变压器并列运行及负荷分配的计算

合集下载

变压器并联运行环流及负载分配计算实例

变压器并联运行环流及负载分配计算实例

变压器并联运行环流及负载分配计算实例作者:武文科刘宝位帅唐圣华秦炜来源:《名城绘》2020年第06期摘要:本文通过计算两台变压器空载并联环流及负载运行电流分配,为电力系统特殊情况倒闸操作、继电保护整定提供了有效依据,保障了企业连续式生产车间安全稳定供电。

关键词:变压器;环流;并联运行;负载分配1基本情况我公司有4#、6#110kV变电站,110kV系统电源均来自同一220kV变电站,4#、6#110kV变电站110kV母线为双母线结构,均为合还运行,4#、6#110kV变电站之间有110kV 联络线。

4#变电站3#变带10kVⅢ母线运行,6#变电站1#变带10kVⅠ段母线运行。

另有为连续式生产车间供电的二级配电室1#电源取自4#变电站10kVⅢ母线,2#电源取自6#变电站10kVⅠ段母线。

因4#变电站10kVⅢ母线需要进行周期性预防性试验,需对该母线及其所带线路停电。

4#、6#变电站无10kV联络线且二级配电室用电负荷不能中断,需在二级配电室母联处短时合还,将二级配电室负荷倒至2#电源。

2变压器并联运行条件二级配电室母联合闸即实现4#变电站3#变与6#变电站1#变并联运行。

变压器并联运行时若环流过大易造成变压器过热,相关继电保护误动作,造成不必要的停电,影响公司正常生产。

理想运行的各并联变压器空载时,各台变压器之间无循环电流,带载后,各变压器按其额定容量比分担负载。

理想运行的并联变压器必须满足下列三个条件:一次与二次绕组额定电压彼此相同(变比相等);二次线电压对一次线电压的相位移相同(联结组标号相同);短路阻抗标幺值相等。

3变压器参数4#變电站3#变型号SFQ10-50000/110kV,短路阻抗10.18%,高压侧额定电流262.4A,额定电流2749A,联结组别YNd11,变比10.5。

6#变电站1#变型号SFSZQ10-80000/80000/50000/110/kV,短路阻抗(高-低)10. 8%,高压侧额定电流420A,低压侧额定电流2749A,联结组别YNyn0d11,变比10.5。

变压器并列负荷分配系数

变压器并列负荷分配系数

变压器并列负荷分配系数(原创实用版)目录一、变压器并列运行的必要条件1.变比相等2.联结组序号相同3.两台变压器容量比不超过 3:1二、变压器并列运行的负荷分配计算公式1.设定变压器 1 的额定容量为 S1,阻抗电压为 U1,所分配的容量为 S122.设定变压器 2 的额定容量为 S2,阻抗电压为 U2,所分配的容量为 S223.设定它们所带的总的负荷为 S,则按下式计算:S1 S2 S(S12 / S1)/ (S22 / S2)U2 / U1三、变压器并列运行的优点1.增加供电可靠性2.提高运行效率3.减少设备投资四、变压器并列运行的注意事项1.变压器短路电压相同2.接线组别不同会产生电压差,引起循环电流3.容量不同的变压器负荷分配不平衡,运行不经济正文在电力系统中,为了满足负荷需求、提高供电可靠性和运行效率,常常需要将多台变压器并列运行。

在并列运行过程中,如何合理分配负荷以降低损耗、保证运行安全,是需要重点关注的问题。

下面我们将详细介绍变压器并列负荷分配的相关知识。

一、变压器并列运行的必要条件1.变比相等。

变压器变比不同,二次电压不等,会在二次绕组中产生环流,占据变压器的容量,增加变压器的损耗。

因此,变比应控制在一定范围内,差值最多不超过 0.5%。

2.联结组序号相同。

接线组别不同在并列变压器的二次绕组中会出现电压差,从而在变压器的二次侧内部产生循环电流。

因此,要求并列运行的变压器联结组序号相同。

3.两台变压器容量比不超过 3:1。

容量不同的变压器短路电压不同,负荷分配不平衡,运行不经济。

因此,要求并列运行的变压器容量比不超过 3:1。

二、变压器并列运行的负荷分配计算公式在实际运行中,负荷分配的计算是非常重要的一个环节。

设定变压器1 的额定容量为 S1,阻抗电压为 U1,所分配的容量为 S12;设定变压器2 的额定容量为 S2,阻抗电压为 U2,所分配的容量为 S22。

它们所带的总的负荷为 S,则按下式计算:S1 / S2 = S12 / S1 / (S22 / S2) / U2 / U1通过上述公式,可以计算出各变压器的负荷分配比例。

变压器并列负荷分配系数

变压器并列负荷分配系数

变压器并列负荷分配系数(原创版)目录1.变压器并列运行的背景和条件2.变压器并列负荷分配系数的定义和计算方法3.变压器并列负荷分配系数的影响因素4.变压器并列负荷分配的实际应用和优化策略正文一、变压器并列运行的背景和条件在电力系统中,为了满足不断增长的用电需求和保证供电可靠性,常常需要将多台变压器并列运行。

并列运行的变压器可以共同承担负荷,提高供电能力。

在并列运行的过程中,变压器的负荷分配是一个重要问题,合理的负荷分配可以有效降低变压器的损耗,提高运行效率。

二、变压器并列负荷分配系数的定义和计算方法变压器并列负荷分配系数是指在并列运行的变压器中,各变压器所承担的负荷与总负荷之比。

其计算方法如下:负荷分配系数 = (变压器 1 负荷 + 变压器 2 负荷 +...+ 变压器n 负荷) / 总负荷其中,n 为并列运行的变压器数量。

三、变压器并列负荷分配系数的影响因素1.变压器的额定容量:变压器的额定容量越大,其承担的负荷就越大。

因此,在并列运行时,额定容量较大的变压器将承担较大的负荷。

2.变压器的阻抗电压:阻抗电压较低的变压器在并列运行时,会承担较大的负荷。

因为阻抗电压较低的变压器通过的电流较大,从而能够承担更大的负荷。

3.变压器的联结组序号:联结组序号相同的变压器并列运行时,其负荷分配较为均匀。

如果联结组序号不同,会导致二次绕组中出现电压差,从而影响负荷分配。

4.变压器的容量比:两台变压器容量比不超过 3:1 时,负荷分配较为均匀。

容量差异过大会导致负荷分配不平衡,影响运行经济性。

四、变压器并列负荷分配的实际应用和优化策略1.在实际应用中,为了提高变压器并列运行的负荷分配效率,可以通过调整变压器的联结组序号、容量等参数来实现负荷分配的优化。

2.采用动态负荷分配策略,根据电力系统的实时负荷情况,自动调整变压器的负荷分配,以提高运行效率。

变压器并列运行及负荷分配的计算

变压器并列运行及负荷分配的计算

变压器并列运行及负荷分配的计算Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】一、变压器并列运行的条件是什么?1.变比相等。

变压器比不同,二次电压不等,在二次绕组中也会产生环流,并占据变压器的容量,增加变压器的损耗。

差值最多不超过±0.5%。

2.联结组序号必须相同。

接线组别不同在并列变压器的二次绕组中会出现电压差,在变压器的二次侧内部产生循环电流。

3.两台变压器容量比不超过3:1。

容量不同的变压器短路电压不同,负荷分配不平衡,运行不经济。

4.短路电压相同。

关于短路电压要求相同的说明:实际上是非常接近即可,因为试验值往往与设计理论值有一定的偏差,铭牌上写的都是试验值,即实际值。

如果短路电压相差过大,会导致短路电压小的发生过负荷现象,建议允许差一般不超过10%。

至于为什么,请看文末的变压器并列运行负荷分配计算。

二、什么叫变压器的短路电压?这里要先说一下变压器的阻抗电压变压器的阻抗电压百分数由电抗电压降和电阻电压降组成。

在数值上与变压器的阻抗百分数相等,表明变压器内阻抗的大小。

阻抗电压百分数表明了变压器在满载(额定负荷)运行时变压器本身的阻抗压降的大小。

它对于变压器在二次侧发生短路时,将产生的短路电流大小有决定性意义,对变压器制造价格和变压器的并联运行也有重要意义,也是考虑短路电流热稳定和动稳定及继电保护整定的重要依据。

此数值在变压器设计时遵从国家标准。

阻抗电压百分数的大小与变压器的容量有关,一般变压器容量越大短路阻抗也就越大(一般情况哦)。

我国生产的电力变压器,阻抗电压百分数一般在4%~24%的范围内。

再说变压器的短路电压变压器的短路电压百分数是当变压器一侧短路,而另一侧通以额定电流时的电压,此电压占其额定电压百分比。

实际上此电压是变压器通电侧和短路侧的漏抗在额定电流下的压降。

同容量的变压器,其电抗愈大,这个短路电压百分数也愈大,同样的电流通过,大电抗的变压器,产生的电压损失也愈大,故短路电压百分数大的变压器的电抗变化率也越大。

变压器容量及线路负荷详细计算法则及配电方法精选文档

变压器容量及线路负荷详细计算法则及配电方法精选文档

变压器容量及线路负荷详细计算法则及配电方法精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-变压器容量及线路负荷详细计算法则及配电方法配电系统中有很多种方法计算线路负荷,有需用系数法、同时系数法、二项式系数法、单位面积法等等,当不知道线路上设备的功率因数时,则可以用这些方法。

比如计算一个小区的负荷时,我们就可以用需用系数法或单位面积法,计算一个工厂设备的负荷时,我们可以用同时系数法或二项式系数法,不过当我们知道线路上每一台设备的功率因数时,我们就可以不用这些方法,下面介绍直接根据所学电工基础知识就能计算线路功率因数及分配电路的方法。

假设一台315kV变压器(不管是什么型号),二次侧最大电流值为,保证电路功率因数为,则能载动多少台电机?设:客户现有22kw,功率因数为,额定电流为电机4台;15kw,功率因数为,额定电流为电机6台;11kw,功率因数为,额定电流为电机2台;,功率因数为,额定电流为17A电机3台(具体电机参数由客户提供,也可以自己查找),要求设计师为客户设计一项合理的、经济的配电方案。

由于为了保证线路上的功率因数为,则线路上最大允许负荷为:ΣP=315×=则线路上的最大有功功率为设变压器内电抗和导线阻抗共消耗电压20V则变压器内电抗和导线阻抗共消耗有功功率为P1P1=××= kw则变压器能载动的电机有功功率总和为P2=ΣP- P1P2=所以根据P2数值,我们可以设计以下方案:22kw电机5台(一台备用),15kw电机6台,11kw电机4台(2台备用),电机4台(1台备用),以上电机总有功功率为P电机=22×5+15×6+11×4+×4=274kw由于P电机=274kw,P2=,P2﹥P电机所以此设计是合理的。

此工程总共备用了22kw电机一台,11kw电机2台,电机一台,也就是总共备用了有功功率(负荷)22×1+11×2+×1=。

变压器并列运行负荷分配计算公式

变压器并列运行负荷分配计算公式

变压器并列运行负荷分配计算公式变压器并联运行是为了满足大负荷情况下的供电需求,即通过多台变压器共同供电,以提高供电能力和可靠性。

在进行负荷分配计算时,我们需要考虑变压器的额定容量、负载率、电压比等因素。

我们需要明确变压器的额定容量。

额定容量是指变压器连续运行时所能输送的最大功率。

在计算负载分配时,我们需要将所有并联运行的变压器的额定容量相加,得到总容量。

我们需要考虑变压器的负载率。

负载率是指变压器当前实际负载与额定容量之比。

在实际运行中,变压器的负载率会随着负载的变化而变化。

负载率的计算方法为:负载率=实际负载/额定容量*100%。

在进行负载分配时,我们需要根据变压器的负载率进行合理的分配,以保证每台变压器的负载在安全范围内运行。

我们还需要考虑变压器的电压比。

电压比是指变压器的输入电压与输出电压之比。

在并联运行时,变压器的电压比应保持一致,以确保负载分配均匀。

如果变压器的电压比不一致,将会导致负载分配不均,影响供电质量。

在实际应用中,我们可以根据以上因素,结合以下公式来计算变压器的负载分配:负载分配比例= (变压器1的额定容量/总容量)*(变压器1的负载率/所有变压器的负载率之和)其中,变压器1的负载分配比例表示变压器1所分担的负载比例。

通过以上公式的计算,我们可以得到每台变压器所分担的负载比例。

根据负载分配比例,我们可以进一步计算每台变压器实际承载的负载。

在实际应用中,我们还需要考虑变压器的容量限制。

如果某台变压器的负载已经达到或接近额定容量,我们需要对负载进行调整,以避免超负荷运行。

除了以上的计算方法,还需要注意以下几点:1. 在进行负载分配计算时,应考虑负载的稳定性和可靠性。

负载分配应合理,避免某台变压器长期承担过高的负载,以免影响变压器的寿命。

2. 在实际运行中,应及时监测变压器的负载情况,根据实际情况进行调整。

如果某台变压器的负载过高,可以通过调整负载分配比例或增加变压器数量来进行负载均衡。

电气相关计算公式

电气相关计算公式

电气相关计算公式一电力变压器额定视在功率Sn=200KVA,空载损耗Po=,额定电流时的短路损耗PK=,测得该变压器输出有功功率P2=140KW时,二次则功率因数2=;求变压器此时的负载率和工作效率;解:因P2=×Sn×2×100%=P2÷Sn×2×100%=140÷200××100%=%=P2/P1×100%P1=P2+P+PK=140++2×=KW所以=140××100%=%答:此时变压器的负载率和工作效率分别是%和%;有一三线对称负荷,接在电压为380V的三相对称电源上,每相负荷电阻R=16,感抗XL=12;试计算当负荷接成星形和三角形时的相电流、线电流各是多少解;负荷接成星形时,每相负荷两端的电压,即相电压为U入Ph===220V负荷阻抗为Z===20每相电流或线电流为I入Ph =I入P-P===11A负荷接成三角形时,每相负荷两端的电压为电源线电压,即==380V流过每相负荷的电流为流过每相的线电流为某厂全年的电能消耗量有功为1300万kwh,无功为1000万kvar;求该厂平均功率因数;解:已知P=1300kwh,Q=1000kvar则答:平均功率因数为;计算:一个的电感器,在多大频率时具有1500的电感解:感抗XL=则=HZ答:在时具有1500的感抗;某企业使用100kvA变压器一台10/,在低压侧应配置多大变比的电流互感器解:按题意有答:可配置150/5的电流互感器;一台变压器从电网输入的功率为150kw,变压器本身的损耗为20kw;试求变压器的效率=150kw解:输入功率 Pi输出功率 PO=150-20=130KW变压器的效率答:变压器的效率为%某用户装有250kvA变压器一台,月用电量85000kwh,力率按计算,试计算该户变压器利率是多少解:按题意变压器利用率答:该用户变压器利用率为56%;一台变压器从电网输入的功率为100kw,变压器本身的损耗为8kw;试求变压器的利用率为多少解:输入功率为 P1=100kw输出功率为 P2=100-8=92kw变压器的利用率为答:变压器的利用率为92%;有320kvA,10/变压器一台,月用电量15MWh,无功电量是12Mvarh,试求平均功率因数及变压器利用率=15Mva解:已知 Sn=320kva,WPW=12Mvarh,一个月以30天计,Q日平均有功负荷为日平均无功为变压器利用率为答:平均功率因数为;变压器利用率为83%;一条380v线路,导线为LJ-25型,电阻为km,电抗为km,功率因数为,输送平均有功功率为30KW,线路长度为400m,试求线路电压损失率;解;400m导线总电阻和总电抗分别为R=×X=×导线上的电压损失线路上的电压损失答:线路电损失率为%有两台100kvA变压器并列运行,第一台变压器的短路电压为4%,第二台变压器的短路电压为5%;求两台变压器并列运行时负载分配的情况解:由题意可知S1n=S2n=100kvaU1%=4% U2k%=5%第一台变压器分担的负荷第二台变压器分担的负荷答:第一台变压器因短路电压小而过负荷;第二台变压器则因短路电压大却负荷不足;某厂年用电量万kwh,求该厂最大负荷约为多少最大负荷年利用小时数Tmax=5300h解:已知A=×104kwh,Tmax=5300h则Pmax==1150kw答:该厂最大负荷约为1150kw;某单位月有功电量500000kwh,无功电量400000kvarh,月利用小时为500h,问月平均功率因数为多少若将功率因数提高到2=时,需补偿多少无功功率QC解:补偿前月平均功率因数补偿后月平均功率因数2=则需补偿的无功容量为QC =PPtg1-tg2=1000 答:为,需补偿318kvar;有一台三角形连接的三相电动机,接于线电压为380v的电源上,电动机的额定功率为,效率为,功率因数为;试求电动机的相电流Iph 和线电流Ip-p解;已知线电压Up-p=380v,电动机输出功率Pou=,功率因数=,电动机效率=;则电动机输出功率为Pou=3Up-pIp-p线电流由于在三角形接线的负载中,线电流Ip-p=Iph,则相电流答:电动机的相电流为3.62A,线电流为6.27A;某工厂最大负荷月的平均有功功率为400kw,功率因数=,要将功率因数提高到时,问需要装设电容器组的总容量应该是多少解:根据公式式中:P为最大负荷大的平均有功功率kw,1、2为补偿前后的功率因数值,则=339kvar答:需要装设电容器组的总容量应该是339kvar;某工厂380v三相供电,用电日平均有功负荷为100kw,高峰负荷电流为200A,日平均功率因数灵;试问该厂的日负荷率Kd为多少解;已知供电电压U=380V,高峰电流I=200A,=,日平均有功负荷PP=100kw则根据公式,日负荷率其中,日最高有功负荷Pmax=UI=××200×=kw则日负荷率K=×100%=%d答:该厂的晚负荷率为%;一个化工厂某月用电72万kwh,最大负荷为2000kw;求月负荷率K; 解;月平均负荷Pav==1000kwK=50%答;月负荷率为50%;一机械厂某月用电为36万kwh,月最大负荷为900kw,求月负荷率K;解:月平均负荷Pav==500kw月负荷率K==%答;月负荷率为%;某用户有功功率为,供电电压为220v,工作电流为10A;试求该户功率因数是多少解;按题意和功率计算公式,得答:该用户的功率因数为;已知某10kv高压供电工业用户,TA变比为50/5,TV变比为10000/100,有功表起码为165kwh,止码为236kwh;试求该用户有功计费电量w为多少解:该用户计费倍率为=50/5×10000/100=1000该用户有功计费电量W=236-165=1000×236-165=71000kwh答:该用户有功计费电量为71000kwh;一台10kv、1800kva变压器,年负荷最大利用小时为5000h,按电流密度选用多大截面的铝芯电缆比较合适铝导线经济电流密度为1.54A/mm2;解:已知Un=10kv,Sn=1800kva,T=5000h,则变压器额定电流为In==104A导线截面为S=mm2答:可选用50-70mm2的铝芯电缆;某工厂有一台315kva的三相变压器,原有负荷为210kw,平均功率因数为,试问此变压器能否满足供电需要现在生产发展负荷增到280kw,问是否要增加变压器容量若不增加变压器容量,可采取什么办法解:根据题意,视在功率S1=P/COS=210/=300KVA此时变压器能够满足供电需要;当负荷增到280kw时S2=P/COS=280/=400kva>315kva则原变压器已不能够满足正常供电需要;若采取措施将平均功率因数由提高到,则S=280/=311<315kva此时变压器可满足需要,不必加容量;答:1、原有负荷为210kw,功率因数为时,S1为300kva,变压器能满足要求;2、当负荷为280kw,功率因数仍为时,S2为400kva,变压器不能满足要求;3、当负荷仍为280kw,将功率因数提高为时,变压器可不增加容量即可满足负荷要求;一条电压为35kv的输电线路,输送最大功率为6300kw,功率因数为,经济电流密度按1.15A/mm2来考虑,使用钢芯铝绞线,其长度为2km;试按经济电流密度求导线截面解:已知P=6300kw, =,L=2km ,J=1.15A/mm2,则视在电流值为导线截面为S=113mm2据此应选用LGJ-95-120型导线;答:导线截面约为113mm2;一台容量为1000kva的变压器,24h的有功用电量为15360kwh,功率因数为;试求24h的平均负荷为P==640kw平均使用容量为S==753kva则变压器的利用率为答:变压器的利用率为75%;某用户申请用电1000kva,电源电压为10kv,用电点距供电线路最近处约6km,采用50mm2的钢芯铝绞线;计算供电电压是否合格;线路数RO =km,XO=km解;额定电压Un=10kv,Sn=1000kva,L=6km,则线路阻抗为1000kva变压器的一次额定电流为In==A则电压降为U=IZ=×=V电压降值占10kv的比例为U%=×100%=%答:根据规定,10kv电压降合格标准为±7%,故供电电压合格;一台三相变压器的电压为6000V,负荷电流为20A,功率因数为;试求其有功功率、无功功率和视在功率;解:三相变压器的有功功率为P=UI=×6000×20×=180kw无功功率Q=U1I 1=×6000×20×= 视在功率S=U1I1=×6000×20=kva答:P为180kw;Q为;S为;简易电工计算公式一、欧姆定律公式单相二、欧姆定律公式三相例:在三相交流电路中,已知KW=1KWV=380V,求A;解:三角形符号公式中,KW与KV、、是除数关系,故得下式A=W÷KV××代入得:A=1÷××=1÷=安培如果没有明确力率,可按计算例:有台100kva变压器,其高压侧额定电压为,低压侧为,问高、低压侧的额定电流各是多少解:根据公式A=KVA÷KV×代入得:A高=100÷×=A低=100÷×=答:高压侧额定电流A;低压侧额定电流144.5A;例:某厂有功电度抄见为100度,无功电度76度,问该厂设备力率是多少解:三角形公式中,a与的关系是除数关系,故得下式:=a÷代入得:=100÷=100÷=答:力率为;如:3个400欧电阻并联,总阻值是R=×400=欧总电容并联后,总电容等于各个电容之和,电压不变;电容器串联后,总电容减少,总电容倒数等于各个电容器的电容量倒数之和,电压增加等于各电容电压之和;例如:两个10微法电容器串联的总电容;=×10=5PFC总变压器并列运行条件:1、变压比相等地,比差不允许超过%即400V的%=2V;2、短路电压即阻抗百分数,不应超过10%大体相同;3、联接级别必须相同;4、容量比不宜超过3:1;变压器的Y、接法及其关系:A、火线与零线之间的电压叫相电压;流过一相线圈的电流叫相电流,流过导线的电流叫线电流;B、在Y接时线电压=×相电压;线电流=相电流;相电压=线电压÷;C、在接时线电压=相电压;相电流=线电流÷线电流=×相电流;按钮的接线方法:A、按钮与磁吸线圈接线简图B、用两只按钮分别在两地方控制电动机的接线方法D、顺逆按钮的接线方法:注:按顺按钮时接触器吸合,同时要切断逆按钮的磁吸线圈回路,避免误动逆按钮造成损坏电动机;电动机断相运行起动装置:J--可用36V138mA通用继电器;QC--交流接触器的线圈;QC--交流接触器常开触点;1--继电器的常闭触点;J1电流--沿着导线作一定向的移动;形成电流需具备两个条件:一是迫使电子运动的能力;二是电子运动的通路;电压--推动电子流动的能力称为电压;电压又称为电位差:当导线两端的电子具有不使用两个交流接触器作Y起动器接线图如下:1、在电感、电容、电阻串联正弦交流电路中,画出其阻抗三角形图;答:如图1-1所示;2、在电阻、电感、电容串联电路中,画出其功率三角形图;3、画出利用三相电压互感器进行核定相位即定相的接线图;答:见图1-34、画出电流互感器不完全星形接线图,并在图中标明A、B、C三相二次侧电流方向和互感器极性;解:如图1-4所示同的位能时,就出现“电位差”;于是电子移动,形成电流;电压降--电流通过电阻时所引起的电压降低称为电压降;5、画出双绕组变压器差动保护原理接线图;答:如图1-5单相简易计算方法1、根据容量确定一次线圈和二次线圈的电流I=P/UI单位A、P单位vA、U单位v.2、根据需要的功率确定铁芯截面积的大小S=√P注:根号PS单位cm23、知道铁芯截面积cm2求变压器容量P=S/2VA4、每伏匝数ωo=45/S5、导线直径d=√I 根号I6、一、二次ω1=U1ωoω2=ωo例1:制作一个50VA,220/12V的,求相关数据 1、根据需要的功率确定铁芯截面积的大小S=√P=√P ≈9cm22、求每伏匝数ωo=45/9=5匝3、求初级ω1=U1ωo=220X5=1100匝次级ω2= U2ωo =≈68匝4、求一、二次电流初级 I1=P/U1=50/220 ≈次级 I2=P/U2=50/12≈5、求导线直径初级 d1=√I 根号I1=√≈次级 d2=√I 根号I2=√≈例2:铁芯截面积22cm2,一次电压,二次电压,双15V,求相关数据 1、根据铁芯截面积cm2求变压器容量P=S/2VA=22/2=310VA2、根据容量确定一次线圈和二次线圈的电流初级 I1=P/U1=310/220 ≈次级 I2=P/U2=310/15X2≈ 10A3、求每伏匝数ωo=45/S=45/22=2匝4、求初级ω1=U1ωo=220X2=440匝次级ω2= U2ωo =≈32匝双32匝5、求导线直径初级 d1=√I 根号I1=√≈次级 d2=√I 根号I2=√10≈。

三绕组变压器并联运行方式及负荷分配关系浅析 贺运动

三绕组变压器并联运行方式及负荷分配关系浅析 贺运动

三绕组变压器并联运行方式及负荷分配关系浅析贺运动摘要:本文首先简要分析了变压器并联运行的基本条件,探讨了三绕组变压器并联运行的主要方式及负荷分配,并结合实例,就相关问题作一剖析,望能为此领域研究有所借鉴。

关键词:三绕组变压器;负荷分配;并联运行当前,无论是发电厂还是变电站,其在具体的发、变电容量方面,均呈现出日趋增大的趋势;在此背景下,经常选用多台变压器,并以一种并联运行的方式来实现高质量运作。

通过将变压器并联起来运行,不仅能提高整个供电系统的可靠性,而且还能较大程度减少系统总体的备用容量;除此之外,还能依据负载大小,对投入运行的变压器台数进行调整,最终达到提高运行效率的目的。

本文将三绕组变压器作为研究对象,对其并联运行方式以及具体的负荷分配关系作一深入探讨。

1.变压器并联运行的基本条件(1)各个变压器在具体的高低压方的额定电压,均相等,也就是说,各个变压器的变化始终处于相等状态。

如果处于并联运行状态的变压器存在并不对等的变比,此时,呈并联运行状态的变压器间,便会有环流产生,如果如果2台处于联结状态的组别相等,或者是短路阻抗的标的值相等,但是变比为KA=K0,那么在原边将同一电源接入,会有电压差(△U20≠0)存在,如果将2台标准的变压器并联在一起,那么基于U20的综合作用下,势必在2台变压器之间,会有环流Ic产生。

还需要指出的是,因短路阻抗较大程度限制着环流大小,因此,针对空载环流来讲,需≤额定电流的10%,所以在具体的变比偏差上,需要≤1%。

(2)各个变压器有着相同的连接组。

当变压器处于并联运行状态时,此条件必须给予满足,因为如果出现连接组不同步、不同时的情况,当各个变压器的原方于同一电源相连接时,副方各线电动势间的相位差至少答30°。

还需要指出的是,因对应线电动势之间存在的相位差达30°,因此,在他们中间同样会有电位差产生。

电位差在变压器副绕组上其作用,便会形成回路,增大环流,并将变压器的绕组烧坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、变压器并列运行的条件是什么?
1.变比相等。

变压器比不同,二次电压不等,在二次绕组中也会产生环流,并占据变压器的容量,增加变压器的损耗。

差值最多不超过±0.5%。

2.联结组序号必须相同。

接线组别不同在并列变压器的二次绕组中会出现电压差,在变压器的二次侧内部产生循环电流。

3.两台变压器容量比不超过3:1。

容量不同的变压器短路电压不同,负荷分配不平衡,运行不经济。

4.短路电压相同。

关于短路电压要求相同的说明:实际上是非常接近即可,因为试验值往往与设计理论值有一定的偏差,铭牌上写的都是试验值,即实际值。

如果短路电压相差过大,会导致短路电压小的发生过负荷现象,建议允许差一般不超过10%。

至于为什么,请看文末的变压器并列运行负荷分配计算。

二、什么叫变压器的短路电压?
这里要先说一下变压器的阻抗电压
变压器的阻抗电压百分数由电抗电压降和电阻电压降组成。

在数值上与变压器的阻抗百分数相等,表明变压器内阻抗的大小。

阻抗电压百分数表明了变压器在满载(额定负荷)运行时变压器本身的阻抗压降的大小。

它对于变压器在二次侧发生短路时,将产生的短路电流大小有决定性意义,对变压器制造价格和变压器的并联运行也有重要意义,也是考虑短路电流热稳定和动稳定及继电保护整定的重要依据。

此数值在变压器设计时遵从国家标准。

阻抗电压百分数的大小与变压器的容量有关,一般变压器容量越大短路阻抗也就越大(一般情况哦)。

我国生产的电力变压器,阻抗电压百分数一般在4%~24%的范围内。

再说变压器的短路电压
变压器的短路电压百分数是当变压器一侧短路,而另一侧通以额定电流时的电压,此电压占其额定电压百分比。

实际上此电压是变压器通电侧和短路侧的漏抗在额定电流下的压降。

同容量的变压器,其电抗愈大,这个短路电压百分数也愈大,同样的电流通过,大电抗的变压器,产生的电压损失也愈大,故短路电压百分数大的变压器的电抗变化率也越大。

所以说:短路电压百分数=阻抗电压百分数(有时说成短路阻抗百分数)。

三、变压器短路阻抗大好,还是小了好(我习惯叫短路阻抗,最直观)?
变压器的短路阻抗大小各有利弊。

如果选择大的,当变压器的负载端发生短路时,短路电流
会小些,变压器所承受的短路力会小,所受破坏也相对小些。

但平时线路压降会增大,线路损耗增加、发热量加大,有时靠分接开关甚至调不过来,使设备无法获得合适电压,从而影响设备的正常运转。

另一方面,短路阻抗大的,产品的几何尺寸相对增加,即材料要增加,制造成本加大。

如果太小,短路电流大,变压器所承受的短路力会大,为防止对设备的破坏,设备选型等都要增加短路容量,经济不划算。

所以,在选取变压器短路阻抗这个数值时要综合考虑,综合考虑,综合考虑。

重要的事要说3遍,因为我不懂。

四、变压器并列运行负荷分配计算?
在变压器允许并列运行的前提下,变压器并列运行时(一般是多回路同时投入变压器并联运行),各变压器负荷分配与什么有关呢?当然不是变比,因为是并列运行的变压器变比都是相同的,那是容量?短路阻抗?额定电流?空载电流?铁损?
一般情况下,其实变压器并列运行负荷分配值只与变压器的短路阻抗有关(短路阻抗一般与变压器容量成非线性正比关系),变压器并列运行负荷分配值与变压器的短路阻抗是成反比的关系。

上面是个万能的图片,是今天所讲内容的关键,可参考理解。

例如,两台变压器容量一致,总负荷是1000kW,1号变压器短路阻抗4.7%,2号变压器短路阻抗5.3%,那么1号变压器、2号变压器负荷分别是多少,现在你应该知道了吧。

拓展:另一种情况是,两台变压器容量相差较大时(一般这种情况不建议并列运行,尤其满负荷或接近满负荷运行时,绝对不能并列运行,这里只是说一下负荷分配计算方式),也要考虑容量来计算,稍微麻烦一点,但这个公式是通用的。

一台变压器容量12500kVA,短路阻抗4.5%;另一台变压器容量6300kVA,短路阻抗4%,求他们的负荷分配比例。

ρ——负荷系数
S——总负荷,kVA
Ud——短路阻抗
Se——额定容量,kVA
那么第1台变压器负荷为:
0.96×12500=12000kVA
第2台变压器负荷为:
1.08×6300=6804kVA
这样也能求出负荷分配比例了。

明显可以看出,满负荷运行时,阻抗值小的变压器所带的负载已超出其额定容量,这样是绝对不允许的。

所以有规定说变压器并列运行必须保证短路阻抗值一样,正是基于这个原因。

所以说要使不同参数的变压器的容量都得到充分利用,保证系统安全经济运行,容量大的变压器的Ud还应小于容量小的变压器的Ud。

相关文档
最新文档