天文导航的原理及应用

合集下载

天文导航概述

天文导航概述

p
地面真地平 地心真地平
A ht’ ht 90o-ht PG ht
ht=ht’+p
天文船位圆: 圆心:天体地理位置PG 半径:90o-ht
第二节 天文导航主要内容
➢ 1、为了确定天体地理位置PG:天球坐标 ➢ 2、天体在天球坐标系中的位置变化是有规律的:天体视
运动 ➢ 3、天体位置随时间变化:精确时间(时间系统)对应精
航海学简介
航海学(Navigation)
研究有关船舶在海上航行的航线选择与 设计、船位的测定和各种条件下的航行方 法等重要问题,为船舶安全、经济航行提 供保障。
航海学主要研究内容
航线拟定 确定船位: 测定船位--陆标定位 (地文航海)
--天文定位 (天文航海)
--无线电定位 (电子航海)
航行方法:大洋航行、沿岸航行、狭水道航行
特殊条件下航行(雾中、冰区航行)
天 文 导航
第一章 概论
天文定位是利用天体在海上进行定位的 技术,是船舶在大洋航行时获取船位非 常重要的一种方法。
可供定位天体:恒星、太阳、月亮和行 星
第一章 概论
➢ 十九世纪Βιβλιοθήκη 页,由法国航海家圣·希勒尔 (St.Hilaire)提出的高度差法又称截距法
➢ 优点:设备简单、可靠,观测的目标是自 然天体而不受人控制,不发射任何声、光 和电波而具有隐蔽性等。
确位置 ➢ 4、为了得到天文船位圆半径:测天体高度(六分仪) ➢ 5、根据天体地理位置及天文圆半径:天文定位
谢谢欣赏
THANK YOU FOR WATCHING
➢ 缺点:受自然条件限制,不能全天候导航, 必须人工观测,计算繁琐等
第一节 天文定位基本概念
距离定位原理

天文导航

天文导航

式中 r x 2 y 2 z 2 为卫星位置矢量参数
(x,y,z)卫星在惯性坐标系下X、Y、Z方向的位 置 (vx,vy,vz)卫星在惯性坐标系下X、Y、Z方向的 速度 μ是地心引力常数 J2为地球引力系数 ДFx、 ДFy 、 ДFz为地球非球形的高阶摄动、 日月摄动以及太阳光压力摄动和大气摄动 等
2,星光仰角:指从飞行器上观测到的导航恒星与
地球边缘的切线方向之间的夹角
s Υ 星光仰角
飞行器
r
Re 地球
飞行器轨道

Re sr arcsin 星光仰角Υ的表达式为: arccos r r
Re sr arccos arcsin 星光仰角Υ的表达式为: r r 其中r是卫星在地心惯性球坐标系中的位置
dx dt v x dy v y dt dz v z dt z2 dv x x 1 J Re 7.5 2 1.5 Fx 2 3 dt r r r dv y y z2 Re 3 1 J 2 7 . 5 2 1. 5 Fy r r r dt z z2 Re dv z 7. 5 2 4 . 5 Fz dt r 3 1 J 2 r r
地球卫星的轨道动力学模型为二体问题,
其天文导航系统的模型相对简单,我们 以地球卫星为例学习基于轨道动力学的 自主天文导航原理。 根据原理,自主天文导航包括三个部分: 1,建立系统的状态模型 2,建立量测模型 3,估计
1,建立系统的状态模型(状态方程)
系统状态模型即卫星轨道动力学模型

第4章 天文导航(4课时)

第4章 天文导航(4课时)

2 现代天文导航
2.2 常用天体敏感器(3)
1)太阳敏感器 (2)
天文导航
38
2 现代天文导航
2.2 常用天体敏感器(4)
天文导航
2)星敏感器(1) 敏感恒星的辐射并测量飞行器相对于该恒星方 位的一种光学姿态敏感器 star sensor 恒星的张角非常小,测量精度很高,是当前测 量精度最高的姿态敏感器 星光非常微弱,信号检测比较困难,需要使用 高灵敏度的图像传感器(CCD) 星敏感器是星跟踪器(star tracker) 的一部分 ,星跟踪器需要安装星敏感器才能发挥跟踪星体的 作用。 39
是航海人员所应掌握的主要导航方法之一,
同时它也是衡量航海人员基本素质的标准。
33
2 现代天文导航
天文导航
现代天文导航的定位是通过敏感器观测
天体来确定载体位置。
弹载天文导航 星载天文导航 航天器天文导航 机载天文导航 34
2 现代天文导航
2.1 航天器天文导航
天文导航
在航天器飞行过程中,那些便于用星载
1970年 美 超音速运输机 天文/惯性/多普勒组合
B2 天文/惯性 前苏联 第一代洲际弹道导弹SS-8 天文/惯性制导 目前各种导弹、精确制导炸弹 制导方式之一
29
1 概论
1.4 天文导航的军事应用(3)
卫星和宇宙飞船等的天文导航
天文导航
星体敏感器、红外地平仪和空间六分仪等设备 深空探测航天器自主导航 天文导航或惯性导航 GPS只用于深空探测航天器近地段的导航
1.1 天文航海(4)
天文导航
夫乘舟而惑者,不知东西,见斗极则悟矣。
——西汉《淮南子·齐俗训》
夫群迷乎云梦者,必须指南以知道;竝(并)

星星的指引:宇宙中的导航之谜

星星的指引:宇宙中的导航之谜

1. 人类自古以来就对星星抱有着浓厚的兴趣和好奇心。

除了美丽的景观,星星还帮助人们在夜晚找到方向。

然而,星星的作用不仅止于此。

在宇宙中,星星扮演着重要的角色,为航海家、航天员和科学家提供了宝贵的导航工具。

2. 这是一个神秘而庞大的宇宙,在这个宇宙中,星星点缀其中。

通过观察星星的位置、亮度和运动,人们发现了一种独特的导航方法,称为天文导航。

在没有现代技术的年代,人们依靠星星来指引方向,探索未知的领域。

3. 天文导航的基本原理是依靠星星的位置和运动来确定自身的位置和朝向。

当人们知道自己所处的位置,他们就可以预测星星的位置和运动,并以此为基准来导航。

这需要观察和记录星星的位置和亮度,以及它们与其他星体的相对位置。

4. 在古代,人们用简单的工具如十字杖和星盘来进行天文导航。

十字杖是一种测量天体角度的工具,而星盘则是一个可旋转的圆盘,上面标有星座和星体的位置。

通过将星盘对准特定的星体,人们可以确定自己所处的位置,并根据它们的运动来导航。

5. 随着科学和技术的进步,天文导航变得更加精确和高效。

现代天文导航使用先进的设备和技术来观察和记录星星的位置和运动。

卫星导航系统如全球定位系统(GPS)利用多颗卫星的信息来确定地面接收器的位置和时间。

6. 天文导航不仅在地球上发挥着重要作用,还在太空探索中起到关键性的作用。

航天员们依靠星星来确定他们的位置和飞行方向。

他们使用星座和特定的亮星来导航,确保他们的航天器在正确的轨道上飞行。

7. 此外,天文导航对于深空探测任务也至关重要。

当航天器远离地球时,GPS等卫星导航系统无法提供准确的定位信息。

在这种情况下,天文导航成为唯一的选择。

科学家们通过观测和计算星星的位置和运动来确定航天器的准确位置,以便进行精确的导航。

8. 天文导航不仅仅是为了寻找方向,它还在科学研究中起着重要作用。

通过研究星星的位置和亮度变化,科学家可以深入了解宇宙的演化和结构。

他们可以利用星星的信息来研究恒星的生命周期、星系的形成和演化,以及宇宙的起源和命运。

天文导航基础(四)

天文导航基础(四)

探测器上自身携带的量测设备,通过观测天体 进行天文导航的方法。
5.4深空探测器的自主天文导航
天文导航作为辅助导航手段
水手9号拍摄的火卫二图像
海盗号的天文导航
5.4深空探测器的自主天文导航
海盗号的天文导航
水手9号的天文导航
5.4深空探测器的自主天文导航
旅行者号的拍摄的海王星及其卫星
5.4深空探测器的自主天文导航
深空探测器天文导航的关键技术和发展趋势 • 一类是与自主天文导航理论和方法相关的关键技术; • 一类是与导航系统硬件相关的关键技术。
天文导航理论 状态方程的精确建模 新型测量原理和相应量测方程的建立 先进滤波方法及相应的理论在天文导航中的应用 天文组合导航方法
5.4深空探测器的自主天文导航
天文导航系统技术
观测量示意图
5.1.3基于 “日-地-月”导航
通过观测日-地-月信息,确定地心赤道惯性坐标系下的 航天器位置矢量。
几何关系及观测量示意图
5.1.3基于 “日-地-月”导航
几何关系示意图
5.1.4基于星光折射的天文导航方法
• 通过星光折射间接敏感地平方法,是80年代初发 展起来的一种航天飞行器低成本自主定位方案。
5.4深空探测器的自主天文导航
观测量及观测方程
行星的视角
恒星仰角
5.4深空探测器的自主天文导航
观测量及观测方程
掩星观测
5.4深空探测器的自主天文导航
观测量及观测方程
一个近天体和一个远天体间的夹角
夹角确定的位置面
5.4深空探测器的自主天文导航
观测量及观测方程
两个近天体间的夹角确定位置面
两个近天体间的夹角
5.5射电天文导航

天文导航1

天文导航1


如图所示,飞行器与近天体1(例如地球) 的单位位置矢量为 re ,近天体1与3颗导航恒
星的单位方向矢量为 s1 , s 2 , s3 ,A , A , A 的补角分 别为3次观测得到的3个量测量。可得到如 下方程:
1 2 3
恒星1
圆锥1
S1
航天器 S2 A1 Y 行星 R1 O X 圆锥3 A3 L1 S3 恒星3 A2 圆锥2 恒星2
这一几何描述也可用矢量公式表达。设i为 由近天体到恒星视线的单位矢量,这一矢 量的方向可由天文年历计算出来;r为近天 体到飞行器的位置矢量,r为未知量,由矢 量点乘关系可得位置面的数学描述为:
r i r cos A
其中A为已知的观测量。
近天体/飞行器/近天体
在图2.8中V为飞行器,P1、P2为两个近 天体,在t时刻由飞行器载仪表对P1和P2 进行天文测量,通过测量可求得P1与P2 间的夹角A。由几何关系可知,这时的位 置面是以两近天体连线为轴线,旋转通过 这两点的一段圆弧而获得的超环面,这段 圆弧的中心O在P1P2连线的垂直平分线 上,圆弧半径R与两近天体之间的距离rP 以及A的关系为
天文导航
1,概述
2,天文导航位置面的概念
3,基于纯天文几何解析法的天文导航原理
4,基于轨道动力学方程的天文导航原理
§2.1 概述
天文导航:以已知准确空间位置的自然天体
为基准,通过天体测量仪器被动探测天体位 置,经解算确定测量点所在载体的导航信息。 Βιβλιοθήκη 天器天文导航是通过观测天体来测定飞行
中的航天器所在位置的技术。
系统状态方程简写为:
X (t ) f ( X , t ) w(t )
式中,状态矢量 X [ x

天文导航第10章 星光折射间接敏感地平天文导航方法

天文导航第10章 星光折射间接敏感地平天文导航方法

位置估计误差
1200
速度估计误差
6
估计误差
滤波方差
1000
5
估计误差 滤波方差
800
4
600
3
400
2
200
1
0 0
50
100
150
200
250
300
350
400
0 0
50
100
150
200
250
300
350
400
t /min
t /min
位置估计误差约150m(1σ),速度估计误差约0.18m/s(1σ)。
150
100
50
0
0
1
2
3
4
5
6
折射角获取精度 /″
30
天文导航原理及应用
10.3.2 影响因素分析
3、一个轨道周期内折射星观测次数
位置估计精度/m
500
450
400
350
300
250
200
150
100
50
200
400
600
800
1000
1200
1400
1600
一个轨道内观测折射星出现的次数
31
天文导航原理及应用
时间/min
速度估计误差
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
0
50 100 150 200 250 300 350 400 450
时间/min
图 1 在大气高度 20km-25km 范围内基于折射角的仿真结果

船用天文导航设备在船只导航中的实际应用案例分析

船用天文导航设备在船只导航中的实际应用案例分析

船用天文导航设备在船只导航中的实际应用案例分析导航是船只航行过程中不可或缺的一部分。

随着科技的发展,船用导航设备也得到了广泛应用。

其中,船用天文导航设备以其高精度和可靠性受到了广泛关注。

本文将以三个实际应用案例为例,分析船用天文导航设备在船只导航中的实际应用。

案例一:利用星座导航确定船只位置在航行过程中,准确确定船只的位置是至关重要的。

传统的GPS设备可以满足大多数船只的导航需求,但在某些特殊情况下,GPS信号可能受到干扰或无法到达。

船用天文导航设备则可以提供一种备选的导航方法。

一艘渔船在某天晚上遭遇了GPS信号干扰,无法准确确定船只的位置。

船长立即启用了船用天文导航设备。

通过观察夜空中的星座,并结合已知的星座图表,船长确认了船只的位置。

随后,渔船成功找到安全水域,并顺利完成了本次航行任务。

案例二:借助船用天文导航设备规避危险区域在航行中,船只需要避开危险区域,以确保航行安全。

船用天文导航设备可以提供精确的星体位置信息,帮助船只规避潜在的危险。

一艘货船在航行过程中接近一个浅滩,某个特定时刻则是浅滩最为危险的时刻。

船长利用船用天文导航设备观测了星体的位置并进行了计算,确定了当前的时间。

船长发现此时距离浅滩最近,因此立即采取了措施改变航向,成功避开了浅滩。

案例三:使用船用天文导航设备辅助路线规划船只航行时需要制定合理的航线,以优化航行时间和燃料消耗。

船用天文导航设备提供了精确的星体位置信息,可以辅助航线规划。

一家货运公司需要将货船从一个港口运送到另一个港口。

为了选择最佳航线,船长使用船用天文导航设备观测了多个星体的位置。

根据观测数据和预先设定的路线参数,船长计算出最经济且最快捷的航线。

货船遵循这条航线航行,最终成功抵达目的港口。

综上所述,船用天文导航设备在船只导航中具有重要的实际应用价值。

它可以帮助船只在GPS信号受干扰或无法到达时确定位置,规避危险区域,并辅助航线规划,优化船只航行的效率和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天文导航的原理及应用
天文导航是以太阳、月球、行星和恒星等自然天体作为导航信标,以天体的地平坐标(方位或高度)作为观测量,进而确定测量点地理位置(或空间位置)及方位基准的技术和方法。

航空和航天的天文导航都是在航海天文导航基础上发展起来的。

航空天文导航跟踪的天体主要是亮度较强的恒星。

航天中则要用到亮度较弱的恒星或其他天体。

以天体作为参考点,可确定飞行器在空中的真航向。

使星体跟踪器中的望远镜自动对准天体方向可以测出飞行器前进方向(纵轴)与天体方向(即望远镜轴线方向)之间的夹角(称为航向角)。

由于天体在任一瞬间相对于南北子午线之间的夹角(即天体方位角)是已知的。

这样,从天体方位角中减去航向角就得到飞行器的真航向。

通过测量天体相对于飞行器参考面的高度就可以判定飞行器的位置。

以地平坐标系在飞行器上测得某星体C的高度角h,由90°-h 可得天顶距z(图1),以星下点(天体在地球上的投影点)为圆心,以天顶距z所对应的地球球面距离R为半径作一圆,称为等高圆(图2)。

在这个圆上测得的天体高度角都是h。

同时测量两个天体C1、C2,便得到两个等高圆。

由这两个圆的交点得出飞行器的实际位置M 和虚假位置M′。

再用飞行器位置的先验信息或第三个等高圆来排除虚假位置,经计算机解算即得出飞行器所在的经、纬度(λ、φ)。

天文导航的分类
按星体的峰值光谱和光谱范围分,天文导航可分为星光导航和射电天文导航。

观测天体的可见光进行导航的叫星光导航,而接收天体辐射的射电信号(不可见光)进行导航的叫射电天文导航。

前者可解决高精度昼夜全球自动化导航定位,后者可克服阴雨等不良天气影响,通过探测射电信号进行全天候天文导航与定位。

根据跟踪的星体数,天文导航分为单星、双星和三星导航。

单星导航由于航向基准误差大而定位精度低,双星导航定位精度高,在选择星对时,两颗星体的方位角差越接近90°,定位精度越高。

三星导航常利用第三颗星的测量来检查前两次测量的可靠性,在航天中,则用来确定航天器在三维空间中的位置。

仪器和系统航空常用的天文导航仪器有星体跟踪器、天文罗盘和六分仪等。

自动星体跟踪器(星敏感器)能从天空背景中搜索、识别和跟踪星体,并测出跟踪器瞄准线相对于参考坐标系的角度。

天文罗盘通过测量太阳或星体方向来指示飞行器的航向。

六分仪通过对恒星或行星的测量而指示出飞行器的位置和距离。

天文导航系统通常由星体跟踪器、惯性平台、计算机、信息处理电子设备和标准时间发生器等组成。

星体跟踪器是天文导航系统的主要设备,一般由光学望远镜系统、星体扫描装置、星体辐射探测器、星体跟踪器信号处理电路和驱动机构等组成(图3)。

它通过扫描对星体进行搜索,搜索到星体之后立即转入跟踪状态,同时测出星体的高度角和方位角。

星体跟踪器的辐射探测器在飞机上较多采用光电倍增管和光导摄像管,在航天器上较多采用光导摄像管和析像管。

电荷耦合器件是70年代发展起来的一种探测器,它体积小、灵敏度高、寿命长,不用高压供电,能直接获得精确的空间信息,近年来在飞机、导弹、航天飞机和卫星上得到广泛应用,并为星体跟踪器小型化创造了条件。

天文导航应用
天文导航经常与惯性导航、多普勒导航系统组成组合导航系统。

这种组合式导航系统有很高的导航精度,适用于大型高空远程飞机和战略导弹的导航。

把星体跟踪器固定在惯性平台上并组成天文-惯性导航系统时,可为惯性导航系统的状态提供最优估计和进行补偿,从而使得一个中等精度和低成本的惯性导航系统能够输出高精度的导航参数。

在低空飞行时因受能见度的限制较少采用天文导航,但对于高空远程轰炸机、运输机和侦察机作跨越海洋、通过极地、沙漠上空的飞行,天文导航则很适用。

对于远程弹道导弹,天文导航能修正发射点的初始位置和瞄准角误差,所以特别适用于机动发射的导弹。

弹道导弹可在主动飞行段的后期使用天文
导航,也可借天文导航完成再入后的末制导用以修正风的影响。

星体跟踪器对星体的瞄准能建立精确的几何参考坐标,并且在空间没有云的干扰,因而天文导航(星光制导)在航天器上得到更广泛的应用。

美国1995年开始的导航战研究结果表明,GPS系统在未来战争中可能谁都无法使用,为此更加注重研究和实施两种以上导航体制并存的格局,并特别强调天文导航系统应用的重要性。

天文导航以其定向精度高、可靠性好及稳定性优越的特点,被广泛地应用于军事领域。

从一般的航海六分仪到自动的星体跟踪器,到潜艇专用的天文导航潜望镜定位系统,又到飞机、导弹的天文定位系统,进而到卫星与航天飞机的星体跟踪器与空间六分仪。

天文导航不仅能够独立地为运载体提供航向、位置信息,而且还可用于航空航天和航海领域对惯导系统的定位误差校正。

天文导航的实际应用例子举不胜举,从1959年美国第一艘导弹核潜艇上的“11型”天文导航潜望镜、1964年7月装备在“阿诺德将军号”上的FAST星体跟踪器、“享茨维尔”号测量船上的NAST系统、1970年装备在超音速运输机上的LN-20、1984年在麦克级(MIKE)核潜艇上安装的“鳍眼”射电六分仪和光学(天文)跟踪装置、1987和1988年对LN-20的两次改进,1993年法国凯旋级弹道导弹核潜艇上的M92型光电六分仪,直到1997年开始服役的NAS一27天文导航单元等等,都是天文导航的实际应用。

目前,美军的B-52、FBlll、B-1B、B-2A、C-141A、SR-71、俄罗斯的TU-16、TU-95、TU-160等都装有天文导航设备。

尤其是,1990年美国海空发展中心和诺斯洛普公司联合推出的天文导航系统定位精度达到60英尺,标志着传统的天文导航理论和技术已经取得长足的进展。

相关文档
最新文档