中考数学压轴题解题技巧及训练 完整版

合集下载

中考数学压轴题解题技巧

中考数学压轴题解题技巧

中考数学压轴题解题技巧压轴题这类题目一般分数多,难度大,考验综合能力强,在考试中是能够拉开成绩的题目,也是很多同学重点钻研项目。

下面是小编整理的中考数学压轴题解题技巧,希望小编整理的数学压轴题解题方法对同学们有用! 从总体上来看,中考数学压轴题通常有3小问,其中第一问比较简单,中等水平的学生能够比较轻易地解出来。

所以,同学们看到压轴题,不要产生恐惧心理,拿下第一问还能得两三分。

第二问通常有些难度,通常要利用第一问的条件和结论,所以,如果第一问做不出来,后面就别提了。

第三问难度最大,考验的是同学的综合能力。

1中考数学压轴题解题技巧1、基本知识不丢一分在中考数学的备考中强化知识网络的梳理,并熟练掌握中考考纲要求的知识点。

“首先要梳理知识网络,思路清晰知己知彼。

其次要掌握数学考纲,对考试心中有谱。

掌握今年中考数学的考纲,用考纲来统领知识大纲,掌握好必要的基础知识和过好基本的解题技巧,根据考纲和自己的实际情况来侧重复习。

2、运用数形结合思想中考数学压轴题解题技巧之一就是数形结合思想,是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法,或利用数量关系来研究几何图形的性质,解决几何问题的一种数学思想。

纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

3、利用条件或结论的多变性,运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察。

有些数学问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵。

中考数学 中考数学压轴题知识归纳总结及答案

中考数学 中考数学压轴题知识归纳总结及答案

一、中考数学压轴题1.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.2.如图1,已知,⊙O 是△ABC 的外接圆,AB=AC=10,BC=12,连接AO 并延长交BC 于点H .(1)求外接圆⊙O 的半径;(2)如图2,点D 是AH 上(不与点A ,H 重合)的动点,以CD ,CB 为边,作平行四边形CDEB ,DE 分别交⊙O 于点N ,交AB 边于点M .①连接BN ,当BN ⊥DE 时,求AM 的值;②如图3,延长ED 交AC 于点F ,求证:NM ·NF=AM ·MB ;③设AM=x ,要使2ND -22DM <0成立,求x 的取值范围.3.如图,90EOF ∠=︒,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =,3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,矩形ABCD 也停止运动,设点P 的运动时间为()t s ,PDO △的面积为S . (1)分别写出点B 到OF 、OE 的距离(用含t 的代数式表示);(2)当点P 不与矩形ABCD 的顶点重合时,求S 与t 之间的函数关系式;(3)设点P 到BD 的距离为h ,当15h OD =时,求t 的值;(4)若在点P 出发的同时,点Q 从点B 以每秒43个单位长度的速度向终点A 运动,当点Q 停止运动时,点P 与矩形ABCD 也停止运动,设点A 关于PQ 的对称点为E ,当PQE 的一边与CDB △的一边平行时,直接写出线段OD 的长.4.(1)阅读理解:如图①,在ABC 中,若8AB =,5AC =,求BC 边上的中线AD 的取值范围. 可以用如下方法:将ACD 绕着点D 逆时针旋转180︒得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠=︒,CB CD =,100BCD ∠=︒,以C 为顶点作一个50︒的角,角的两边分别交AB 、AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并说明理由.5.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.6.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由; ②若12,(33)2ADH a S ==+,求sin GAB ∠的值.7.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.8.如图1,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,连接AC 、BC ,已知点A 、C 的坐标为()2,0A -、()0,6C -.(1)求抛物线的表达式;(2)点P 是线段BC 下方抛物线上的一动点,如果在x 轴上存在点Q ,使得以点B 、C 、P 、Q 为顶点的四边形为平行四边形,求点Q 的坐标;(3)如图2,若点M 是AOC △内一动点,且满足AM AO =,过点M 作MN OA ⊥,垂足为N ,设AMN 的内心为I ,试求CI 的最小值.9.如图,直角三角形ABC ∆中,90460ACB AC A ∠︒=∠︒=,,=,O 为BC 中点,将ABC ∆绕O 点旋转180︒得到DCB ∆.一动点P 从A 出发,以每秒1的速度沿A B D →→的路线匀速运动,过点P 作直线PM ,使PM AC ⊥.(1)当点P 运动2秒时,另一动点Q 也从A 出发沿A B D →→的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN 使//QN PM ,设点Q 的运动时间为t 秒,(0<t<10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.(2)当点P 开始运动的同时,另一动点R 从B 处出发沿B C D →→的路线运动,且在BC 3CD 上以每秒2的速度匀度运动,是否存在这样的P R 、,使BPR ∆为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由.10.如图1,抛物线23y ax bx =++与x 轴交于点(1,0)A -、点B ,与y 轴交于点C ,顶点D 的横坐标为1,对称轴交x 轴交于点E ,交BC 与点F .(1)求顶点D 的坐标;(2)如图2所示,过点C 的直线交直线BD 于点M ,交抛物线于点N .①若直线CM 将BCD ∆分成的两部分面积之比为2:1,求点M 的坐标;②若NCB DBC ∠=∠,求点N 的坐标.11.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于AB 、两点.(1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度.(2)已知M 是O 一点,1cm OM =.①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________.②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm .12.已知抛物线217222y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点;(2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标;(3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形.13.在平行四边形ABCD 中,60B ∠=︒,点E ,F 分别在边AB ,AD 上,且60ECF ∠=︒.(1)如图1,若AB BC =,求证:AE AF BC +=;(2)如图2,若4AB BC ==,且点E 为AB 的中点,连接BF 交CE 于点M ,求FM ;(3)如图3,若AB kBC =,探究线段BE 、DF 、BC 三之间的数量关系,说明理由.14.问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ).(1)当甲追上乙时,x = .(2)请用x 的代数式表示y .问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;(4)若从2:00起计时,求几分钟后分针与时针第一次重合?15.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.16.如图,平面直角坐标系中,抛物线228y ax ax a =--与x 轴交于B 、C 两点(点B 在点C 右侧),与y 轴交于点A ,连接AB ,25AB =.(1)求抛物线的解析式;(2)点P 在第二象限的抛物线上,连接PB 交y 轴于D ,取PB 的中点E ,过点E 作EH x ⊥轴于点H ,连接DH ,设点P 的横坐标为t .ODH 的面积为S ,求S 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,作PF y ⊥轴于F ,连接CP 、CD ,CP CD =,点S 为PF 上一点,连接BS 交y 轴于点T ,连接BF 并延长交抛物线于点R .SBC FBO 45∠+∠=︒,在射线CS 上取点Q.连接QF ,QF RF =,求直线TQ 的解析式.17.如图①,△ABC 是等腰直角三角形,在两腰AB 、AC 外侧作两个等边三角形ABD 和ACE ,AM 和AN 分别是等边三角形ABD 和ACE 的角平分线,连接CM 、BN ,CM 与AB 交于点P .(1)求证:CM=BN;(2)如图②,点F为角平分线AN上一点,且∠CPF=30°,求证:△APF∽△AMC;(3)在(2)的条件下,求PFBN的值.18.如图,四边形AOBC是正方形,点C的坐标是(82,0).(1)正方形AOBC的边长为,点A的坐标是;(2)将正方形AOBC绕点O顺时针旋转45︒,点A,B,C旋转后的对应点为A',B',C',求点A'的坐标及旋转后的正方形与原正方形的重叠部分的面积;(3)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时同时停止运动,当OPQ△为等腰三角形时,求出t的值(直接写出结果即可).19.定义:将函数l的图象绕点P(m,0)旋转180°,得到新的函数l'的图象,我们称函数l'是函数关于点P的相关函数.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.(1)当m=0时①一次函数y=x﹣1关于点P的相关函数为;②点(12,﹣98)在二次函数y=﹣ax2﹣ax+1(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣1)2+2关于点P的相关函数y=﹣(x+3)2﹣2,则m=;(3)当m﹣1≤x≤m+2时,函数y=x2﹣mx﹣12m2关于点P(m,0)的相关函数的最大值为6,求m的值.20.已知四边形ABCD为矩形,对角线AC、BD相交于点O,AD=AO.点E、F为矩形边上的两个动点,且∠EOF=60°.(1)如图1,当点E、F分别位于AB、AD边上时,若∠OEB=75°,求证:DF=AE;(2)如图2,当点E、F同时位于AB边上时,若∠OFB=75°,试说明AF与BE的数量关系;(3)如图3,当点E、F同时在AB边上运动时,将△OEF沿OE所在直线翻折至△OEP,取线段CB的中点Q.连接PQ,若AD=2a(a>0),则当PQ最短时,求PF之长.21.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.22.阅读材料:等腰三角形具有性质“等边对等角”.事实上,不等边三角形也具有类似性质“大边对大角”:如图1.在△ABC中,如果AB>AC,那么∠ACB>∠ABC.证明如下:将AB沿△ABC的角平分线AD翻折(如图2),因为AB>AC,所以点B落在AC的延长线上的点B'处.于是,由∠ACB>∠B',∠ABC=∠B',可得∠ACB>∠ABC.(1)灵活运用:从上面的证法可以看出,折纸常常能为证明一个命题提供思路和方法.由此小明想到可用类似方法证明“大角对大边”:如图3.在△ABC中,如果∠ACB>∠ABC,那么AB>AC.小明的思路是:沿BC的垂直平分线翻折……请你帮助小明完成后面的证明过程.(2)拓展延伸:请运用上述方法或结论解决如下问题:如图4,已知M为正方形ABCD的边CD上一点(不含端点),连接AM并延长,交BC的延长线于点N .求证:AM +AN >2BD .23.如图1,D 是等边△ABC 外一点,且AD =AC ,连接BD ,∠CAD 的角平分交BD 于E . (1)求证:∠ABD =∠D ;(2)求∠AEB 的度数;(3)△ABC 的中线AF 交BD 于G (如图2),若BG =DE ,求AF DE的值.24.在平面直角坐标系xOy 中,点A 、B 为反比例函数()4x 0x y =>的图像上两点,A 点的横坐标与B 点的纵坐标均为1,将()4x 0xy =>的图像绕原点O 顺时针旋转90°,A 点的对应点为A’,B 点的对应点为B’.(1)点A’的坐标是 ,点B’的坐标是 ; (2)在x 轴上取一点P ,使得PA+PB 的值最小,直接写出点P 的坐标. 此时在反比例函数()4x 0xy =>的图像上是否存在一点Q ,使△A’B’Q 的面积与△PAB 的面积相等,若存在,求出点Q 的横坐标;若不存在,请说明理由;(3)连接AB’,动点M 从A 点出发沿线段AB’以每秒1个单位长度的速度向终点B’运动;动点N 同时从B’点出发沿线段B’A’以每秒1个单位长度的速度向终点A’运动.当其中一个点停止运动时,另一个点也随之停止运动.设运动的时间为t 秒,试探究:是否存在使△MNB’为等腰直角三角形的t 值.若存在,求出t 的值;若不存在,说明理由.25.(1)如图①,在Rt ABC 中,90C ∠=︒,13AB =,5BC =,则tan A 的值是_______.(2)如图②,在正方形ABCD 中,5AB =,点E 是平面上一动点,且2BE =,连接CE ,在CE 上方作正方形EFGC ,求线段CF 的最大值.问题解决:(3)如图③,O 半径为6,在Rt ABC 中,90B ∠=︒,点, A B 在O 上,点C 在O 内,且3tan 4A =.当点A 在圆上运动时,求线段OC 的最小值.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.B解析:(1)83;(2)3或433)565x ≤<【解析】【分析】 (1)设BP=a ,则PC=8-a ,由△MBP ~△DCP 知MB BP DC CP=,代入计算可得; (2)分别求出⊙P 与边CD 相切时和⊙P 与边AD 相切时BP 的长即可得;(3)①当PM=5时,⊙P 经过点M ,点C ;②当⊙P 经过点M 、点D 时,由PC 2+DC 2=BM 2+PB 2,可求得BP=7,继而知227465PM =+=.据此可得答案.【详解】(1)设BP=a,则PC=8-a,∵AB=8,M是AB中点,∴AM=BM=4,∵△MBP~△DCP,∴MB BPDC CP=,即488aa=-,解得83a=,故答案为:83.(2)如图1,当⊙P与边CD相切时,设PC=PM=x,在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8-x)2,∴x=5,∴PC=5,BP=BC-PC=8-5=3.如图2,当⊙P与边AD相切时,设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,228443PB-==综上所述,BP 的长为3或43.(3)如图1,当PM=5时,⊙P 经过点M ,点C ;如图3,当⊙P 经过点M 、点D 时,∵PC 2+DC 2=BM 2+PB 2,∴42+BP 2=(8-BP )2+82,∴BP=7,∴227465PM =+= 综上,565x ≤<【点睛】本题是圆的综合问题,主要考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.2.A解析:(1)O 半径为254;(2)①458AM =;②详见解析;③当1251017x <<时,有2220ND DM -<成立.【解析】【分析】(1)如下图,在Rt △ABH 中,先求得AH 的值,设OA=r ,在Rt △OBH 中,利用勾股定理可求得r 的长;(2)①如下图,在Rt BCN ,可求得BN 的长,然后在矩形NBHD 中,求得AD 的值,最后利用cos ∠MAD 求得AM ;②如下图,同过证AMN NFC △∽△可得结论;③如下图,通过转换,先得出222ND DM -=22AM MB DM ⋅这个等式,然后利用3sin 5DM MAD AM ∠==,设AM=x ,可得到关于x 的方程,进而求出x 的取值范围. 【详解】 解:(1)如图1,连接OB ,∵AH 过圆心O ,∴AH BC ⊥,∵AB AC =,∴162BH CH BC ===, 在Rt ABH △中,221068AH =-=,设半径OA OB r ==,则8OH r =-,在Rt OBH 中,222(8)6r r -+=, 解得254r =,即O 半径为254. (2)①如图2,连接CN在平行四边形CDEB 中,DE BC ∥,∴ENB NBC ∠=∠.∵BN DE ⊥,即90ENB ∠=︒,∴90NBC ∠=︒.∴CN 是O 的直径.2522CN r ==. ∴在Rt BCN 中,2272BN CN BC =-=. ∵四边形CDEB 是平行四边形,NB ⊥BH ,DH ⊥BH∴四边形NBHD 是矩形,∴72DH BN ==,6ND BH ==,∴79822AD AH DH =-=-=. ∴在Rt ADM △中,4cos 5AD AH MAD AM AB ∠===,∴458AM =, ②如图3,连接AN ,CN ,∵DE BC ∥,∴DNC NCB ∠=∠.∵NAB NCB ∠=∠,∴NAB DNC ∠=∠.由DE BC ∥,AB AC =可得AMD ABC ACB AFD ∠=∠=∠=∠,∴AMN NFC ∠=∠,AM AF =.∴AMN NFC △∽△,MB CF =. ∴NM NM AM CF MB NF ==,即NM NF AM MB ⋅=⋅. ③∵AH BC ⊥,DE BC ∥,∴AD MF ⊥,∵AM AF =,∴MD DF =,∴222222ND DM ND DM DM -=-- 2()()ND DM ND DM DM =-+-2NM NF DM =⋅-22AM MB DM =⋅.∵AM x =,∴10BM x =-,由3sin 5DM MAD AM ∠==,得35DM x =, ∴22223342(10)10525ND DM x x x x x ⎛⎫-=--=-+ ⎪⎝⎭.(010)x << 该函数图象的示意图如图4易求得点P 坐标为125,017⎛⎫ ⎪⎝⎭∴当1251017x <<时,有2220ND DM -<成立. 【点睛】本题考查几何图形的综合,解题过程中用到了勾股定理、相似、三角函数和平行四边形、圆的性质,解题关键是将这些知识点综合起来分析题干.3.B解析:(1)35t ,45t ;(2)当0<t <3时,224655S t t =--+;当3<t <7时,23391052S t t =+-;(3)75;(4)132,7713,477 【解析】【分析】(1)过点B 作x 轴垂线,利用相似三角形可求得; (2)分2种情况,一种是点P 在AD 上,另一种是点P 在CD 上,然后利用三角形面积公式可求得;(3)直接令15h OD =即可求出; (4)存在3种情况,第一种是:QP ∥BD ,第二种是EP ∥CD 或EQ ∥CB ,第三种是QE ∥BD ,分别按照几何性质分析求解.【详解】(1)如下图,过点B 作x 轴垂线,垂足为点M根据平移的特点,可得∠BOM=∠DBA∵∠BMO=∠DAB=90°,∴△BMO ∽△DAB∵AB=4,AD=BC=3∴BD=5∵BM OM BO DA BA BD==,OB=t ∴BM=35t ,OM=45t (2)情况一:当0<t <3时,图形如下,过点P 作OD 的垂线,交OD 于点N∵∠NDP=∠BDA ,∠PND=∠BAD ,∴△PND ∽△BAD∵AP=t ,∴PD=3-t ∵PN BA PD BD =,∴PN=()435t - 图中,OD=5+t ∴()()243124562555OBD t S t t t -=+=--+ 情况二:当3<t <7时,图形如下,过点P 作OD 的垂线,交OD 于点N图中,PD=t -3,OD=5+t同理,△PND ∽△BCD ,可得PN=()335t - ∴()()23313395251052OBD t S t t t -=+=-+-(3)情况一:当0<t <3时则h=PN=()435t -∵15h OD =∴()43555t t-+=解得:t=75情况二:当3<t <7时则h=PN=()335t -∵15h OD =∴()33555t t-+=解得:t=7(舍)(4)情况一:QP ∥BD ,图形如下由题意可得:BQ=43t ,AP=t ,则QA=4-43t ,DP=3-t ∵BD ∥QP∴QA PA QB PD= 代入得:4()2243t t =-解得:t=32∴OD=5+t=132 情况二:如下图,EP ∥CD(或EQ ∥CB)∵点E 是点A 关于QP 对称的点∴EP=PA ,EQ=QA ,QP=QP∴△APQ ≌△EPQ∵EP ∥CD ,CD ⊥AD∴EP ⊥AD∴∠APQ=∠EPQ=45°∴△AQP 是等腰直角三角形,AQ=PA∴4-43t t = 解得:t=127∴OD=5+t=477 情况三:如下图,QE ∥BD ,延长QE 交DA 于点N∵△APQ ≌△EPQ ,∴∠QEP=∠QAP=90°∴△ENP 是等腰直角三角形∵QN ∥BD ,∴∠NQA=∠DBA ,∠A=∠A∴△QNA ∽△BDA∵BQ=43t ,AP=t ,QA=4-43t ,DP=3-t ∴QN QA AN BD BA AD== ∴QN=5-43t ,NA=3-t ∴EN=QN -QE=QN -QA=1-3t ,NP=NA -AP=3-2t ,EP=PA=t ∴在Rt △ENP 中,()2223213t t t ⎛⎫-+-= ⎪⎝⎭ 解得:t=1213或t=3(舍) ∴OD=5+t=7713 【点睛】本题考查动点问题,解题关键是利用相似将图形中各边用t 表示出来.4.F解析:(1)28AD <<;(2)见详解;(3)EF BE DF =+,理由见详解【解析】【分析】(1)根据旋转的性质可证明ADC EDB ≅,6,AC BE AD ED ===,在ABE △中根据三角形三边关系即可得出答案;(2)延长FD 至M ,使DF=DM ,连接BM ,EM ,可得出CF BM =,根据垂直平分线的性质可得出EF EM =,利用三角形三边关系即可得出结论;(3)延长AB 至N ,使BN=DF ,连接CN ,可得NBC D ∠=∠,证明NBC FDC ≅,得出,CN CF NCB FCD =∠=∠,利用角的和差关系可推出50ECN ECF ∠=︒=,再证明NCE FCE ≅,得出EN EF =,即可得出结论.【详解】解:(1)∵,,AD ED CD BD ADC BDE ==∠=∠ ∴ADC EDB ≅∴6,AC BE AD ED ===在ABE △中根据三角形三边关系可得出: AB BE AE AB BE -<<+,即4216AD << ∴28AD <<故答案为:28AD <<;(2)延长FD 至M ,使DF=DM ,连接BM ,EM ,同(1)可得出CF BM =,∵,FD MD FD DE =⊥∴EF EM =在BEM △中,BE BM EM +>∴BE CF EF +>;(3)EF BE DF =+,理由如下:延长AB 至N ,使BN=DF ,连接CN ,∵180,180ABC D ABC NBC ∠+∠=︒∠+∠=︒ ∴NBC D ∠=∠∴NBC FDC ≅∴,CF CN NCB FCD =∠=∠∵100,50BCD FCE ∠=︒∠=︒∴50ECN ECF ∠=︒=∴NCE FCE ≅(SAS )∴EN EF =∴EF EN BE BN BE DF ==+=+∴EF BE DF =+.【点睛】本题考查的知识点有旋转的性质、全等三角形的判定及性质、线段垂直平分线的性质、三角形三边关系、角的和差等,解答此题的关键是作出辅助线,构造出与图①中结构相关的图形.此题结构精巧,考查范围广,综合性强.5.A解析:(1)详见解析;(2)y =(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====,根据勾股定理得到OF ===线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠,即HOD EOA ∠=∠,HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF =x , ∴AF=4-x ,∴FN=2-x ,∴()222222248OF FN ON x x x =+=-+=-+,∴248EF y x x =--+,∵AM⊥AC,∴AE∥OB,∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴()244804x x y x -+≤=<; (3)①当AE=EG 时,△AEG 是等腰三角形,则AE=OE ,∵∠EAO=90°,∴这种情况不存在;②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP⊥EG 于P ,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=,∵AE=AG,∴24148 2x xPE y-+==,()22248xAE yx-=-=,∴()22222224448448xx xxx xx---+=+,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS),∴22EQ AO==∴24242()xAE ExQ-===,∴43x=,∴BF=2或43.【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.6.E解析:(1)3EF EC=,见解析;(2)27BK=;(3)①AGH是等边三角形,见解析;②1(62)4- 【解析】【分析】 (1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到3AE EC =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BK FB BA=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案; ②由三角形的面积公式得到31DH =+,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1)3EF EC =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形,EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠= 在Rt AEC ∆中,tan EC EAC AE ∠=3AE EC ∴=,3EF EC ∴=(2)如图:∵四边形ABCD 是菱形,60,ABC AB a ︒∠==, ACD ∴是等边三角形,//,,60AB CD AD CD a ADC ︒==∠=.AF CD ⊥,垂足为F , 1,902CF DF a BAF AFD ︒∴==∠=∠= 在Rt ADF 中,sin AF ADF AD ∠=, 3AF a ∴=在Rt ABF 中,22BF AB AF =+,72BF a ∴= AK BF ⊥,垂足为K ,90AKB FAB ︒∴∠=∠=ABK FBA ∠=∠~Rt AKB Rt FAB ∴∆∆,AB BK FB BA∴=, 27BK a ∴=, (3)如图:①AGH 是等边三角形.理由:连接AC .,60AB BC ABC ︒=∠=,ABC ∴为等边三角形,,60AB AC ABC ACB ︒∴=∠=∠=,120ABG ︒∴∠=.//AB CD ,60BCH ABC ︒∴∠=∠=,120ACH ︒∴∠=ABG ACH ∴∠=∠,又BG CH =,ABG ACH ∴≅,,AG AH GAB HAC ∴=∠=∠.60BAH HAC BAC ︒∠+∠=∠=,60BAH GAB GAH ︒∴∠+∠=∠=,AGH ∴为等边三角形;②ADC 为等边三角形,2,1AD DC AC CF DF ∴=====,AF ∴=.1(32ADH S =, 11(322DH ∴⨯=,1DH ∴=1CH DH CD ∴=-=,HF DH DF =-=AF HF ∴=,AHF ∴为等腰直角三角形,45AHF ︒∴∠=.过点C 作CM AH ⊥,垂足为M .在Rt CMH 中,sin CM CHM CH∠=, 12CM ∴=, 在Rt AMC 中,sin CM MAC AC ∠=, 1sin 4MAC ∴∠=. 又GAB HAC ∠=∠, 1sin sin 4GAB HAC ∴∠=∠=; 【点睛】本题考查了解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的定理和性质,正确作出辅助线进行解题.7.A解析:(1)()1,1E -;(2)12m -≤≤-或01m ≤≤3)9t ≤≤.【解析】【分析】(1)首先要理解点A 是图形M 的“倍增点”的定义,将三个点逐一代入验证即可; (2)分两种情况:①点"倍增点”在O 的外部,分别求得“倍增点”横坐标的最大值和最小值,②点"倍增点"在O 的内部,依次求得“倍增点"横坐标的最大值和最小值,即可确定“倍增点”横坐标的范围;(3)分别求得线段GH 两端点为T "倍增点”时横坐标的最大值和最小值即可.【详解】(1)()1,2D -到线段BC 的距离为2,32DC ==⨯∴()1,2D -不是线段BC 的倍增点;()1,1E -到线段BC 的距离为1,3EC ==>,∴在线段BC 上必存在一点P 使EP=3,∴()1,1E -是线段BC 的倍增点;()0,2F 到线段BC 的距离为2,32FC ==<⨯∴()0,2F 不是线段BC 的倍增点;综上,()1,1E -是线段BC 的倍增点;(2)设直线l 上“倍增点”的横坐标为m ,当点在O 外时,222(2)8,m m +-+≤解方程222(2)8m m +-+=,得11m =21m =当点在O 内部时,43(4+≥解得:m≥0或m≤-2∴直线l 上“倍增点”的橫坐标的取值范围为12m ≤≤-或01m ≤≤(3)如图所示,当点G(1,0)为T "倍增点"时,T(9,0),此时T 的横坐标为最大值,当点H(0,1)为T “倍增点”时,则T(63,此时T 的横坐标为最小值;∴圆心T(t, 0)的横坐标的取值范围为:639t -≤≤.【点睛】在正确理解点A 是图形M 的“倍增点”定义的基础上,利用(1)判断是否是倍增点的不等关系式,即可列不等式组求解范围.8.C解析:(1)26y x x =--;(2)Q 的坐标为()2,0或()4,0;(3)CI 的最小值为42【解析】【分析】(1)待定系数法求解析式;(2)根据//CP BQ 即点C 坐标,可以求出P 点坐标,算出CP 长,即可写出Q 点坐标; (3)利用AIM AIO ≌△△可判断出I 的运动轨迹是圆弧,设I 运动轨迹所在的圆心为G 计算出圆心G 的坐标及半径为,当G 、I 、C 三点共线时候CI 最短.【详解】(1)由题意得:A 点坐标为()2,0-,C 点坐标为()0,6-带入2y x bx c =++中得:4206b c c -+=⎧⎨=-⎩, 解得:16b c =-⎧⎨=-⎩∴抛物线的解析式为26y x x =--.(2)∵点Q 在x 轴上,又点B 、C 、P 、Q 为顶点的四边形是平行四边形∴//CP BQ ,由对称性可知,P 点的坐标为()1,6-∴1PC =,∴1BQ =.∴Q 的坐标为()2,0或()4,0.(3)连接AI ,MI ,OI∵I 为AMN 的内心∴AI 、MI 分别平分MAN ∠,AMN ∠∴MAI OAI ∠=∠又∵MN AN ⊥,∴90ANM ∠=︒∴135AIM ︒∠=.又∵MA OA =,AI AI =∴AIM AIO ≌△△∴135AIO AIM ∠=∠=︒∴I 的运动轨迹是圆弧.设I 运动轨迹所在的圆心为G∵135AIO ∠=︒,∴90AGO ∠=︒又∵AG OG =,2AO =∴圆心G 的坐标为()1,1-2当G 、I 、C 三点共线时候CI 最短∵()()2210165052CG =--++== 2GI =∴CI 的最小值为52242=综上所述:CI 的最小值为42【点睛】此题为二次函数的综合应用,第一问利用待定系数法求解属基本题型;第二问判断出//CP BQ 是解题关键;第三问判断出I 的运动轨迹是解题关键.9.C解析:(1)2233(06)53103343(68)333031503(810)2t t S t t t t t t ⎧+⎪⎪⎪⎪=-+-<⎨⎪⎪-+<⎪⎪⎩,S 的最大值为63;(2)存在,m 的值为165或32163-或163或1423-. 【解析】【分析】(1)分06t 、68t 和810t 三种情况分别表示出有关线段求得两个变量之间的函数关系即可.(2)分两种情形:①如图31-中,由题意点P 在AB 上运动的时间与点R 在BC 上运动的时间相等,即8m =.当RP BR =时,当PB BR =时,当PR PB =时,分别构建方程求解即可.②如图32-中,作RH BC ⊥于H .首先证明90BPR ∠=︒,根据BP PR =构建方程即可解决问题.【详解】解:(1)如图21-中,当06t 时,点P 与点Q 都在AB 上运动,PM AC ⊥,//NQ PM ,90ANQ AMP ∴∠=∠=︒,AQ t =,2AP t =+,60A ∠=︒,1122AN AQ t ∴==,33QN ==,112AM t =+,33PM . ∴此时两平行线截平行四边形ABCD 的面积为33S +. 如图22-中,当68t 时,点P 在BD 上运动,点Q 仍在AB 上运动.则AQ t =,12AN t =,142CN t =-,3QN t =,6BP t =-,10DP t =-,3(10)PM t =-,而43BC =,故此时两平行线截平行四边形ABCD 的面积为: BCNQ BCMP S S S =+四边形四边形()()3111434433106222t t t t ⎛⎫⎛⎫⎡⎤=+⋅-++-⋅- ⎪ ⎪⎣⎦ ⎪⎝⎭⎝ 253103343t t =-+-, 如图23-中,当810t 时,点P 和点Q 都在BD 上运动.则202DQ t =-,(202)3QN t =-,10DP t =-,(10)3PM t =-.∴此时两平行线截平行四边形ABCD 的面积为2333031503S t =-+故S 关于t 的函数关系式为2233(06)53103343(68)3331503(810)t S t t t t ⎪⎪⎪=+-<⎨-+<⎪⎩, 当06t 时,S 随t 增大而增大, 当68t <时,S 随t 增大而增大, 当810t <时,S 随t 增大而减小, ∴当t=8时,S 最大,代入可得S=63(2)如图31-中,由题意点P 在AB 上运动的时间与点R 在BC 上运动的时间相等,8m =. 当RP BR =时,3PB BR =,则有383m m -=⋅,解得165m =, 当PB BR =时,则有38m m -=,解得32163m =-, 当PR PB =时,3BR PB =,则有33(8)m m =-,解得163m =. 如图32-中,作RH BC ⊥于H .在Rt △CHR 中,2(8)CR m =-,30RCH ∠=︒, 182RH CR m ∴==-,8BP m =-,RH BP ∴=, HR BP ∥,∴四边形RHBP 是平行四边形,90RHB ∠=︒,∴四边形RHBP 是矩形,90BPR ∴∠=︒,当BP PR =时,则有83(12)m m -=-,解得1423m =- 综上所述,满足条件的m 的值为165或32163-163或1423-. 【点睛】本题属于四边形综合题,考查了平行四边形的性质,多边形的面积,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.10.A解析:(1)(1,4)D ;(2)158(,)33M ,274(,)33M ;(3)N 的坐标为57(,)24. 【解析】 【分析】(1)将点A 坐标代入函数关系式可得a 与b 的方程,再根据顶点D 的横坐标为1可得另一个关于a 和b 的方程,联立方程组求解即可得到a 和b 的值,进而求得抛物线的函数关系式,再将顶点D 的横坐标代入即可求得点D 坐标;(2)①如图,取DB 得三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,通过证相似三角形可得点M 的横纵坐标与点B 、D 的横纵坐标之间的数量关系,进而得解;(3)取线段BC 的中点G ,连接GM ,由中点坐标可得33(,)22G ,根据等腰三角形的三线合一可得GM ⊥BC ,在根据两条直线互相垂直可求得:GM l y x =,与:26BD l y x =-+联立方程组可求得点M 的坐标,再由(2,2),(0,3)M C 利用待定系数法可得1:32CM l y x =-+,最后将132y x =-+与2y x 2x 3=-++联立方程组即可求得点N 的坐标. 【详解】解:(1)将(1,0)A -代入23y ax bx =++可得03a b =-+①∵顶点D 的横坐标为1,∴12ba-=,即2b a =-② 联立①②解得1,2a b =-=∴2y x 2x 3=-++ 当1x =时,4y =(1,4)D ∴(2)由(1)得2y x 2x 3=-++ 当y=0时,x 1=-1,x 2=3, ∴B (3,0),即BO=3,如图,取DB 的三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,则可得△DGM 1∽△DHM 2∽△DEB ,△BQM 2∽△BPM 1∽△BED ,且相似比为1:2:3, ∴12833M D y y == 115()33M D B D x x x x =+-=158(,)33M ∴同理可得:274(,)33M∴点M 的坐标为:158(,)33M ,274(,)33M(3)NCB DBC ∠=∠CM MB ∴=取线段BC 的中点G ,作直线GM ,。

满分突破中考数学压轴题之专题练习(一)—解答压轴题方法与技巧

满分突破中考数学压轴题之专题练习(一)—解答压轴题方法与技巧

满分突破中考压轴题之专题练习(一)1.等腰△ ABC中,CA=CB点D为边AB上一点,沿CD折叠△ CAD得到△ CFD边CF交边(2)连接AF交CD的延长线于点M,连接ME交线段DF于点N,若EF=4EC AB=22,求MN的长.【考点】翻折变换(折叠问题);等腰三角形的性质.菁优网版权所有【解答】(1) 证明:如图1,•/ CA=CB •••/ A=Z ABC,•/ CD=CE CDE=/ CED,'Z A=Z ABC在厶ACE与厶BCD 中,,ZAEC二ZBDC t AC=C&•△ACE^A BCD (AAS)•AE=BD, AD=EB•/ AD=DF, • DF=EBI F二EB在厶DCF与厶ECB中 , “ CF二CBLCD=CE•••△DCF^A ECB ( SSS ,/ DCE=/ ECB / DFE=/ EBC,•/ FDE=Z BCE•••/ DEC=ZFEB•/ DCE=/ EBF,•△DEF^A CEBAB 于点E, CD=CE 连接BF.• FD=FB•△DE3A FEB, •/ FDB=/ FBD,(2) 解:•••沿CD 折叠△ CAD 得到△ CFD,••• CA=CF / CAD=Z CFD,•••/ CAD=Z CBE•••/ DEF=Z CEB又•••/ CED=/ BEF•••/ CFD=/ CBE, • △ DEF ^A CEB • △ CED^A BEF,•/ CD=CE• BE=BF , △ EBF 为等腰三角形,•/ CF=CBBCF 为等腰三角形, 则/ BCF=Z EBF,• / DCE=/ BCF, CEBCD 和/ BCD 的平分线,由角平分线定理,可得 CB _ EB CE+EF CD^ED ? CE =ED ?•/ EF=4EC•「_5・・ =5 ,ED•/ AB=AD+ED+EB=22,• 5ED+ED+5ED=22 ,解得ED=2,• •匸■ W TT•- 4CW=5ED 2 , EC=",由余弦定理,可得 ED 2=C D 2+C E ?- 2CD X CEcos / DCE cos / DCE=;.5如图2,过点M 作AE 的平行线分别交 FD EF 于点G 、H ,• M 为AF 边的中点,•••点G 、H 是FD EF 的中点,•/ EF=4EC• EH=2EC• MD=2CD , MH=3ED , •/ GH=- ED, 2• / DCE=/ EBF郢2•/△MNG s^ END,,讥=,MN= ME,ED EN EN 2 7在厶MCE中,由余弦定理,可得ME2=MC2+EC? - 2MC X EC X cos/ DCEME2=10EC - 3.6EC=6.4E(C ,• ME=4 二MN」2 .如图,Rt A ABC中,M为斜边AB上一点,且MB=MC=AC=8cm,平行于BC的直线l从BC的位置出发以每秒1cm的速度向上平移,运动到经过点MB、MC、AC于点D、E、P,以DE为边向下作等边厶DEF,设厶DEF与厶MBC重叠部分的面积为S( cm2),直线I的运动时间为t (秒).(1) 求边BC的长度;(2) 求S与t的函数关系式;(3) 在整个运动过程中,是否存在这样的时刻t,使得以P、C、F为顶点的三角形为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.(4) 在整个运动过程中,是否存在这样的时刻t,使得以点D为圆心、BD为半径的圆与直线EF相切?若存在,请求出t的值;若不存在,请说明理由.【考点】几何变换综合题.菁优网版权所有【解答】解:(1)设/ B=a,•/ MB=MC,M时停止•直线I分别交线段A•/ MC=MA,•••/ A=Z AMC=a ,•••/ B+Z A=90 ,•- a+2 a =90;•a =30°•Z B=30°;■/ cotB= I -;AC•BC=AC X cotB=8 ;厂;;(2)由题意,若点F恰好落在BC上,• MF=4 ( 4 - t) =4;--1=3.当0v t w3时,如图,• BD=2t;DM=8 - 2t ;•/ l // BC,•時」,•L1 :J-•: :,•DE= : (8 - 2t).•点D到EF的距离为FJ= DE=3 (4 - t),2•/ l // BC,•:V i;l】• ---DE"FJ•/ FN=FJ- JN=3 (4 - t)- t=12 - 4t,• "= 一( 3-t)S=S弟形DHG (HG+DE)X FN=-当3 v t w 4时,重叠部分就是厶DEF,S=S年匚詔=3二t2- 24和48 =.即:S= 3 2 砺t+4 结血(3<t<4)(3) 当 O v t w 3 时,/ FC 禺 90°••• Fd CP,•••△ PCF 不可能为等腰三角形当3 v t w 4时,若△ PCF 为等腰三角形,•只能FC=FP•-=3( 4 - t ), 2• t (7)•••存在这样的时刻t=— 时,使得以P 、C 、F 为顶点的三角形为等腰三角形,7 (4 )若相切,理由:•••/ B=30° ,• BD=2t , DM=8 - 2t ,•/ l // BC,…時」,•li :: ■'•-,• DE=二(8 - 2t ).• 2t=3 (4 - t ),解得t=—. 5•••存在这样的时刻t=l —时,使得以点D 为圆心、BD 为半径的圆与直线 EF 相切.^t Z +8V3t(O<t<3) DE=3 (4 - t )3.在Rt A ABC 中,/ ACB=90°, AC=BC=2点P 为BC 边上的一个动点 (不与B 、C 重合).点 第7页(共25页)• AP=AM=AN ,Z 1 = / 2,7 3=/4,•••/ CAB=/ 2+/ 3=45°,MAN=90(1) 当点P 为线段BC 的中点时,求/ M 的正切值;(2) 当点P 在线段BC 上运动时(不与 B 、C 重合),连接AM 、AN ,求证:① 厶AMN 为等腰直角三角形;② 厶 AEF ^A BAM .【考点】相似形综合题.菁优网版权所有【解答】(1 )解:连接NB ,如图1 ,•••在 Rt A ABC 中,/ ACB=90 , AC=BC•••△ ACB 为等腰直角三角形,•••/ A=Z CBA=45 ,•••点P 关于直线AB 的对称点为N ,关于直线AC 的对称点为M ,• AB 垂直 PN, BN=BP,•••/ NBA=Z PBA=45 ,•••/ PBN=90 ,•••点P 为BC 的中点,BC=2,• MC=CP=PB=NB=1• tan / M= m =X 1厂二(2)证明:①连接AP,如图2,•••点P 关于直线AC AB 的对称点分别为M 、N , P 关于直线AC 、AB 的对称点分别为 M 、N ,连接MN 交AC 于点E,交AB 于点F .•••△AMN为等腰直角三角形;②•••△ AMN为等腰直角三角形,•••/ 5=/ 6=45°,•••/ AEF=/ 5+/ 仁45° + / 1 ,•// EAF=45•/ BAM=/ EAF+/ 仁45° + / 1,•/ AEF=/ BAM,又•••/ B=/ EAF=45•△AEF^A BAM.d4. 已知:在梯形ABCD中,AD// BC, AC=BC=10cos/ ACB=:,点E在对角线AC上,且CE=AD,5BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,A AEF的面积为y.(1 )求证:/ DCA=/ EBC;(2) 如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3) 如果△ DFG是直角三角形,求△ AEF的面积.【考点】相似形综合题.菁优网版权所有【解答】(1)证明:T AD / BC,•/ DAC=/ ECB 在厶DCA和厶ECB中,r AD=CE,ZDAC^ZECB ,M 二BC•△DCA^A ECB( SAS,• / DCA=/ EBC(2)T AD// BC,•••△ AEF^A CEB,• .': T !\ : 即I J…茁—:T.,: ,,解得:AF=』'',X作EH丄AF于H ,如图1所示,• EH=;AE=;(10 -x),5 51 3--y=S^ AEF= x —25(10- x)10(10-x) =3(10P)2•- 0v x w 5訂.:-5 ,• y关于x的函数解析式为: y_ " ' ||:, ' 11y=(0v x< 5 , I - 5); (3)分两种情况考虑:①当/ FDG_90时,如图2所示:A在Rt A ADC 中,AD_AC X—_8 ,即x_8 ,5• S L :…AAEF_y_ —②当/ DGF_90时,过E作EM丄BC于点M,如图3所示,由(1)得:CE_AF_x3 4在Rt A EMC 中,EM_ x , MC_ x ,5 5•BM_BC- MC_10-二x,5•••/ GCE_/ GBC, / EGC_/ CGB,•△CGE^A BGC,.CE_CG 即工_CG•g_ j ' : _ ,•••点G在线段CD上,• AF> AD ,即 _ > x,(1) (2)(3) 求厶BCQ 的面积S 与t 的函数关系式.t 为何值时,QP// AC ?t 为何值时,直线 QR 经过点P ?当点P 在AB 上运动时,以PQ 为边在AB 上方所作的正方形 PQMN 在 Rt A ABC 内部,求此时t 的取值范围.【考点】相似形综合题.菁优网版权所有【解答】解:(1 )过C 作CD 丄AB 于D 点,如图所示:•/ AB=10, AQ=2+2t ,• QB=AB- AQ=10-( 2+2t ) =8 - 2t ,在 Rt A ABC 中,AB=10, AC=8,根据勾股定理得:BC=6,•••/ EBM=Z CBG, / BME=Z BGC=90 ,•••△ BMEs^ BGC,-■<?1!=匸''丽硕io4/53• 1 =,即 x=5, 10碍 5此时 y= ;「’=15,综上,此时△ AEF 的面积为「或15.5. 在 Rt A ABC 中,/ C=90° AB=10, AC=8,点 Q 在 AB 上,且 AQ=2,过 Q 做 QR 丄 AB,垂 足为Q , QR 交折线AC- CB 于R (如图1),当点Q 以每秒2个单位向终点B 移动时,点P 同时从A 出发,以每秒6个单位的速度沿 AB - BC- CA 移动,设移动时间为t 秒(如图2).•••丄AC?BC= AB?CD,即卩-X 6X X 10X CD,2 2 2 2••• CD二,5则S^BCQ F QB?CD= (8- 2t) =- 〔t+ ( 0 < t w 4);2 5 5 5(2)当PQ// AC 时,可得/ BPQ=Z C,Z BQP=Z A,• △ BPQ^A BCA, 又BQ=8- 2t, BP=6t- 10,•讥=[F 即-'■ J" -一…, i _ -,整理得:6 (8 - 2t) =10 (6t - 10),解得:t=',18则t= 1时,QP/ AC;18(3)①当Q、P 均在AB 上时,AP=6t , AQ=2+2t ,可得:AP=AQ,即6t=2+2t,解得:t=0.5s ;②当P在BC上时,P与R重合,如图所示:•••/ PQB=Z ACB=90 , / B=Z B ,•△BP2A BAC,•—,又BP=6t- 10 , AB=10 , BQ=8- 2t ,BC=6 AB BC'1= :,即6 (6t - 10) =10 (8 - 2t),10 6解得:t=2.5s;③当P在AC上不存在QR经过点P ,综上,当t=0.5s或2.5s时直线QR经过点P;(4) 当点P在点Q的左侧时,若点N落在AC上,如图所示:•/ AP=6t , AQ=2+2t ,•PQ=AQ- AP=2+2t - 6t=2 - 4t ,•••四边形PQMN是正方形,•PN=PQ=2- 4t,•••/ APN=Z ACB=90 , / A=Z A ,第10页(共25页)。

【初中数学】中考数学压轴题解题技巧+题型汇总

【初中数学】中考数学压轴题解题技巧+题型汇总

【初中数学】中考数学压轴题解题技巧+题型汇总2022中考数学压轴题题型思路数学压轴题9种题型1.线段、角的计算与证明问题中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

2.图形位置关系中考数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。

在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

3.动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

4.一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。

几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。

但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合5.多种函数交叉综合问题中考数学所涉及的函数就一次函数,反比例函数以及二次函数。

作为福建中考,近年,反比例函数连续四年作为填空压轴出现,一次函数与二次函数作为解答题压轴题出现,特别是第三问区分度大,难度大,在中考中面对这类问题,有步骤有分,对优生而言尽量多得分。

2023年九年级中考数学 压轴题集训

2023年九年级中考数学 压轴题集训

压轴题集训一、阅读长题【例】探究一,模型再现:m条直线最多可以把平面分割成多少个部分?如图①,很明显,平面中画出1条直线时,会得到1+1=2(个)部分;所以1条直线最多可以把平面分割成2个部分;如图②,平面中画出第2条直线时,新增的一条直线与已知的1条直线最多有1个交点,这个交点会把新增的这条直线分成2部分,从而多出2个部分,即总共会得到1+1+2=4(个)部分,所以2条直线最多可以把平面分割成4个部分;如图③,平面中画出第3条直线时,新增的一条直线与已知的2条直线最多有2个交点,这2个交点会把新增的这条直线分成3部分,从而多出3个部分,即总共会得到1+1+2+3=7(个)部分,所以3条直线最多可以把平面分割成7个部分;平面中画出第4条直线时,新增的一条直线与已知的3条直线最多有3个交点,这3个交点会把新增的这条直线分成4部分,从而多出4个部分,即总共会得到1+1+2+3+4=11(个)部分,所以4条直线最多可以把平面分割成11个部分;……图①图②图③问题一:5条直线最多可以把平面分割成个部分.问题二:m条直线最多可以把平面分割成个部分(用含m的代数式表示).探究二,类比迁移:n个圆最多可以把平面分割成多少个部分?如图④,很明显,平面中画出1个圆时,会得到1+1=2(个)部分,所以1个圆最多可以把平面分割成2个部分;如图⑤,平面中画出第2个圆时,新增的一个圆与已知的1个圆最多有2个交点,这2个交点会把新增的这个圆分成2部分,从而多出2个部分,即总共会得到1+1+2=4(个)部分,所以2个圆最多可以把平面分割成4个部分;如图⑥,平面中画出第3个圆时,新增的一个圆与已知的2个圆最多有4个交点,这4个交点会把新增的这个圆分成4部分,从而多出4个部分,即总共会得到1+1+2+4=8(个)部分;图④图⑤图⑥平面中画出第4个圆时,新增的一个圆与已知的3个圆最多有6个交点,这6个交点会把新增的这个圆分成6部分,从而多出6个部分,即总共会得到1+1+2+4+6=14(个)部分;……问题三:5个圆最多可以把平面分割成个部分.问题四:n个圆最多可以把平面分割成个部分(用含n的代数式表示).问题五:如果n个圆最多可以把平面分割成508个部分,求n的值(要求写出解答过程).探究三,拓展延伸:问题六:5条直线和1个圆最多可以把平面分割成个部分.问题七:m 条直线和n 个圆最多可以把平面分割成 个部分(用含m,n 的代数式表示). 解析:本题探究平面分割问题,直线与圆分割平面的探究方式是相同的,其本质都是先研究新增交点的个数,进而得到新增的平面部分的个数,再利用规律[1+2+3+…+m=m (m+1)2]解决具体问题.对应训练1.【问题】 用n 边形的对角线把n 边形分割成(n -2)个三角形,共有多少种不同的分割方案(n ≥4)?【探究】 为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n 边形的分割方案有f(n)种.探究一:用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?如图①、图②,显然只有2种不同的分割方案,所以f(4)=2.图① 图②探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案? 不妨把分割方案分成3类:图③ 图④ 图⑤第1类:如图③,用点E 与B 连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有f(4)种不同的分割方案,所以此类共有f(4)种不同的分割方案.第2类:如图④,用点A ,E 与C 连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为12f(4)种分割方案. 第3类:如图⑤,用点A 与D 连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有f(4)种不同的分割方案,所以此类共有f(4)种不同的分割方案.综上,f(5)=f(4)+12f(4)+f(4)=52×f(4)=104×f(4)=5(种). 探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案? 不妨把分割方案分成四类:图⑥ 图⑦ 图⑧ 图⑨第1类:如图⑥,用点F 与B 连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有f(5)种不同的分割方案,所以此类共有f(5)种不同的分割方案.第2类:如图⑦,用点A ,F 与C 连接,先把六边形分割转化成2个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有f(4)种不同的分割方案,所以此类共有f(4)种分割方案.第3类:如图⑧,用点A ,F 与D 连接,先把六边形分割转化成2个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有f(4)种不同的分割方案,所以此类共有f(4)种分割方案.第4类:如图⑨,用点A 与E 连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有f(5)种不同的分割方案,所以此类共有f(5)种分割方案.综上,f(6)=f(5)+f(4)+f(4)+f(5)=f(5)+25f(5)+25f(5)+f(5)=145f(5)=14(种).探究四:用七边形的对角线把七边形分割成5个三角形,则f(7)与f(6)的关系为: f(7)=( )6f(6),共有 种不同的分割方案.……【结论】 用n 边形的对角线把n 边形分割成(n -2)个三角形,共有多少种不同的分割方案(n ≥4)?[直接写出f(n)与f(n -1)之间的关系式,不写解答过程].【应用】 用九边形的对角线把九边形分割成7个三角形,共有多少种不同的分割方案?(应用上述结论中的关系式求解.)2.实际问题:现有n 支队伍,每支队伍都有足够多的水平完全相同的队员,要从这n 支队伍中抽调部分队员安排到一张有4个位置的方桌进行竞技比赛,4个位置可以出现来自于同一队伍的队员,为了防止他们作弊,需要避免同队的队员坐在相邻的座位上.那么,一共有多少种不同的安排方法?问题探究:探究一:如果有两支队伍参赛,要求相邻的座位不能安排同一队的队员,那么共有多少种不同的安排方法?不妨设两支队伍分别为A ,B.从①号位开始,我们有2种选择,即A 队员或B 队员,②③号位置都只有1种选择(另一支队伍的队员),④号位也只有1种选择.这样就得到了2×1×1×1=2(种),一共有两种不同的安排方法.探究二:如果有3支队伍参赛,要求相邻的座位不能安排同一队的队员,那么共有多少种不同的安排方法?不妨设3支队伍分别为A,B,C.让我们运用上面的方法试试.①号位置有3种队员可以选择,即A队员、B队员或C队员,②③两个位置选择队员时,我们需要考虑两种不同的情形:第1种:若②③号位队员来自同一队伍,则②号位有2种选择,③号位只有1种选择,④号位有2种选择,此时会有3×2×1×2=12(种)安排方法;第2种:若②③号位队员来自不同的队伍,则②号位有2种选择,③号位只有1种选择,④号位也只有1种选择,此时会有3×2×1×1=6(种)安排方法.把上述两种情况的结果加起来得到12+6=18(种),即一共有18种不同的安排方法.探究三:如果有4支队伍参赛,要求相邻的座位不能安排同一队的队员,那么共有多少种不同的安排方法?(请按照前面的探究方法,描述如果有4支参赛队伍时,会有多少种结果的推算过程.)归纳探究:如果有n支队伍参赛,要求相邻的座位不能安排同一队的队员,那么共有多少种不同的安排方法?无论有多少支参赛队伍,我们都要考虑两种情况:②③号位队员来自同一个队伍;②③号位队员来自不同的队伍.如果有n支参赛队伍,①号位有种队员可以选择,②号位有种队员可以选择.若②③号位队员来自同一队伍,则③号位只有1种选择,④号位有种选择,这样我们就有种安排方法(结果不需化简).若②③号位队员来自不同队伍,则③号位有种选择,④号位有种选择,这样我们就有种安排方法(结果不需化简).结论:如果有n支队伍参赛,要求相邻的座位不能安排同一队的队员,那么共有种不同的安排方法(结果不需化简).二、动态几何题【例】如图,在矩形ABCD中,AB=24 cm,BC=16 cm,点E为边CD的中点,连接BE,作EF⊥BE交AD于点F.点P从点B出发,沿BE方向匀速运动,速度为2 cm/s;同时,点Q从点A出发,沿AB方向匀速运动,速度为3 cm/s.当一个点停止运动时,另一个点也停止运动.设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,点P在线段BQ的垂直平分线上?(2)连接PQ,设五边形AFEPQ的面积为S(cm2),求S与t的函数关系式.(3)在运动过程中,是否存在某一时刻t,使S五边形AFEPQ∶S矩形ABCD=33∶64?若存在,求出t 的值;若不存在,请说明理由.(4)在运动过程中,是否存在某一时刻t,使点Q在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.1.如图,在四边形ABCD中,AB∥CD,∠D=90°,AC⊥BC,DC=8 cm,AD=6 cm.点F从点A出发,以2 cm/s的速度沿AB向点B匀速运动;同时,点E从点B出发,以1 cm/s的速度沿BC向点C匀速运动.当其中一点到达终点时,两点都停止运动,设运动时间为t(s).(1)求AB的长度.(2)设四边形ACEF的面积为y(cm2),求y与t的函数关系式.倍?若存在,求出此时(3)是否存在某一时刻t,使得四边形ACEF的面积是△ACD的面积的54t的值;若不存在,请说明理由.(4)求t为何值时,△BEF为直角三角形.2.如图,在矩形ABCD中,AB=8 cm,BC=6 cm,连接AC,点O为AC的中点,点E为边BC 上的一个动点,连接OE,作OF⊥OE,交边AB于点F.已知点E从点B开始,以1 cm/s的速度在线段BC上移动,设运动时间为t(s)(0<t<6).解答下列问题:(1)当t为何值时,OE∥AB ?(2)连接EF,设△OEF的面积为y(cm2),求y与t的函数关系式.(3)在运动过程中,是否存在某一时刻t,使S△OEF∶S矩形ABCD=51∶384?若存在,求出t的值;若不存在,请说明理由.(4)连接OB,在运动过程中,是否存在某一时刻t,使OB恰好将△OEF分成面积比为1∶2的两部分?若存在,直接写出t的值;若不存在,请说明理由.备用图①备用图②。

初三数学压轴题解题方法大全

初三数学压轴题解题方法大全

初三数学压轴题在数学学习中占据着非常重要的地位,下面我将为您提供一些解题方法和技巧,以帮助您更好地解决这些难题。

1. 熟悉基本概念和公式:在解题之前,首先要熟练掌握相关的基本概念和公式。

这包括对代数、几何、三角函数等基本概念的深入理解,以及掌握各种常用的数学公式。

2. 仔细审题:审题是解题的关键步骤。

在审题时,需要明确问题的要求和条件,并尝试从问题入手,找出解题的突破口。

同时,要注意题目中的隐含条件,这些条件往往会成为解题的关键。

3. 善于运用转化思想:转化思想是数学解题中非常重要的思想。

通过转化,可以将复杂的问题转化为简单的问题,将未知的问题转化为已知的问题。

因此,在解题时,要善于运用转化思想,寻找问题的突破口。

4. 学会归纳和总结:归纳和总结是解题的重要环节。

在解题过程中,需要不断总结归纳题目中的信息和条件,找出规律和解题方法。

同时,在解题后要及时总结和反思,加深对题目的理解和掌握。

5. 实践练习:要想真正掌握压轴题的解题方法,必须通过大量的实践练习。

只有通过不断地练习,才能逐渐掌握各种解题技巧和方法,提高解题能力。

在练习时,可以采用模拟试题、历年考题等素材进行练习。

总之,初三数学压轴题的解题方法需要不断地积累和实践。

只有在熟练掌握基本概念和公式的基础上,通过仔细审题、转化思想、归纳总结和实践练习等步骤,才能逐步提高解题能力,攻克压轴题的难关。

101 中考数学压轴解题技巧机密-【初中数学】120个题型大招!冲刺满分秘籍!

101 中考数学压轴解题技巧机密-【初中数学】120个题型大招!冲刺满分秘籍!

《探索二次函数综合型压轴题解题技巧》与圆相关的压轴题(附答案)方法提炼:1、运用转化的思想。

转化的数学思想是解决数学问题的核心思想,由于函数与几何结合的问题都具有较强的综合性,因此在解决这类问题时,要善于把“新知识”转化为“旧知识”,把“未知”化为“已知”,把“抽象”的问题转化为“具体”的问题,把“复杂”的问题转化为“简单”的问题。

2、综合使用分析法和综合法。

就是从条件与结论出发进行联想、推理,“由已知得可知”,“从要求到需求”,通过对问题的“两边夹击”,使它们在中间的某个环节上产生联系,从而使问题得以解决。

典例引领:19.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴正半轴交于点C,对称轴为直线x=1,且OB=OC,(1)求抛物线的表达式;(2)D是直线BC上方抛物线上一点,DE⊥BC于E,若CE=3DE,求点D的坐标;(3)将抛物线向左平移,使顶点P落在y轴上,直线l与抛物线相交于M、N两点(点M,N都不与点P重合),若以MN为直径的圆恰好经过O,P两点,求直线l的表达式.分析:(1)x=﹣,则b=2,设点C(0,c),则点B(c,0),将点B的坐标代入二次函数表达式,即可求解;(2)3DE=3×DH,CE=CH﹣EH=m﹣DH,即可求解;(3)在点O处,,在点P处,,即可求解.解:(1)x=﹣,则b=2,设点C(0,c),则点B(c,0),将点B的坐标代入二次函数表达式并解得:c=3,故函数的表达式为:y=﹣x2+2x+3,函数的顶点为(1,4);(2)过点D作y轴的平行线交直线BC与点H,过点C作x轴的平行线交DH于点R,将点C、B的坐标代入一次函数表达式得:直线BC的表达式为:y=﹣x+3,设点D(m,﹣m2+2m+3),则点H(m,3﹣m),∵OB=OB=3,∴∠OCB=∠OBC=45°,∴CR=CH=m,DH=﹣m2+2m+3﹣3+m=﹣m2+3m,3DE=3×DH,CE=CH﹣EH=m﹣DH,∵CE=3DE,即RH=2DH,则m=2(﹣m2+3m),解得:m=,则点D(,);(3)平移前函数的顶点为(1,4),则平移后函数的表达式为:y=﹣x2+4,如图所示,以MN为直径的圆恰好经过O,P两点,则∠MON=∠MPN=90°,在点O处,过点M、N分别作x轴的垂线交于点G、H,∵∠GOM+∠NOH=90°,∠NOH+∠ONH=90°,∴∠MOG=∠ONH=α,设点M、N的坐标分别为(m,4﹣m2)、(n,4﹣n2),(m<n,m<0),则tan∠MOG=tan∠ONH=α,即:…①,在点P处,同理可得:…②,联立①②并整理得:m2+n2=4,mn=﹣1,解得:m=±,n=,将点M、N的坐标代入一次函数表达式:y=kx+b并解得:k=,b=3,故直线l的表达式:y=x+3.点评:本题为二次函数综合运用题,涉及到一次函数、解直角三角形、圆的基本知识,其中(3),数据计算量大,有一定的难度.跟踪训练:1.如图,抛物线y=ax2﹣2ax+m的图象经过点P(4,5),与x轴交于A、B两点(点A在=10.点B的左边),与y轴交于点C,且S△P AB(1)求抛物线的解析式;(2)在抛物线上是否存在点Q使得△PAQ和△PBQ的面积相等?若存在,求出Q点的坐标,若不存在,请说明理由;(3)过A、P、C三点的圆与抛物线交于另一点D,求出D点坐标及四边形PACD的周长.2.已知如图,二次函数y=ax2+bx+2的图象经过A(3,3),与x轴正半轴交于B点,与y 轴交于C点,△ABC的外接圆恰好经过原点O.(1)求B点的坐标及二次函数的解析式;(2)抛物线上一点Q(m,m+3),(m为整数),点M为△ABC的外接圆上一动点,求线段QM长度的范围;(3)将△AOC绕平面内一点P旋转180°至△A'O'C'(点O'与O为对应点),使得该三角形的对应点中的两个点落在y=ax2+bx+2的图象上,求出旋转中心P的坐标.3.如图,已知动圆A恒过定点B(0,﹣1),圆心A在抛物线y=﹣x2上运动,MN为⊙A 在x轴上截得的弦(点M在点N左侧).(1)当点A坐标为(,a)时,求a的值,并计算此时⊙A的半径与弦MN的长;(2)当⊙A的圆心A运动时,判断弦MN的长度是否发生变化?若改变,请举例说明;若不变,请说明理由;(3)连接BM,BN,当△OBM与△OBN相似时,计算点M的坐标.4.定义:如果一条直线与一条曲线有且只有一个交点,且曲线位于直线的同旁,称之为直线与曲线相切,这条直线叫做曲线的切线,直线与曲线的唯一交点叫做切点.(1)如图,在平面直角坐标系中,点O为坐标原点,以点A(0,﹣3)为圆心,5为半径作圆A,交x轴的负半轴于点B,求过点B的圆A的切线的解析式;(2)若抛物线y=ax2(a≠0)与直线y=kx+b(k≠0)相切于点(2,2),求直线的解析式;(3)若函数y=x2+(n﹣k﹣1)x+m+k﹣2的图象与直线y=﹣x相切,且当﹣1≤n≤2时,m的最小值为k,求k的值.5.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位置时,PC+PA的值最小,请求出这个最小值,并说明理由.6.如图,在平面直角坐标系中,A(﹣9m,0),B(m,0),(m>0)以AB为直径的⊙M 交y正半轴于点C,CD是⊙M的切线,交x正半轴于点D,过A作AE⊥CD于E,交⊙M于F.(1)求C的坐标:(用m的式子表示)(2)①请证明:EF=OB;②用含m的式子表示△AFC的周长;③若CD=,S△AFC,S△BDC分别表示△AFC,△BDC的面积,记k=,对于经过原点的二次函数y=ax2﹣x+c,当≤x≤k时,函数y的最大值为a,求此二次函数的解析式.7.如图,抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,直线y=﹣x与该抛物线交于E,F两点.(1)求抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.(3)以点C为圆心,1为半径作圆,⊙C上是否存在点M,使得△BCM是以CM为直角边的直角三角形?若存在,直接写出M点坐标;若不存在,说明理由.8.已知:直线y=﹣x﹣4分别交x、y轴于A、C两点,点B为线段AC的中点,抛物线y =ax2+bx经过A、B两点,(1)求该抛物线的函数关系式;(2)以点B关于x轴的对称点D为圆心,以OD为半径作⊙D,连结AD、CD,问在抛=2S△ACD?若存在,请求出所有满足条件的点P的坐标;物线上是否存在点P,使S△ACP若不存在,请说明理由;(3)在(2)的条件下,若E为⊙D上一动点(不与A、O重合),连结AE、OE,问在x轴上是否存在点Q,使∠ACQ:∠AEO=2:3?若存在,请求出所有满足条件的点Q 的坐标;若不存在,请说明理由.9.如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,﹣3),tan∠DBA=(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第二象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.10.如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,点P在以C(﹣2,0)为圆心,1为半径的圆上,Q是AP的中点(1)若AO=,求k的值;(2)若OQ长的最大值为,求k的值;(3)若过点C的二次函数y=ax2+bx+c同时满足以下两个条件:①a+b+c=0;②当a ≤x≤a+1时,函数y的最大值为4a,求二次项系数a的值.11.如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.12.如图,抛物线y=ax2+bx的对称轴为y轴,且经过点(,),P为抛物线上一点,A(0,).(1)求抛物线解析式;(2)Q为直线AP上一点,且满足AQ=2AP.当P运动时,Q在某个函数图象上运动,试写出Q点所在函数的解析式;(3)如图2,PA为半径作⊙P与x轴分别交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求点P的横坐标.13.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数y=﹣x2+bx+c的图象经过A、E两点,且点E的坐标为(﹣,0),以OC为直径作半圆,圆心为D.(1)求二次函数的解析式;(2)求证:直线BE是⊙D的切线;(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN 的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.参考答案1.解:(1)y=ax2﹣2ax+m,函数的对称轴为:x=1,S△P AB=10=×AB×y P=AB×5,解得:AB=4,故点A、B的坐标分别为:(﹣1,0)、(3,0),抛物线的表达式为:y=a(x+1)(x﹣3),将点P的坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)①当A、B在点Q(Q′)的同侧时,如图1,△PAQ′和△PBQ′的面积相等,则点P、Q′关于对称轴对称,故点Q′(﹣2,5);②当A、B在点Q的两侧时,如图1,设PQ交x轴于点E,分别过点A、B作PQ的垂线交于点M、N,△PAQ和△PBQ的面积相等,则AM=BN,而∠BEN=∠AEM,∠AME=∠BNE=90°,∴△AME≌△BNE(AAS),∴AE=BE,即点E是AB的中点,则点E(1,0),将点P、E的坐标代入一次函数表达式并解得:直线PQ的表达式为:y=x﹣…②,联立①②并解得:x=﹣或4(舍去4),故点Q(﹣,﹣),综上,点Q的坐标为:(﹣2,5)或(﹣,﹣);(3)过点P作PO′⊥x轴于点O′,则点O′(4,0),则AO′=PO′=5,而CO′=5,故圆O′是过A、P、C三点的圆,设点D(m,m2﹣2m﹣3),点O′(4,0),则DO′=5,即(m﹣4)2+(m2﹣2m﹣3)2=25,化简得:m(m+1)(m﹣1)(m﹣4)=0,解得:m=0或﹣1或1或4(舍去0,﹣1,4),故:m=1,故点D(1,﹣4);四边形PACD的周长=PA+AC+CD+PD=5+++3=6+4.2.解:(1)过点A分别作x轴、y轴的垂线,垂足分别为H、G,连接AB,∵∠GAC+∠BAH=90°,∠BAH+∠ABH=90°,∴∠ABH=∠GCA,∠AHB=∠AGC=90°,AG=AH=3,∴△AHB≌△AGC(AAS),∴GC=HB=1,故点B(4,0),将点A、B的坐标代入二次函数y=ax2+bx+2并解得:a=﹣,b=,故抛物线的表达式为:;(2)由题得:,m1=1;m2=(舍)所以m=1,故点Q(1,4),设圆的圆心为N,则点N在OC和OB中垂线的交点上,即点N(2,1),则圆的半径为,NQ==,故≤QM≤;(3)抛物线的表达式可整理为:y=﹣(5x+3)(x﹣4),设旋转中心P的坐标为:(m,n),由中点公式得:点O旋转后O′的坐标为(2m,2n),同理点A、C旋转后对应点A′、C′的坐标分别为:(2m﹣3,2n﹣3)、(2m,2n﹣2),①当点O′、A′在抛物线上时,将点O′、A′的坐标代入抛物线表达式得:,解得:;②当点C′、A′在抛物线上时,将点C′、A′的坐标代入抛物线表达式得:,解得:;③当点C′、O′在抛物线上时,同理可得:m无解;综上,点P的坐标为:或.3.解:(1)把点A()代入得,a=﹣,∵B(0,﹣1),∴AB∥x轴,∴⊙A的半径为,如图1,过点A作AE⊥MN于点E,连接AM,则AM=AB=,∴ME===1,由垂径定理,MN=2ME=2×1=2.故此时⊙A的半径为,弦MN的长为2;(2)MN不变.如图2,理由如下:设点A(m,n),则AB2=m2+(n+1)2,在Rt△AME中,ME2=AM2﹣AE2=m2+(n+1)2﹣n2=m2+2n+1,∵点A在抛物线y=﹣x2上,﹣m2=n,将n=﹣代入ME2=m2+2n+1得,ME2=1,ME=1,由垂径定理得,MN=2ME=2×1=2(是定值,不变);(3)由(2)知MN=2,设M(x,0),则N(x+2,0).当△OBM与△OBN相似,有以下情况:①M、N在y轴同侧,∵△OBM与△OBN相似,∴,即OB2=OM•ON,∴x(x+2)=1,整理得,x2+2x﹣1=0,解得:,∴当M、N在y轴右侧时,M(﹣1+,0),当M、N在y轴左侧时,M(﹣1﹣,0),②M、N在y轴两侧时,∵△OBM与△OBN相似,∴,即OB2=OM•ON,﹣x(x+2)=1,整理得,x2+2x+1=0,解得x=﹣1,此时△OBM与△OBN全等,M(﹣1,0),综合以上可得,M点的坐标为(﹣1+,0)或(﹣1﹣,0)或(﹣1,0).4.解:(1)如图1,连接AB,记过点B的⊙A切线交y轴于点E∴AB=5,∠ABE=90°∵A(0,﹣3),∠AOB=90°∴OA=3∴OB==4∴B(﹣4,0)∵∠OAB=∠BAE,∠AOB=∠ABE=90°∴△OAB∽△BAE∴∴AE==∴OE=AE﹣OA=∴E(0,)设直线BE解析式为:y=kx+∴﹣4k+=0,解得:k=∴过点B的⊙A的切线的解析式为y=x+(2)∵抛物线y=ax2经过点(2,2)∴4a=2,解得:a=∴抛物线解析式:y=x2∵直线y=kx+b经过点(2,2)∴2k+b=2,可得:b=2﹣2k∴直线解析式为:y=kx+2﹣2k∵直线与抛物线相切∴关于x的方程x2=kx+2﹣2k有两个相等的实数根方程整理得:x2﹣2kx+4k﹣4=0∴△=(﹣2k)2﹣4(4k﹣4)=0解得:k1=k2=2∴直线解析式为y=2x﹣2(3)∵函数y=x2+(n﹣k﹣1)x+m+k﹣2的图象与直线y=﹣x相切∴关于x的方程x2+(n﹣k﹣1)x+m+k﹣2=﹣x有两个相等的实数根方程整理得:x2+(n﹣k)x+m+k﹣2=0∴△=(n﹣k)2﹣4×(m+k﹣2)=0整理得:m=(n﹣k)2﹣k+2,可看作m关于n的二次函数,对应抛物线开口向上,对称轴为直线x=k∵当﹣1≤n≤2时,m的最小值为k①如图2,当k<﹣1时,在﹣1≤n≤2时m随n的增大而增大∴n=﹣1时,m取得最小值k∴(﹣1﹣k)2﹣k+2=k,方程无解②如图3,当﹣1≤k≤2时,n=k时,m取得最小值k∴﹣k+2=k,解得:k=1③如图4,当k>2时,在﹣1≤n≤2时m随n的增大而减小∴n=2时,m取得最小值k∴(2﹣k)2﹣k+2=k,解得:k1=3+,k2=3﹣(舍去)综上所述,k的值为1或3+.5.解:(1)直线y=﹣5x+5,x=0时,y=5∴C(0,5)y=﹣5x+5=0时,解得:x=1∴A(1,0)∵抛物线y=x2+bx+c经过A,C两点∴解得:∴抛物线解析式为y=x2﹣6x+5当y=x2﹣6x+5=0时,解得:x1=1,x2=5∴B(5,0)(2)如图1,过点M作MH⊥x轴于点H∵A(1,0),B(5,0),C(0,5)∴AB=5﹣1=4,OC=5=AB•OC=×4×5=10∴S△ABC∵点M为x轴下方抛物线上的点∴设M(m,m2﹣6m+5)(1<m<5)∴MH=|m2﹣6m+5|=﹣m2+6m﹣5=AB•MH=×4(﹣m2+6m﹣5)=﹣2m2+12m﹣10=﹣2(m﹣3)2+8∴S△ABM=S△ABC+S△ABM=10+[﹣2(m﹣3)2+8]=﹣2(m﹣3)2+18∴S四边形AMBC∴当m=3,即M(3,﹣4)时,四边形AMBC面积最大,最大面积等于18(可以直接利用点M是抛物线的顶点时,面积最大求解)(3)如图2,在x轴上取点D(4,0),连接PD、CD∴BD=5﹣4=1∵AB=4,BP=2∴∵∠PBD=∠ABP∴△PBD∽△ABP∴==,∴PD=AP∴PC+PA=PC+PD∴当点C、P、D在同一直线上时,PC+PA=PC+PD=CD最小∵CD=∴PC+PA的最小值为6.解:(1)∵A(﹣9m,0),B(m,0),∴OA=9m,OB=m,AB=10m∵AB是直径∴∠ACB=90°∴∠ACO+∠BCO=90°,且∠BCO+∠CBO=90°∴∠ACO=∠CBO,且∠AOC=∠BOC=90°∴△AOC∽△COB∴∴CO2=AO•BO=9m2,∴CO=3m∴点C(0,3m)(2)①连接CM,CF,∵CD是⊙M的切线∴MC⊥CD,且AE⊥CD∴AE∥CM,∴∠EAC=∠ACM,∵AM=CM∴∠MAC=∠MCA∴∠EAC=∠MAC,且CO⊥AO,AE⊥EC∴EC=CO,∵四边形ABCF是圆内接四边形∴∠AFC+∠ABC=180°,且∠AFC+∠EFC=180°,∴∠EFC=∠ABC,且CE=CO,∠BOC=∠E=90°∴△EFC≌△OBC(AAS)∴EF=OB②∵AO=9m,CO=3m,OB=m,∴AC==3m,BC==m,∵∠EAC=∠CAB,AC=AC,∠AEC=∠AOC=90°∴△AEC≌△AOC(AAS)∴AO=AE=9m,∵△EFC≌△OBC∴CF=BC=m,BO=EF=m,∴AF=AE﹣EF=9m﹣m=8m∴△AFC的周长=AC+AF+FC=3m+8m+m=4m+8m ③∵AB=10m∴AM=CM=MB=5m,OM=4m,∵tan∠CMD=∴∴m=1∴AF=8,CE=3=OC,AE=AO=9,EF=BO=1,BM=AM=CM=5∴DM==∴BD=DM﹣MB=﹣5==×3×=,S△AFC=×8×3=12∴S△CBD∴k=∴≤x≤4∵二次函数y=ax2﹣x+c经过原点∴c=0,∴二次函数解析式为y=ax2﹣x,∴二次函数解析式为y=ax2﹣x与x轴的交点为(0,0),(,0),对称轴为x=当a<0时,当x=时,函数y的最大值为a,∴a=a()2﹣∴a=﹣∴二次函数解析式为:y=﹣x2﹣x当a>0时,若≤时,当x=4时,函数y的最大值为a,∴a=16a﹣4∴a=∴二次函数解析式为:y=x2﹣x若时,当x=时,函数y的最大值为a,∴a=a()2﹣∴a=﹣(不合题意舍去)综上所述:二次函数解析式为:y=x2﹣x或y=﹣x2﹣x7.解:(1)∵抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,∴,∴,∴抛物线的解析式为y=x2+x﹣2;(2)如图1,过点P作直线l,使l∥EF,过点O作OP'⊥l,当直线l与抛物线只有一个交点时,PH最大,等于OP',∵直线EF的解析式为y=﹣x,设直线l的解析式为y=﹣x+m①,∵抛物线的解析式为y=x2+x﹣2②,联立①②化简得,x2+x﹣2﹣m=0,∴△=﹣4××(﹣2﹣m)=0,∴m=﹣,∴直线l的解析式为y=﹣x﹣,令y=0,则x=﹣,∴M(﹣,0),∴OM=,在Rt△OP'M中,OP'==,=.∴PH最大(3)①当∠CMB=90°时,如图2,∴BM是⊙O的切线,∵⊙C半径为1,B(1,0),∴BM2∥y轴,∴∠CBM2=∠BCO,M2(1,﹣2),∴BM2=2,∵BM1与BM2是⊙C的切线,∴BM1=BM2=2,∠CBM1=∠CBM2,∴∠CBM1=∠BCO,∴BD=CD,在Rt△BOD中,OD2+OB2=BD2,∴OD2+1=(2﹣OD)2,∴OD=,∴BD=,∴DM1=过点M1作M1Q⊥y轴,∴M1Q∥x轴,∴△BOD∽△M1QD,∴,∴,∴M1Q=,DQ=,∴OQ=+=,∴M1(﹣,﹣),②当∠BCM=90°时,如图3,∴∠OCM3+∠OCB=90°,∵∠OCB+∠OBC=90°,∴∠OCM3=∠OBC,在Rt△BOC中,OB=1,OC=2,∴tan∠OBC==2,∴tan∠OCM3=2,过点M3作M3H⊥y轴于H,在Rt△CHM3中,CM3=1,设CH=m,则M3H=2m,根据勾股定理得,m2+(2m)2=1,∴m=,∴M3H=2m=,OH=OC﹣CH=2﹣,∴M3(﹣,﹣2),而点M4与M3关于点C对称,∴M4(,﹣﹣2),即:满足条件的点M的坐标为(﹣,﹣)或(1,﹣2)或(﹣,﹣2)或(,﹣﹣2).8.解:(1)∵直线y=﹣x﹣4中,y=0时,x=﹣4;x=0时,y=﹣4,∴A(﹣4,0),C(0,﹣4),∵点B为AC中点,∴B(﹣2,﹣2),∵抛物线y=ax2+bx经过A、B两点,∴解得:,∴抛物线的函数关系式为y=x2+2x.=2S△ACD.(2)在抛物线上存在点P使S△ACP如图1,连接AD并延长交y轴于点F,∵y=x2+2x=(x﹣2)2﹣2,∴点B为抛物线的顶点,∵点D为点B关于x轴的对称点,∴D(﹣2,2)在抛物线的对称轴上,∴DA=DO,∠DAO=∠DOA=45°,∵OA=OC=4,∠AOC=90°,∴∠OAC=45°,∴∠DAC=∠DAO+∠OAC=90°,=AC•AD,∴S△ACD∵∠AOF=90°,∴AF为⊙D直径,即点F在⊙D上,∴AF=2AD,OF=OA=4即F(0,4),=2S△ACD=2AC•AD=AC•2AD=AC•AF,∵S△ACP∴点P在过点F且平行于直线y=﹣x﹣4的直线上,∴直线PF解析式为y=﹣x+4,∵,解得:;.∴0点P坐标为(﹣3﹣,7+)或(﹣3+,7﹣).(3)在x轴上存在点Q使∠ACQ:∠AEO=2:3.∵∠OAD=∠ODA=45°,∴∠ADO=90°,∵点E在⊙D上且不与A、O重合,∠ACQ:∠AEO=2:3.①如图2,当点E在优弧AO上时,∠AEO=∠ADO=45°,∴∠ACQ=∠AEO=30°,过点Q作QG垂直直线AC于点G,设QG=t,∴Rt△CQG中,CQ=2QG=2t,CG=QG=t.∴∠GAQ=∠OAC=45°,∴Rt△AGQ中,AG=QG=t,AQ=QG=t.i)若点Q在线段AO上时,如图2:则AC=AG+CG=t+t=4,解得:t=2﹣2,∴AQ=,∴x Q=﹣4+4﹣4=4﹣8;ii)若点Q在线段OA延长上时,如图3:则AC=CG﹣AG=t﹣t=4,解得:,∴AQ=,∴x Q=﹣4﹣(4+4)=﹣4﹣8,②当点E在劣弧AO上时,∠AEO=(360°﹣∠ADO)=135°,∴∠ACQ=∠AEO=90°.∵∠CAO=45°,△ACO是等腰直角三角形,∴Q点与A点对称,A(﹣4,0)∴x Q=4.综上所述:满足条件的点Q有三个,坐标分别为(4﹣8,0);(﹣4﹣8,0)(4,0)9.解:(1)过点D作DE⊥x轴,垂足为E,如图1所示.∵点D的坐标为(2,﹣3),∴OE=2,DE=3.∵tan∠DBA=,∴BE=2DE=6,∴OB=BE﹣OE=4,∴点B的坐标为(﹣4,0).将B(﹣4,0),D(2,﹣3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2﹣x+2.(2)过点M作MF⊥x轴,垂足为F,如图2所示.当y=0时,﹣x2﹣x+2=0,解得:x1=﹣4,x2=1,∴点A的坐标为(1,0);当x=0时,y=﹣x2﹣x+2=2,∴点C的坐标为(0,2).设点M的坐标为(m,﹣m2﹣m+2)(﹣4<m<0),则点F的坐标为(m,0),∴BF=4+m,OF=﹣m,MF=﹣m2﹣m+2,OC=2,OA=1,=S△BMF+S梯形FMCO+S△OCA,∴S四边形BMCA=BF•MF+(MF+OC)•OF+OA•OC,=×(4+m)×(﹣m2﹣m+2)+×(﹣m2﹣m+2+2)×(﹣m)+×1×2,=﹣m2﹣4m+5,=﹣(m+2)2+9.∵﹣1<0,取得最大值,最大值为9.∴当m=﹣2时,S四边形BMCA(3)连接BC,如图3所示.∵==2,∠BCO=∠COA=90°,∴△BOC∽△COA,∴∠OBC=∠OCA.∵∠OBC+∠OCB=90°,∴∠OCA+∠OCB=90°=∠ACB,∴BC⊥AC.∵点B的坐标为(﹣4,0),点C的坐标为(0,2),点A的坐标为(1,0),∴直线BC的解析式为y=x+2,直线AC的解析式为y=﹣2x+2(可利用待定系数法求出).设点Q的坐标为(﹣2,n),则过点Q且垂直AC的直线的解析式为y=x+n+1.联立两直线解析式成方程组,得:,解得:,∴两直线的交点坐标为(,).依题意,得:(﹣2﹣0)2+(n﹣0)2=[﹣(﹣2)]2+(﹣n)2,整理,得:n2+3n﹣4=0,解得:n1=1,n2=﹣4,∴点Q的坐标为(﹣2,1)或(﹣2,﹣4).综上所述:在这条直线上存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆,点Q的坐标为(﹣2,1)或(﹣2,﹣4).10.解:(1)设A(m,n),∵AO=,∴m2+n2=5,∵一次函数y=2x的图象经过A点,∴n=2m,∴m2+(2m)2=5,解得m=±1,∵A在第一象限,∴m=1,∴A(1,2),∵点A在反比例函数y=(k>0)的图象上,∴k=1×2=2;(2)连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=BP,∵OQ长的最大值为,∴BP长的最大值为×2=3,如图2,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=2,∵B在直线y=2x上,设B(t,2t),则CD=t﹣(﹣2)=t+2,BD=﹣2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=(t+2)2+(﹣2t)2,t=0(舍)或﹣,∴B(﹣,﹣),∵点B在反比例函数y=(k>0)的图象上,∴k=﹣×(﹣)=;(3)∵抛物线经过点C(﹣2,0),∴4a﹣2b+c=0,又∵a+b+c=0,∴b=a,c=﹣2a,∴y=ax2+ax﹣2a=a(x+)2﹣a,∵﹣<a≤x≤a+1或a≤x≤a+1<﹣,∴当x=a时,取得最大值4a,则a•a2+a•a﹣2a=4a,解得a=﹣3或2(不合题意舍去),当x=a+1时,取得最大值4a,则a(a+1)2+a(a+1)﹣2a=4a,解得a=1或﹣4,综上所述所求a的值为﹣4或1.11.解:(1)令ax2+6ax=0,ax(x+6)=0,∴A(﹣6,0);(2)①证明:如图,连接PC,连接PB,延长交x轴于点M,∵⊙P过O、A、B三点,B为顶点,∴PM⊥OA,∠PBC+∠BDM=90°,又∵PC=PB,∴∠PCB=∠PBC,∵CE为切线,∴∠PCB+∠ECD=90°,又∵∠BDM=∠CDE,∴∠ECD=∠CDE,∴CE=DE.②解:设OE=m,∵∠CAE=∠CBO,∠CAE=∠OBE,∴∠CBO=∠EBO,由角平分线成比例定理可得:,即:,∴,∴,∴,=,=.12.解:(1)∵抛物线y=ax2+bx的对称轴为y轴,∴b=0.将点(,)代入y=ax2,得:=a2,解得:a=或a=﹣(舍去),∴抛物线解析式为y=x2.(2)设点Q坐标为(x,y),点P(m,m2)若点Q在AP延长线上,如图,∵AQ=2AP∴点P是AQ中点,∴m=,m2=∴y=x2﹣若点Q在PA延长线上,同理可得:y=﹣x2+∴Q点所在函数的解析式为:y=x2﹣或y=﹣x2+(3)过点P作PH⊥x轴,连接AP,PM,PN,设点P(m,m2)∴PM=PN=PA==∴MH=NH===∴MN=3∴点M(m﹣,0),点N(m+,0)当AM=AN时,∴=∴m=0,当AM=MN=3∴=3∴m=(负值已舍去)当AN=MN=3∴=3∴m=(负值已舍去)综上所述:m的值为0或或13.解:(1)由题意,得A(0,2),点B(2,2),E的坐标为(,0)则,解得故二次函数的解析式为:(2)如图1,过点D作DG⊥BE于点G,由题意,得ED==,EC=2+=,BC=2∴BE==∵∠BEC=∠DEG,∠EGD=∠ECB=90°∴△EGD∽△ECB∴=∴DG=1∵圆D的半径为1,且DG⊥BE∴BE是圆D的切线(3)如图2,过点M作MN∥BE交x轴与点N,连结PM,PN,依题意,得,点B(2,2),E的坐标为(,0),故设直线BE为y=kx+h(k≠0)则有,解得∴直线BE为:∵直线BE与抛物线的对称轴交点为P,对称轴为x=1∴点P的纵坐标为y=,即P(1,)∵MN∥BE∴∠MNC=∠BEC∵∠MCN=∠BCE=90°∴△MNC∽△BEC∴=∴=,即CN=t∴DN=t﹣1=•DN•PD=•(t﹣1)•=t﹣∴S△PNDS△MNC=•CN•CM=•t•t=t2S梯形PDCM=•(PD+CM)•CD=•(+t)•1=+t +S梯形PDCM﹣S△MNC=t2+t(0<t<2)∴S=S△PND∵抛物线S=t2+t(0<t<2)的开口方向向下∴S存在最大值,当t=1时,S=最大。

上海中考初三数学压轴题方法整理汇总(18题24题25题压轴题解题方法)

上海中考初三数学压轴题方法整理汇总(18题24题25题压轴题解题方法)

第18题:图形的运动1平移:平移的方向和距离2旋转:三不变找旋转(图形的形状大小旋转角不变)3翻折:两点一线找勾股(对称点,垂直平分线上海中考初三数学压轴题方法整理汇总)第23题几何证明(书写规范)证明边角相等:全等,相似,等腰证明平行线:角,比例线段,中位线,平行四边形证明等积式:三点定形找相似(等线段代换,等比代换,等积代换)(添平行线构造A 形,八形)证明四边形:常用辅助线:联结对角线第24题代数型综合题求坐标的方法1一作二设法②两点公式法③代入解析法④平移法二次函数与相似三角形1先找死角:由边出发,死角的两边对应成比例求边长;2先找死角:由角出发,利用三角比求边长二次函数与直角三角形1一线三等角②勾股定理二次函数与等腰三角形:两点间距离公式二次函数与角相等:1找相似三角形②找三角比二次函数与45度角1先找45度角转化为角相等,然后找相似或三角比2加高,转换为等腰直角三角形二次函数与四边形1由四边形的性质求边或角(等腰梯形加双高,两腰相等,加顶)2由边或角转化为相似或三角比第25题几何型综合题读题圈划五寻找(边,角,辅助线,基本图形,解题工具)解题工具:三角比,相似,勾股,面积法基本图形:一线三等角,母子三角形,角平分线+平行=等腰三角形,A形八形,特殊三角形……常用辅助线:中位线,三线合一,斜中,平行线,四边形对角线,,圆的半径与弦心距……等腰三角形:①相似转化;②分论讨论;③三线合一三角比:转角;加高(面积法);设K面积:①直接求;②相似;③等底等高求定义域:①极端位置;②解析式本身;③三边关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学压轴题解题技巧(完整版)数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。

函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。

求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。

几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。

一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。

求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。

找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。

求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。

而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。

解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

关键是掌握几种常用的数学思想方法。

一是运用函数与方程思想。

以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。

二是运用分类讨论的思想。

对问题的条件或结论的多变性进行考察和探究。

三是运用转化的数学的思想。

由已知向未知,由复杂向简单的转换。

中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。

因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。

解中考压轴题技能技巧:一是对自身数学学习状况做一个完整的全面的认识。

根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。

所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。

二是解数学压轴题做一问是一问。

第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。

过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。

三是解数学压轴题一般可以分为三个步骤。

认真审题,理解题意、探究解题思路、正确解答。

审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。

解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。

认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。

中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。

所以,解数学压轴题,一要树立必胜的信心,要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。

示例:如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形请直接写出相应的t值.解:(1)点A的坐标为(4,8)…………………1分将A(4,8)、C(8,0)两点坐标分别代入y=ax2+bx得 8=16a+4b,b=40=64a+8b 解得a=-12∴抛物线的解析式为:y=-1x2+4x …………………3分2(2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE=PE AP =BC AB ,即PE AP =48∴PE=12AP=12t .PB=8-t . ∴点E的坐标为(4+12t ,8-t ). ∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………5分∴EG=-18t 2+8-(8-t) =-18t 2+t.∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分中考数学《三类押轴题》专题训练第一类:选择题押轴题1. (湖北襄阳3分)如果关于x 的一元二次方程2kx 10-+=有两个不相等的实数根,那么k 的取值范围是【 】 A .k <12 B .k <12且k ≠0 C .﹣12≤k <12 D .﹣12≤k <12且k ≠0【题型】方程类代数计算。

2. (武汉市3分)下列命题: ①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根;OAF CE B③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④. 【题型】方程、等式、不等式类代数变形或计算。

3. (湖北宜昌3分)已知抛物线y=ax 2﹣2x+1与x 轴没有交点,那么该抛物线的顶点所在的象限是【 】A .第四象限B .第三象限C .第二象限D .第一象限 【题型】代数类函数计算。

4. (湖北天门、仙桃、潜江、江汉油田3分)已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a=0;②abc <0;③a ﹣2b+4c <0;④8a+c >0.其中正确的有【 】 A .3个 B .2个 C .1个 D .0个 【题型】函数类代数间接多选题。

5. (山东济南3分)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为( )A .21B 5C .145D .52【题型】几何类动态问题计算。

6. (福建3分)如图,点O 是△ABC 的内心,过点O 作EF ∥AB,与AC、BC分别交于点E、F,则()A . EF>AE+BF B. EF<AE+BF =AE+BF ≤AE+BF【题型】几何类证明。

7. (湖北武汉3分)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为【】A.11+113 B.11-113C.11+113或11-113 D.11-113或1+3【题型】几何类分类问题计算。

8. (湖北恩施3分)如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是【】A.3 B.2 C.3 D.2【题型】几何类面积问题计算。

9. (湖北咸宁3分)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为【】.A.B.C.D.【题型】几何类识图问题判断。

10. (湖北黄冈3分)如图,在Rt △ABC 中,∠C=90°,AC=BC=6cm ,点P 从点A 出发,沿AB 2的速度向终点B 运动;同时,动点Q 从点B 出发沿BC方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P ′.设Q 点运动的时间t 秒,若四边形QPCP ′为菱形,则t 的值为【 】 2C. 22【题型】几何类动态问题计算。

11. (湖北十堰3分)如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①△BO ′A可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4;③∠AOB=150°;④AOBO S =6+33四形边⑤AOC AOB 93S S +=V V 其中正确的结论是【 】 A .①②③⑤ B .①②③④ C .①②③④⑤ D .①②③【题型】几何类间接多选题。

12. (湖北孝感3分)如图,在菱形ABCD 中,∠A =60o ,E 、F 分别是AB 、AD 的中点,DE 、BF 相交于点G ,连接BD 、CG .给出以下结论,其中正确的有【 】①∠BGD =120o ;②BG +DG =CG ;③△BDF ≌△CGB ;④2ADE 3S ∆. A .1个 B .2个 C .3个 D .4个 【题型】几何类间接多选题。

13. (湖南岳阳3分)如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,AD 与CD 相交于D ,BC 与CD 相交于C ,连接OD 、OC ,对于下列结论:①OD 2=DECD ;②AD+BC=CD ;③OD=OC ;④S梯形ABCD=CDOA ;⑤∠DOC=90°,其中正确的是( )【题型】几何类间接多选题。

14. (山东东营3分) 如图,一次函数3+=x y 的图象与x 轴,y 轴交于A ,B 两点,与反比例函数xy 4=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ; ③△DCE ≌△CDF ; ④AC BD =. 其中正确的结论是( )A .①②B . ①②③C .①②③④D . ②③④ 【题型】坐标几何类间接多选题。

相关文档
最新文档