流体力学3-5动量方程

合集下载

流体力学第三章(7)动量方程及其应用及动量矩方程

流体力学第三章(7)动量方程及其应用及动量矩方程

对于方程右侧的动量变化率:只要知道两截面上的平均速度和流量就可以 计算出来。
2、外力和速度的方向问题。与坐标相同时为正,与坐标相反时为负。公 式右边的减号是固定的。
ቤተ መጻሕፍቲ ባይዱ
三 、动量方程式的应用(重点)
1、流体对管道的作用力问题 2、自由射流的冲击力问题
1、流体对管道的作用力问题—动量方程式的应用之
要求密度为
V
vdV

A
v(v

dA)
这就是用欧拉方法表示的动量方程式,这个方程式既适用于控制体固定的情况, 也适用于控制体运动的情况。在运动时需将速度v换成相对速度,并在控制体 上加上虚构的惯性力。
动量方程式中,需注意
1. F 是作用在控制体内质点系上的所有外力的矢量和,既包括控制体外
部流体及固体对控制体内流体的作用力(压力、摩擦力),也包括控制体
(I)部分通过A1面非 原质点系的流入动量
制体的总动量。
(II)部分通过A2 面流出的动量
对于控制体的全部控制面A:
末动量
初动量

F

d( mv)
dt

lim
t 0
1 t
{[
V
v dV ]t t

t A
v(v dA)
[
V
v dV ]t }

t


2vz z 2
]
dvz dt
作用在质点系上的总外力就不必通过分布压强的积分,而是通过求质点系动量变 化率的办法计算出来,开辟了求解流体动力学问题的新途径。
F

d ( mv)
dt
由于各个质点速度不尽相同,似乎要计算质点系的动量变化 率采用拉格朗日法比较适宜,由于运动的复杂性,很困难。

流体力学3-5动量方程.

流体力学3-5动量方程.

dt 2v2 A2 v 2 dt 1v1 A1 v1 dtQ( 2 v 2 1 v1 )
2
动量修正系数β
修正以断面平均速度计算的动量与实际动量的差异而引入

3 u A dA
A
3

2 u A dA
A
2
β值取决于过流断面上的速度分布, 速度分布较均匀的流动β =1.02~1.05, 通常取β=1.0
恒定流动,dt 前后 K 1'2 无变化,则
d K K 22' K11' 2u2dtdA2 u2 1u1dtdA1u1
1
取过流断面为渐变流断面,各点的流速平行, i 令 ——为单位向量
u ui
d K K 22' K11' 2u2dtdA2 u2 1u1dtdA1u1
该质点系上的外力的冲量
质点系动量定理: 质点系动量的增量等于作用于
Fdt dtQ( v v ) F Q( v v )
2 2 1 1
2 2 1 1
3
恒定总流动量方程
F Q( v v ) F Q ( v v F Q ( v v F Q ( v v
1 4
3、由连续性方程
v1
d
Q = v1A1= v2A2
2 1
3.185m/s
4Q v2 5.66m/s 8 2 d2
v v p2 p1 7.043kPa 2g 2 d2 P2 p2 0.124kN 4 4、将各量代入总流动量方程,解得 Rx ' 0.538kN
2 2 1 1 x 2 2x y 2 2y z 2 2z

流体力学第3章(第二版)知识点总结经典例题讲解

流体力学第3章(第二版)知识点总结经典例题讲解

dx u u( t ) dt
流体质点加速度:
dy v v(t ) dt
dz w w( t ) dt
d2x d2y d 2z ax 2 , y 2 , z 2 a a dt dt dt
x(t ) a t y( t ) b t z(t ) 0
y
迹线方程:
流线的性质
(1)流线彼此不能相交(除了源和汇)
交点
v1 v2
s1
(2)流线是一条光滑的曲线, 不可能出现折点(除了激波问题)
(3)定常流动时流线形状不变, 非定常流动时流线形状发生变化
s2
v1 v 折点 2
s
[例1] 由速度分布求质点轨迹
已知: 求: 解: 已知用欧拉法表示的流场速度分布规律为
(2)
由于在欧拉法中速度只和当地坐标以及时间有关,所以必须消 去初始座标,观察(1)式和(2)式可得:
u( x , y , z , t ) y v ( x , y , z , t ) x w( x, y, z, t ) 0
讨论:本例说明虽然给出的是流体质点在不同时刻经历的空间位置,即 运动轨迹,即可由此求出空间各点速度分布式(欧拉法),即各 空间点上速度分量随时间的变化规律。 此例中空间流场分布与时间无关,属于定常流场.
[例3] 由速度分布求加速度
已知: 已知用欧拉法表示的流场速度分布规律为 求各空间位置上流体质点的加速度 解: 对某时刻 t 位于坐标点上(x, y)的质点
dx xt dt dy v yt dt u
u xt v yt
(a )
求解一阶常微分方程(a)可得
x( t ) ae y( t ) be

工程流体力学第三章

工程流体力学第三章

物理量
比起流体质点本身, 比起流体质点本身,工程上我们更关心某一 时刻流体质点上所携带的一些特征参量,比如: 时刻流体质点上所携带的一些特征参量,比如: 速度、压强、温度、电流等。 速度、压强、温度、电流等。 我们把这些流体具有的特征参量统称为物理 我们把这些流体具有的特征参量统称为物理 流体具有的特征参量 流动参数。 也成为流动参数 量,也成为流动参数。 流体的流动是由流体具有的物理量来表征的, 流体的流动是由流体具有的物理量来表征的, 因此,描述流体的运动也就是表达流动参数在不 因此,描述流体的运动也就是表达流动参数在不 同空间位置上随时间的变化规律。 同空间位置上随时间的变化规律。
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
L M’ M
V (M , t ) V ( M ' , t + ∆t )
3.1.3随体导数 随体导数
这里用 D 表示这种导数不同于牛顿定律 Dt 对速度的简单导数
L M’ M
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
速度的变化有两方面的原因:
一方面的原因, 质点由M 点运动至M 点时,
'
时间过去了∆t,由于场的时间非定常性引 起速度的变化
另一方面, 质点由M 点运动至M '点时, 位置 发生了变化,由于场的空间不均匀性引起 速度的变化
3.1.3随体导数 随体导数
按照时间和空间引起速度变化,把极限分为两部分
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t

《流体力学》流体力学基本方程

《流体力学》流体力学基本方程

2.2 描述流体运动的一些基本概念
2.2.1定常流与非定常流
流场中所有的运动 要素不随时间变化
u u(x, y, z)
(x, y, z)
p p(x, y, z)
u 0 t p 0 t
0
t
流场中有运动 要素随时间变化
u u(x, y, z,t)
(x, y, z,t)
p p(x, y, z,t)
p p(x, y, z,t) (x, y, z,t)
x, y, z ,t--欧拉变量,其中x,y,z与时间t有关。
欧拉法是常用的方法。
5
16 October 2021
欧拉法中的加速度 -- 质点速度矢量对时间的变化率。
a
u t
ux
u x
uy
u y
uz
u z
三个分量:
ax
ux t
ux
ux x
拉格朗日法 从流体质点的运动着手,描述每一个流体质点自始至 终的运动过程。如果知道了所有流体质点的运动规律,那么整个流 体的运动规律也就清楚了。是质点--时间描述法。
质点运动的轨迹
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
a, b, c --- t = t0 时刻质点所在的空间位置坐标, 称为拉格朗日变量,用来指定质点。
ln x t ln y t ln c
(x t)(y t) c
将 t = 0,x = -1,y = -1 代入,得瞬时流线 xy = 1, 流线是双曲线。
y x
12
16 October 2021
2. 求迹线
将已知速度分布代入式(2.2.1)可得
dx x t, dy ( y t), dz 0

《流体力学》典型例题

《流体力学》典型例题

《例题力学》典型例题例题1:如图所示,质量为m =5 kg 、底面积为S =40 cm ×60 cm 的矩形平板,以U =1 m/s 的速度沿着与水平面成倾角θ=30的斜面作等速下滑运动。

已知平板与斜面之间的油层厚度δ=1 mm ,假设由平板所带动的油层的运动速度呈线性分布。

求油的动力粘性系数。

解:由牛顿内摩擦定律,平板所受的剪切应力du Udy τμμδ== 又因等速运动,惯性力为零。

根据牛顿第二定律:0m ==∑F a ,即:gsin 0m S θτ-⋅=()324gsin 59.8sin 301100.1021N s m 1406010m U S θδμ--⋅⨯⨯⨯⨯==≈⋅⋅⨯⨯⨯ 例题2:如图所示,转轴的直径d =0.36 m 、轴承的长度l =1 m ,轴与轴承的缝隙宽度δ=0.23 mm ,缝隙中充满动力粘性系数0.73Pa s μ=⋅的油,若轴的转速200rpm n =。

求克服油的粘性阻力所消耗的功率。

解:由牛顿内摩擦定律,轴与轴承之间的剪切应力()60d d n d uy πτμμδ==粘性阻力(摩擦力):F S dl ττπ=⋅= 克服油的粘性阻力所消耗的功率:()()3223223230230603.140.360.732001600.231050938.83(W)d d n d n n lP M F dl πππμωτπδ-==⋅⋅=⨯⨯=⨯⨯⨯=⨯⨯=例题3:如图所示,直径为d 的两个圆盘相互平行,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以恒定角速度ω旋转,此时所需力矩为T ,求间隙厚度δ的表达式。

解:根据牛顿黏性定律 d d 2d r r F A r r ωωμμπδδ== 2d d 2d r T F r r r ωμπδ=⋅=42420d d 232dd d T T r r πμωπμωδδ===⎰432d Tπμωδ=例题4:如图所示的双U 型管,用来测定比水小的液体的密度,试用液柱高差来确定未知液体的密度ρ(取管中水的密度ρ水=1000 kg/m 3)。

工程流体力学答案(第三版)

工程流体力学答案(第三版)

第一章1-190610500453.06=⨯==-V m ρkg/m 3906.01000906==d1-2544.0140027327334.11013252732730=⨯+⨯=+=p t ρρkg/m 31-3 1121211V V V t t V dV dt V--==α98.616060)2080(10550)(611122=+⨯-⨯⨯=+-=-V V t t V V αm 3/h1-4933666112121051011011099510102111----⨯=⨯⨯-⨯-⨯-=---=-=V V V p p V dV dp κ1/Pa1-5 47109.26781028.4--⨯=⨯⨯==νρμ Pa·s1-6 63103.14.999103.1--⨯=⨯==ρμνm 2/s 1-7 (1) 17.266050001.014.360=⨯⨯==dnu π m/s 521023.510005.017.260⨯=⨯=-=-δu dy du 1/s(2)222ddy du dL d dy du A d FM μπμ===35221033.51023.5108.01.014.35.322-⨯=⨯⨯⨯⨯⨯==du dy L d M πμ Pa·s(3)3531079.21023.51033.5⨯=⨯⨯⨯==-dyduμτPa1-8 (1)y dydu μμτ2==(2)μμμμτ2122=⨯===y dydu 1-9 (1)hu bL dy duAF 022μμ==(2) 当2h y =时,h u dy duμμτ== (3)当h y 23=时,0u u = 所以0==dy duμτ 1-102903.03.0133)(112121=⨯⨯==+=+=μμμμdy du A dy du AF F F N967.01=μ Pa·s933.1212==μμ Pa·s 1-11 dr rr dr r r r dA dy du r dF dM αδπωμαπδωμμsin 2sin 203=-=⋅=⋅= αδαπωμααδπωμαδπωμαδπωμαααcos 24)(sin 2sin 2sin 234403030tg H Htg dr r dr r dM M Htg Htg Htg =====⎰⎰⎰1-1262.26020025.014.360=⨯⨯==dnu πm/s3925.050.025.014.3=⨯⨯==dL A πm 2331022.4102.0062.23925.082.0⨯=⨯-⨯⨯==-dy du AF μN 05.1162.21022.43=⨯⨯==Fu P kW 1-130841.0100092.0109144.04=⨯⨯⨯==-νρμ Pa·s 1459.03048.01524.014.3=⨯⨯==dL A πm 22.7361024.1526.152061459.00841.03=⨯--⨯⨯==-dydu AF μN42.462.736=⨯==Fv P kW1-14dr r r r rdr r dy du dAr dF dM 3202δμπωδωπμμ=-⋅==⋅=δμπωδμπω3224203d dr r dM M d A===⎰⎰ 1-15 785.0125.014.3=⨯⨯==dL A πm 23610258.4001.003.0785.01008.18--⨯=-⨯⨯⨯==dy du AF μN 1-161884.03.02.014.3=⨯⨯==Db A πm 2δμδμμ20u Au u A u dy du A Fu N =-=== 9374.01884.0245.01008.07.502=⨯⨯⨯==-A N u μδm/s9056.892.014.39374.06060≈=⨯⨯==D u n πr/min1-17 082.091810893.04=⨯⨯==-νρμ Pa·s75.14103.003.01.08.1082.03=⨯-⨯⨯⨯==-dy du A F μN 1-18 由1-14的结果得2.791023.096046.09014.31044003032323424424=⨯⨯⨯⨯⨯⨯=⨯==--δμπδμπωnd d M N·m1-19dydu AF 00μ=dyduAF 120120μ=%7.86015.0002.0015.00120001200=-=-=-μμμF F F1-203.29105.0324.0105.08.910000728.098.1324.098.1332=⨯⨯-⨯⨯⨯⨯=-=--r gr h O H ρσmm1-217.11)105.0216.0105.08.91000513.053.1()216.053.1(33=⨯⨯-⨯⨯⨯⨯-=--=--r gr h Hg ρσmm1-22 由2642322δδδδρσ-++=RR g h 得δδδδρσ4622223+⎪⎪⎭⎫ ⎝⎛-+=R R h g其中 ()θθδsin 1cos -=R则 ()⎥⎦⎤⎢⎣⎡+++=22sin 13sin 21cos 2θθθρσR h gR1-23 根据牛顿内摩擦定律 drdV μτ-= 由于流速u 随半径r 的增加而减小,即drdu是负值,为了使τ为正值,上式在等号右端取负号根据已知条件 rr D drd 2)]4(4[22βμβμτ=--=在管壁处2D r = 则4221DDββτ==当4D r =时 4222DDββτ==管壁处的阻力 L D DL DA F 21414βππβτ===1-24maF G =- 其中18.98.990===g Gm (kg )则 )61.0(18.990-⨯=-F 60.95=F N由dydu A F μ= 其中0583.01219.015228.014.3=⨯⨯==DL A πm 2 6.248979100245.001.603=⨯-=-=-δu dy du 1/s 则310586.6006586.06.2489790583.06.95-⨯==⨯==dydu A F μ Pa·s第二章2-1112.2128.08.910009.08.913600105122=⨯⨯-⨯⨯+=-+=gh gh p p O H Hg a A ρρkPa2-2 08.140599.08.91594)0(=⨯⨯=∆--=-=h g p p e vρPa 92.8726508.14059101325=-=-=vap p p Pa2-3 gh gh p BA e ρρ=+ 且 1.015.025.0=-=h m (a) 9801.08.91000)(=⨯⨯=≈-=gh gh p BA B e ρρρPa 102305980101325=+=+=ea p p p Pa(b) 4.8131.08.9100083.0)(=⨯⨯⨯=≈-=gh gh p BA B e ρρρPa 4.1021384.813101325=+=+=ea p p p Pa(c) 123481.08.9)100013600()(=⨯⨯-=-=gh p AB e ρρPa 11367312348101325=+=+=ea p p p Pa2-4 设A 点到下水银面的距离为h 1,B点到上水银面的距离为h 2 BOH HgOH Ap gh gh gh p =+-+2122ρρρ04.348.521+=+-h h h 即44.221+=+h h h305.18.9)100013600(8.9100044.210)372.1744.2()(44.2522=⨯-⨯⨯+⨯-=-+-=gg p p h O H Hg OH B A ρρρm 2-5 44.03000027.025.10027.025.1=⨯-=-=s s t ρkg/m 3 gHp gH p a a s s ρρ-=-6.166208.9)44.029.1()(=⨯⨯-=-=-gH p p s a s a ρρPa2-64.1340638.9100012.08.913600312.02=⨯⨯+⨯⨯-=⨯+⨯-=g g p O H Hg e ρρPa2-7 223311gh gh p gh p BAρρρ++=+ (1)112233100010001000gh d gh d gh d p p BA-++=16.08.983.0100008.08.96.13100012.08.983.010********.68⨯⨯⨯-⨯⨯⨯+⨯⨯⨯+⨯=287.79=kPa(2)332211100010001000gh d gh d gh d p p A B --+=12.08.983.0100008.08.96.13100016.08.983.010*******.137⨯⨯⨯-⨯⨯⨯-⨯⨯⨯+⨯=96.127562=Pa563.319600096.127562=-=-=a B Be p p p kPa2-8 设401=h cm 22=h m 33=h m)(32112h h g p gh gh gh p BBHgAAA+-=+--ρρρρ 11232)(gh gh gh h h g p p HgAABBAρρρρ-+++-=4.08.9136004.08.97.85628.97.856)32(8.93.1254200000⨯⨯-⨯⨯+⨯⨯++⨯⨯-=377.105=kPa2-9 (1)93.138545sin 2.08.91000sin =⨯⨯⨯==-οαρgL p p BAPa(2)3530sin 8.980093.1385sin =⨯⨯=-=οαρg p p L BA cm 2-10 666405.08.9136001=⨯⨯=∆=h g p Hg ρPa68.08.91000666422=⨯==∆gph O H ρm2-111022gh p gh p O H Hg a ρρ+=+4032gh p gh p O H Hg a ρρ+=+整理得)(1321422h h h h Hg Hg O H OH ρρρρ+-=)3.0136002.0136005.01000(10001⨯+⨯-⨯=86.1=m 2-12 )()()(112342h H g h h g h h g p p O H HgHga---+-+=ρρρ)5.15.3(8.91000)5.15.2(8.913600)0.13.2(8.913600105-⨯⨯--⨯⨯+-⨯⨯+=386944=Pa2-13 gh h g p HgAρρ=++)84.0(85.1138.9)100075.013600(84.08.9100075.010372.1)(84.05=⨯⨯-⨯⨯⨯+⨯=-⨯+=g g p h HgAρρρcm 2-14 )0.343.3(1000)74.22.3(1000-⨯-=-⨯+g d g d p BA862.043.08.9100046.08.9100060.110845=⨯⨯-⨯⨯⨯+-=Bd 2-15 59.0)59.0(22⨯++-=-g z g p gz p HgOH BOH Aρρρ 整理:853.7259.08.9)100013600(59.059.02=⨯⨯-=⨯-⨯=-g g p p OH Hg B A ρρkPa2-16 设差压计中的工作液体密度为ρ' )()()(213241h h g h h g p h h g p BA-'---=--ρρρ )()(213241h h g h h h h g p p p BA-'-+--=-=∆ρρ)48.381.3(8.9100075.0)00.348.310.081.3(8.910005.1-⨯⨯⨯-+--⨯⨯⨯==5.45055Pa065.38.910005.15.45055=⨯⨯=∆g p ρ m2-17112233100010001000gh d gh d gh d p p A B ---=44.28.975.0100052.18.9110006.08.96.131000274600⨯⨯⨯-⨯⨯⨯-⨯⨯⨯-=161802=Pa 2-1882.38)34.01360053.0100025.1(8.934.053.0-=⨯-⨯⨯⨯=⨯-⨯=g g p Hg A ρρkPa2-19 (1) 981010018.910004=⨯⨯⨯⨯==-ghA F ρN(2) 95.1)99.01001.001.0(8.910004=⨯+⨯⨯⨯==-gV G ρN 2-20 证明:如书中证明过程。

流体力学 第三章

流体力学 第三章
无数微元流束的总和称为总流。自然界和工程中所遇到 的管流或渠流都是总流。根据总流的边界情况,可以把总流 流动分为三类:
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
❖动量方程的解题步骤
1. 选控制体 根据问题的要求,将所研究的两个渐
变流断面之间的水体取为控制体;
2. 选坐标系 选定坐标轴 的方向,确定各作用力及
流速的投影的大小和方向;
3. 作计算简图 分析控制体受力情况,并在控制体
上标出全部作用力的方向;
4. 列动量方程解题 将各作用力及流速在坐标轴
上的投影代入动量方程求解。计算压力时,压强 采用相对压强计算。 注意与能量方程及连续性方程的联合使用。
重力G在xOy面无分量; 弯管对水流的作用力R‘ 列总流动量方程的投影式
Fx Q(2v2x 1v1x )
Fy Q(2v2 y 1v1y ) 7
P1 P2 cos 60o Rx ' Q(2v2 cos 60o 1v1)
P2
r
r
rr
dt2v2 A2 v2 dt1v1A1v1 dtQ(2 v2 1v1)
2
❖动量修正系数β
修正以断面平均速度计算的动量与实际动量的差异而引入
Au3dA 3A
Au2dA 2A
β值取决于过流断面上的速度分布, 速度分布较均匀的流动β =1.02~1.05, 通常取β=1.0


Fz Q(2v2z 1v1z )
❖物理意义:作用于控制体内流体上的外力,等
于单位时间控制体流出动量与流入动量之差
4
❖应用条件:
恒定流 过流断面为渐变流断面 不可压缩流体

❖合外力: F
作用在该控制体内所有流体质点的质量力; 作用在该控制体面上的所有表面力 四周边界对水流的总作用力
sin
60o
Ry'Fra bibliotekQ(2v2
sin
60o
)
其中
P1

p1 A1
18
1
4
0.22

0.565kN
2、列1-1、2-2断面的伯诺里方程,忽略水头损失,有
z1

p1 ρg

α 1v12 2g

z2

p2 ρg

α
2v
2 2
2g

hl
0 p1 v12 0 p2 v22 0



d K

A2

2
u
2
dtdA2
u
2
i
2

A1
1u1
dtdA1u1
i
1
❖对于不可压缩流体ρ1=ρ2=ρ,并引入修正系数β ,以断 面平均流速v 代替点流速u 积分,总流的动量差为
uur
r
r
d K dt2v22 A2 i2 dt1v12 A1 i1
❖质点系动量定理: 质点系动量的增量等于作用于
该质点系上的外力的冲量
Fdt dtQ(2 v2 1v1)
F Q(2 v2 1 v1 )
3
❖恒定总流动量方程
ur
rr
F Q(2 v2 1v1)


Fx Q(2v2x 1v1x ) Fy Q(2v2 y 1v1y )
6
例: 水平设置的输水弯管(转角θ = 60°),直径由d1=200mm 变为d2=150mm,已知转弯前断面p1=18kPa(相对压强), 输水流量Q=0.1m3/s,不计水头损失; 试求水流对弯管的作 用力。
解:取过流断面l-1、2-2及控制体,选直角坐标系 1、分析受力:过流断面上的动压力P1、P2;
g 2g
3、由连续性方程
g
2g
v1

4Q
d12
3.185m/s
Q = v1A1= v2A2
v2
4Q

d
2 2
5.66m8/s
p2

p1

v12 v22 2g


7.043kPa
P2
d22
4
p2
0.124kN
4、将各量代入总流动量方程,解得 Rx ' 0.538kN Ry ' 0.597kN
水流对弯管的作用力与弯管对水流的作用力,大小相等方 向相反
Rx 0.538kN 方向沿Ox方向 Ry 0.597kN 方向沿Oy方向
9
第五节 动量方程
总流的动量方程是动量定理的流体力学表达式 .
❖设恒定总流,过流断面Ⅰ-Ⅰ、Ⅱ-Ⅱ(渐变流断面)
流体经dt 时间由Ⅰ-Ⅱ运动到Ⅰ‘- Ⅱ’位置
2
❖任取元流l – 2 dt 时间内元流动量增量
uur uur uur uur
1
1 u1
dA1
uur
1
1
dA2
2
uur
2
u2
2
uur
d K K1'2' K12 (K1'2 K ) 22' tdt (K11' K1'2 )t
恒定流动,dt 前后 K 1'2 无变化,则
uur uur uur
r
r
d K K 22' K11' 2u2dtdA2u2 1u1dtdA1u1
1
❖ 取过流断面为渐变流断面,各点的流速平行,
uur

uur
u
uuiur
i
——为单位向量
r
r
d K K 22' K11' 2u2dtdA2u2 1u1dtdA1u1
相关文档
最新文档