调速系统展开,深入探讨其设计与实现的相关技术。

二、单闭环直流调速系统的工作原理单闭环直流调速系统主要由直流电动机、转速反馈环节、放大器、触发器和晶闸管整流装置等组成。

其工作原理如下:转速反馈环节将直流电动机的实际转速转换为电信号反馈到放大器输入端,与给定转速信号进行比较,得到偏差信号。

放大器对偏差信号进行放大处理后,输出触发脉冲信号控制晶闸管整流装置的导通和关断,从而改变直流电动机的电枢电压,实现对电动机转速的调节。

通过转速反馈环节的作用,系统能够使电动机的实际转速跟随给定转速变化,保持系统的稳定性和良好的调速性能。

三、系统方案的选择在进行单闭环直流调速系统课程设计时,首先需要进行系统方案的选择。

根据设计要求和实际应用场景,可以选择不同的调速方案。

常见的方案有转速负反馈单闭环调速系统、电流负反馈单闭环调速系统等。

转速负反馈单闭环调速系统具有结构简单、稳定性好、调速范围广等优点,适用于大多数调速控制场合;电流负反馈单闭环调速系统则能够提高系统的动态性能,适用于对动态响应要求较高的系统。

在本课程设计中,选择转速负反馈单闭环调速系统作为设计方案。

四、系统参数的计算系统参数的计算是单闭环直流调速系统设计的重要环节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
Un
*
时的 U* n
+
∆Un - Un
Kp
Uc
Ks U
0
d
1/Ce
n
K p K sU
* n

C e (1 K )
-IdR
E
- Ud
0
+
n 1/Ce Ks Kp
+
只考虑扰动作用-IdR时 的闭环系统
n RI
d

C e (1 K )
利用叠加原理得
n
K p K sU n
*
C e (1 K )
Ra R1 R2 R3
O
IL
调阻调速特性曲线
I
调磁调速



工作条件: 保持电压 U =UN ; 保持电阻 R = Ra ; 调节过程: 减小励磁 N n , n0 调速特性: 转速上升,机械特性 曲线变软。
n n0 n3 n2 n1 nN
N 1 2
3
O
TL
调压调速特性曲线
开环系统存在的问题




开环系统只适用用于对调速精度要求不高的 场合,但许多需要无级调速的生产机械为了 保证加工精度,常常对调速精度提出一定的 要求,这时,开环调速已不能满足要求。 解决思路: 引入反馈控制思想(提出闭环的必要性) 反馈的手段
闭环系统的设计思路
开环系统结构框图
闭环系统结构框图
8.2 单闭环直流调速系统
解:如果要满足D=20,Sn<5%的要求,则其在额定条件 下的转速降为:
n ne s D(1 s ) 1000 0.05 20(1 0.05) 2.63%
而由已知条件并设系统电流连续,则其额定转速下 的转速降为:
n IN R Ce N 305 0.18 0.2 274 .5r / min
0 O 0
Id1
Id2
Id3
Id4
I d n U n U n U ct U d 0 n
闭环系统减小速降的物理意义
闭环系统能够减少稳态速降的实质在 于它的自动调节作用,在于它能随着负载 的变化而相应地改变电枢电压,以补偿电 枢回路电阻压降。



IdR C e (1 K )

注意 闭环调速系统的静特性表示闭环 系统电动机转速与负载电流(或转矩) 间的稳态关系,它在形式上与开环机 械特性相似,但本质上却有很大不同, 故定名为“静特性”,以示区别。
n
开环机械特性
开环加载
闭环静特性
A
B A′
C
D
Ud4 Ud3 Ud2 Ud1
闭环加载
O 0
ห้องสมุดไป่ตู้
用晶闸管触发整流 整流电路实现电枢 电压可调,从而达 到改变电机转速的 目的。
例:某电源—电动机直流调速系统,已知电机的额定 转速为n=1000r/min,额定电流IN=305A,主回路电阻 R=0.18Ω,CeΦN=0.2,若要求电动机调速范围D=20, sn<5%,则该调速系统是否能满足要求?
(一) 系统组成
( 二)闭环系统的静特性方程
开环机械特性: n f (U d , I d ) 闭环静特性方程:
假定:
开环机械特性曲线
1)忽略各种非线性因素,假定系统中各环节 的输入输出关系都是线性的,或者只取其线性工 作段。 2)忽略控制电源和电位器的内阻
转速负反馈直流调速系统中各环节的稳态关系如下:
un
比较环节 放大器
* U n U n U n
电机端电压方程E U d 0 I d R 测速反馈环节 U 电动机环节
n
U ct K p U n
n
触发和整流装置 U d 0 K sU ct
E Cen

静特性方程
从上述六个关系式中消去中间变量,整理后, 即得转速负反馈闭环直流调速系统的静特性方程 式

结论: 闭环调速系统可以获得比开环调速系 统硬得多的稳态特性,从而在保证一定静 差率的要求下,能够提高调速范围,为此 所需付出的代价是,须增设电压放大器以 及检测与反馈装置。
降低速降的实质是什么?
un
转速单闭环调速系统结构图
系统调节过程
闭环静特性
开环机械特性
n
A
B A′
C
D
Ud4 Ud3 Ud2 Ud1
s cl
n cl n ocl
, s op
n op n 0 op
则得
s op
D cl (1 K ) D op
(4)要取得上述三项优势,闭 当 n 0 op n 0 cl 时 , 则 s cl 环系统必须设置放大器。 1 K 上述三项优点若要有效, (3)当要求的静差率一定 都取决于一点,即 K 要足够大, 时,闭环系统可以大大提高 因此必须设置放大器。 调速范围。
第八章 单闭环直流调速系统
直流调速系统概述 单闭环直流调速系统 单闭环直流调速系统实例分析

8.1 直流调速系统概述
一、什么是调速


电动机是用来拖动某种生产机械的动力设备,所以需 要根据工艺要求调节其转速。比如:在加工毛坯工件 时,为了防止工件表面对生产刀具的磨损,因此加工 时要求电机低速运行;而在对工件进行精加工时,为 了要缩短加工时间,提高产品的成本效益,因此加工 时要求电机高速运行。所以,我们就将调节电动机转 速,以适应生产要求的过程就称之为调速;而用于完 成这一功能的自动控制系统就被称为是调速系统。 目前调速系统分交流和直流调速系统,由于直流调速 系统的调速范围广,静差率小、稳定性好以及具有良 好的动态性能。因此在相当长的时期内,高性能的调 速系统几乎都采用了直流调速系统。但近年来,随着 电子工业与技术的发展,高性的交流调速系统的应用 范围逐扩大并大有取代直流调速系统发展趋势。但作 为一个延用了近百年的调速系统,了解其基本的工作 原理,并加深对自动控制原理的理解还是有必要的。
*
(1)闭环系统速降小,静特 性硬 在同样的负载扰动下, 两者的转速降落分别为
n op RI
d

RI
d
Ce
n cl
RI
d
而闭环时的静特性可写成
n K p K sU n
*
Ce
C e (1 K )
它们的关系是
n op 1 K
C e (1 K )

RI
d
C e (1 K )
30 0 . 015 / 0 . 2
K
op
n cl
1
103 . 6
即只要放大器的放大 系数等于或大于46, 闭环系统就能满足所 需的稳态性指标。
(四)单闭环调速系统基本性质
(1)具有比例调节器的闭环系统是有静差
有静差与无静差的概念
因为闭环系统的稳态速降为 而K ≠ ,有静差调速系统。
二、调速控制系统的性能指标
在前几章中我们学过,各种自动化生产机械或系统 所提出的性能指标一般都可以分成稳态指标和动态 指标。对于调速系统来说也不例外,只是它作为一 个特定的系统,其稳态和动态指标有着具体而明确 定义。 稳态指标:主要是要求系统能在最高和最低转速 内进行平滑调节,并且在不同转速下工作时能稳 定运行,而在某一转速下稳定运行时,尽量少受 负载变化及电源电压波动的影响。因此它的指标 就是调速系统的调速范围和静差率。 动态性能指标:主要是平稳性和抗干扰能力。
Te
三种调速方法的性能与比较
对于要求在一定范围内无级平滑调速 的系统来说,以调节电枢供电电压的方式 为最好。改变电阻只能有级调速;减弱磁 通虽然能够平滑调速,但调速范围不大, 往往只是配合调压方案,在基速(额定转 速)以上作小范围的弱磁升速。 因此,自动控制的直流调速系统往往 以调压调速为主。
这就是所谓的电 源—电动机调速 系统(V—M) 系统,它属于开 环系统。

100%
n0 n n0
100%
两者之间的关系是: D
n s n(1 s )
他励直流电机的调速方案
他励直流电动机的转速公式:
n E CE U IR CE
(8-1)
式中:U为他励电动的电枢电压 I为电枢电流 E为电枢电动势 R为电枢回路的总电阻 n为电机的转速 Φ为励磁磁通 CE为由电机结构决定的电动势系数
n n0 nN n1
UN
n2
n3 O IL
调压调速特性曲线
U1 U2
U3
I
调阻调速



工作条件: 保持励磁 =N; 保持电压 U=UN ; 调节过程: 增加电阻 Ra R n ,n0不变; 调速特性: 转速下降,机械特性 曲线变软。(斜率较 大,特性较软)
n n0 nN n1 n2 n3
(2)抵抗扰动, 服从给定
n cl
RI
d
Ce (I K )
只有 K = ,才能使 ncl = 0,无静差。
扰动—除给定信号外,作用在控制系统各环节上的 一切会引起输出量变化的因素都叫做“扰动作用”。

扰动作用与影响
Id变化
Kp变化 电源波动
R E
电阻变化 励磁变化
U* n
+
∆Un
- U n
而静差率为:
s n n0 n 275 1000 275 21.5%
由此例不难发现,象这样的电源——电动机所组成的 开环调速系统,是没有能力完成其调速指标的。要把 额定负载下的转速降从开环系统中的274.5降低到满 足要求的2.63就必须采用负反馈,这也就构成了我们 所谓的闭环直流调速系统——转速负反馈直流调速。
相关文档
最新文档