外文翻译:探讨汽车轮胎滚动阻力以及测试技术
毕业设计翻译

山东理工大学毕业设计(论文)外文翻译资料英文题目:Experimental verification and finite element modeling of radial truck tireunder static loading翻译题目:车辆轮胎径向固有频率和阻尼系数的研究学院:交通与车辆工程学院专业:车辆工程学生姓名:王臣指导教师:刘瑞军车辆轮胎径向固有频率和阻尼系数的研究摘要--车辆轮胎径向固有频率和阻尼比的测量方法已经有所研究。
从小客车轮胎到货车巴士轮胎的径向固有频率和阻尼比都已经被报道。
轮胎的径向模态参数承受不同水平的充气压力,已通过使用频率响应函数的方法来确定。
为了获得理论上的固有频率和振型,轮胎的平面振动已被建模为貌似一个圆形光束的模型。
使用Tielking方法是基于Hamilton原理,理论结果证实旋转速度,切向和径向刚度,径向速度和拉力是由于轮胎的充气压力造成的。
结果表明,实验条件下可以认为是参数改变了固有频率和阻尼比。
关键词-阻尼比、频率响应函数法、充气压力、模态振型、径向固有频率、子午线轮胎1. 引言在当今世界,通过减少汽车的震动,提高驾驶的质量具有重要意义。
通常情况下,很多汽车的振动来源于刚发动的时候,振动速率的影响逐渐增加。
特别是,轮胎不仅作为初始旋转接触路面,从路面影响传送到汽车的主体进入汽车的内部,而且,在于轮胎已经对增强乘坐的质量有很大的影响。
回顾在轮胎振动上已建立的研究,Tielking研究飞机充气轮胎的振动特性,假定轮胎的运动是圆形壳的运动。
有Tielking理论的基本原则,Bohm通过研究轮胎运动和静止的特征同时假设轮胎是弹性环,提出了轮胎的运动方程。
Bohm用实验的方法来验证了他的方程。
Barons也研究了振动对旋转轮胎的影响。
Potts等人建模的轮胎为薄环,并考虑到质量和几何形状研究了轮胎的固有频率。
Soedel 和Prasad等人用分析方法研究了轮胎在路表面载荷下的振动特性,例如,解释在自由状态下的振动特性。
轮胎滚动阻力影响因素及测试方法

轮胎滚动阻力影响因素及测试方法
何燕;张忠富
【期刊名称】《轮胎工业》
【年(卷),期】2004(024)004
【摘要】分析影响轮胎滚动阻力的因素并介绍滚动阻力测试方法.在胎面胶中合理使用BR、S-SBR、白炭黑和高芳烃油,骨架材料使用芳纶帘线,均可降低轮胎滚动阻力.此外,轮胎的子午化、扁平化和无内胎化的结构变化也可有效降低滚动阻力.滚动阻力测试方法主要有测力法、测扭矩法、测功率法和测减速度法.
【总页数】4页(P238-241)
【作者】何燕;张忠富
【作者单位】华中科技大学,能源与动力工程学院,湖北,武汉,430074;青岛石油化工厂,山东,青岛,266042
【正文语种】中文
【中图分类】TQ336.1;TQ330.7+3
【相关文献】
1.轮胎滚动阻力影响因素及测试方法研究 [J], 韩福涛;苏杰;刘晓民;邢力;毛成涛;黄蒲;史松杰;满忠雷;张少岩
2.轮胎滚动阻力影响因素及测试方法研究 [J], 韩福涛;苏杰;刘晓民;邢力;毛成涛;黄蒲;史松杰;满忠雷;张少岩;
3.轮胎滚动阻力测试方法研究 [J], 陈绪飞;徐艳林
4.轮胎滚动阻力测试方法分析 [J], 谢海粟
5.轮胎滚动阻力测试方法分析 [J], 谢海粟
因版权原因,仅展示原文概要,查看原文内容请购买。
国内外轮胎滚动阻力试验方法及影响因素分析

国内外轮胎滚动阻力试验方法及影响因素分析一、引言轮胎的滚动阻力是指轮胎在运动过程中与地面之间相互摩擦产生的阻力。
滚动阻力不仅直接影响车辆的燃油经济性能,还与车辆的操控性、行驶稳定性等密切相关。
因此,研究轮胎滚动阻力试验方法以及影响因素的分析具有重要的理论和实际意义。
二、试验方法1.滚动阻力试验仪滚动阻力试验通常使用滚动阻力试验仪进行。
该试验仪由电机、加载装置、计算机数据采集系统等组成,能够模拟车辆在实际行驶过程中轮胎与地面之间的相互作用。
2.试验条件滚动阻力试验需要控制一些试验条件,如载荷、速度、温度、湿度等。
载荷是指施加在轮胎上的作用力,通常以静态载荷或动态载荷形式存在。
速度是指轮胎在试验过程中运动的速度,不同的速度下滚动阻力也会有所变化。
温度和湿度的变化可能对轮胎材料的性能产生影响,因此也需要在试验过程中进行相应的控制。
3.试验过程滚动阻力试验的过程一般包括以下几个步骤:将轮胎安装在试验机上,设定好试验条件,启动试验仪进行测试,采集测试数据并进行分析与处理。
1.轮胎结构轮胎的结构对滚动阻力具有重要影响。
胎面花纹、胎壁硬度以及胎体材料等因素均会影响轮胎与地面之间的摩擦情况,从而影响滚动阻力的大小。
2.载荷大小载荷大小是影响轮胎滚动阻力的重要因素之一、较大的载荷会使轮胎与地面之间的接触面积增大,从而增加了摩擦力,导致滚动阻力增加。
3.车辆速度车辆速度也是影响轮胎滚动阻力的重要因素。
较高的速度使轮胎在与地面接触时所受到的压力变大,从而增加了滚动阻力。
4.轮胎温度和湿度轮胎的温度和湿度的变化也会对滚动阻力产生一定的影响。
一般来说,较高的温度和湿度会导致轮胎材料的硬度降低,从而增加了滚动阻力。
5.地面条件地面的情况也会对轮胎滚动阻力产生影响。
不同类型的地面摩擦系数不同,因此会导致轮胎滚动阻力的变化。
综上所述,轮胎滚动阻力试验方法的选择以及影响因素的分析对于优化轮胎设计、提高车辆燃油经济性能具有重要意义。
中英文文献翻译-汽车车轮侧滑量检测存在问题及对策研究

附录B 外文文献Problems in Measurement of Automotive Wheel Side Slip and Corresponding Counter MeasureOn the basis of analyzing the generation mechanism of side slip,problems in measurement of side slip,such as great degree of separation,judgment out of truth,etc.,are discussed.It is pointed out that,besides velocity,load,tire pressure,etc.,technical state of side slip testing bench,design of measurement station are also reasons for these problems.In order to resolve these problems,effective measures for ensuring accuracy of measuring results and correct judgment,such as keeping stable measurement condition,developing reasonable standards and application of advanced measurement technology,etc.,are presented.Through the test of the verification of lateral spreads, often finds the over-error of indication, the reason caused there are basically two aspects: one is the mechanical reasons, mainly is sliding board, linkage institutions and back to zero institutions, clearance by increasing wear parts, 2 it is the cause of the electrical testing instruments, or within the sensor electronic devices, zero drift, aging resistance changes caused by damage or element. Adjust the method is as follows:Machinery examinationuse spring tension plan, check the pull and back to zero.The size of the tension and back to the stand or fall of zero depends on two aspects, one is the lubrication system is good or bad, 2 it is back to zero spring aid. The reason for the first on the one hand, the measures should be taken under the skateboard is: check the roller and guide them and clean or replace, check the two pieces of board of middle guide bearing and other bearing and to clean or replace. For the second reasons, the measures should be taken to ensure that is: in zero error is not exceeds the premise cut loose "back to zero spring". Due to the reason of tension on the structure, the size and back to the stand or fall of zero is a pair of contradictory, and the tight "back to zero spring" is back to zero, but pulling force change, the pine "back to zero spring" is pulling force small, but back to zero is not good. So in the adjustment of the "back to zero spring" must give consideration to the tension and back to zero 2 a index.check and adjustment of the synchronicityTo use two pieces of BaiFenBiao inspection. Each of the installation board a BaiFenBiao, zero initiative after the completion of the push board (with sensors on one side of the), check the value of two pieces of BaiFenBiao, can read the stand or fall of synchronicity. In the only a piece of BaiFenBiao, will BaiFenBiao into the driven plate, and direct contact with the initiative of the sensor board displacement can be through the measurement instrument to display. The causes of error synchronicity has the following two aspects, on the one hand, the skateboard steering mechanism of bearings between the cause, followed by linkage institutions synchronous lever uniform creates. The form is not identical also, bearing clearance cause of synchronization is generally two pieces of skateboarding is a constant, the length of the board has nothing to do with promoting, and linkage institutions synchronous lever errors is a variable, the error will move along with the skateboard increased. If the driven plate, the value of the larger, driven plate that leverage far away from central shaft, if driven plate, the smaller the driven plate that values from the center axis is close to leverage, adjust any a board, just pay attention to the direction of the adjustment.附录C外文文献的中文译文汽车车轮侧滑量检测存在问题及对策研究通过对侧滑试验台的检定,往往会发现示值超差,造成的原因基本上有两个方面:一是机械方面的原因,主要是滑动板、联动机构及回零机构机件磨损,间隙增大所致,二是电气方面的原因,测试仪表或传感器内的电子器件老化、零点漂移、阻值变化或元件损坏所致。
轮胎压力监测中英文对照外文翻译文献

中英文资料外文翻译文献参考文献Monitoring the Tire Pressure at Cars Using Passive SAW SensorsAbstract:In our paper we present the application of surface acoustic wave (SAW) sensors to the continuous manitaring of the tire pressure in road ve hicles. With these, the tire pressure can be read out in every phase of driving. We show the implemented prototype setup for measurement of the tire pressu re, the applied SAW sensors, improved versions and the interrogation setup. The problems in practical application are discussed. Experimental result s measuring the tire pressure during test rides are presented.INTRODUCTIONOperating a road vehicle, a malfunction of the tires in motion due to a tire puncture can cause serious accidents and endanger human life. Furthermore, nowadays manufacturers of cars try to save the spare wheel in vehicles. Usually it only costs weight and space, therefore it yields a higher fuel consumption,although it will be required less than one time in more than ten years of a car's life. This only can be done, if the air pressure in the tires can be measured even during driving. Currently used sensors contain active components, powered by a Lithium battery. The mass of these sensor assemblies is about 20 grams causing high dynamic load. A few years ago,wirelessIy interrogable SAW devices far sensor applications were invented. [1,2, 3]. Using an one port SAW delay line connected to an antenna only, an RF interrogation signal is fed into and the sensor response,carrying thesensor information is retransmitted wirelessly to the interrogator. These sensors are capable for measurement of temperature, mechanical load, force and displacement, etc. The advantage is, that SAW sensors are totally passive devices and contain neither power supply nor semiconductors. They withstand temperatures up to several hundreds of degree centigrades, their lifetime is much longer than that of battery powered systems.Further,in vehicles strong electromagnetic pollution is generated by ignition systems etc.SAW sensors operate without risk of damage even in rough environments. First we discuss pressure measurement employing SAW sensors with wireless interrogation.We present some types of sensor assemblies and the interrogation system.Next we discuss the implementation into thecar and thenwepresent experimentally results.Finally a brief summary concludes the content of the paper.SAW PRESSURE SENSORSThe electrical behaviour of a passive SAW pressure sensor always is that of a one port delay line with multiple reflectors or a resonator,respectively. In the delay linecase,the interrogator transmits a burst signal,the sensor responds with a chain of bursts,one for every reflector arranged at the substrate's surface.The differential delay between two or more response signals is evaluated.To measure some physical value,the parameter has to be converted into a change of sensor's surface length or surface acoustic wave's velocity,respectively.The delay ri of the response of areflector i is the ratio of SAW propagation length Li on the substrate's surface and propagation velocityv,.Affecting the sensor with a measurand causes a scaling of the sensor's response to be observed as individual delay shifts Ari of the response signals si originating frotmhe reflectors i.Mechanical measurands can be collected by loading the sensor mechanically.Apart from stretching and compressing,utilized for wireless measurement of torque,etc.the SAW sensor's substrate can be bent.Pressure can affect the sensor by bending a membrane,shifting the edge of a sensor fixed on theother side.Here the sensor is loaded to be bent due to a shift of the center of a membrane loaded by the pressure.On the other hand the sensor can directly be fitted to the membrane or a piezoelectric membrane representing the SAW substrate can be used.Figure 1 shows these methods.Fig.1:a)Membrane converting pressureto shift bendingthe SAW sensor(SAWS)b)SAW sensor fitted to the membraneThe next step is to cover the sensor membrane by a cap consisting of a spacer frame and a quartz cover plate.This yieldsanintegratedpressure chamber SAW sensor[4](fig.2).Fig.2:Integrated pressure chamber SAW sensorThecover protects theSAW generating metallic structure from oxidation and thesurface from dust.The cavity can befiIledwith a gas at reference pressure.If the cavity is evacuated,absolute pressure values can bemeasured.Measurement is made byinterrogationusing simple RF burst signals.The response impulses are evaluated in magnitude and phase.Bending the membrane due to pressure loadyields a phase shift of for instance 100 degree for lo4 Pascal.With this theairpressure in car tires can be measuredwith a resolutioonf approx.IO'Pascal(0.01 Bar).To reduce the amount of data to process,for the implementation in cars the resolution was reduced to 50 mBar.IMPLEMENTATIONThe first prototype used for the experimental measuremenwtsas a pressure chamber with a membrane made of brass.The sensor unit was fitted to a hub cap andwas connected to the valve by a pressure assembly(fig.3).Fig.3:First prototype of pressure chamber formeasurement of tire pressureFor serial manufacture the sensor system~have tobe much smaller and able to be integrated in the tire.Therefore we implemented the integrated pressure chamber(fig.2)into the tire.The sensor was fixed to the rim,the metallic valve shaft was used as the sensor's antenna(fig.4).Fig.4:Integrated pressure chamber fixed to the rim,valve used as antennaFoirmproved implementation a sensor assembly only fitted to the valve was developed(fig.5).The total mass of the unit is only a few grams,the dynamic load is small even driving at high speed.Fig.5:Pressure sensor forfitting into the valve shaftThcear based interrogation system uses space diversity to distinguish the sensors in the tires.Therefore below every car wing an antenna has to be employed.We used coaxial cables,hut it is difficult and expensive to use them in cars.Our investigationsshow the applicability of twisted pair wires too.Fig.6:Interrogation antenna on carFor measurement we developed a small sized interrogation system transmitting bursts and looking for the phase shift between the response signal bursts.The system was controlled by a one chip microcontroller and abisle to display the measurement result on aLCD display.In fig.7 a photograph of the system is shown.Fig.7:System for wireless interrogation of passiveSAW sensors(50 x 100 x 160 mm’)MEASUREMENTRESULTSTo test our sensors and our system we made a lot of test rides within the area and around the city of Vienna.The interrogation system was coupled to alaptop computer.The pressure values were measured and recorded to a file. Thefigures 8 and 9 show characteristic behaviour of tire pressure for different driving conditions. Due to the shocks from a rugged lane,in the left part of fig.8 the absolute pressure value swings around the mean value by the least significant bit,0.05 Bar.The narrow higher peaks of tire pressure belong to braking maneuvers(the sensor was mounted toa front wheel).The longer increase of tire pressure and the following period of decay is due to riding over a curbstone.The system showed high reliability even when driving in a heavy snow storm. tire pressure[Bar]Fig.8:Tire pressure for different driving conditionsIn figure 9 the pressure in the right front wheel can be observed zoomed in time while passing a two track grade crossing with an adjacent water channel across the lane.Due to the dilapidated arrangement of the grade crossing,hard shocks are transmitted to thecar body causing hard pressure shocks in the tires.Fig.9:Tire pressure crossing a grade crossing withtwo tracks and a water channel across the laneDISCUSSIONSAW sensors with wirelessly interrogation are free of maintenance and withstand high thermal and mechanical load.The measurement performance is comparable to that of competitors.The effort in car based system is higher for SAW sensors,since theactive sensor units transmit preconditioned digital information containing pressure valueand sensor The major advantage of SAW devices in identification. applications,where high revolutions per time occur, is their low mass.The centrifugal force is m.v*/r,with the mass m,the velocity v and the radius r.To minimize dynamic mechanical load,the mass of a system applied to rotating parts should be as low as possible.Whereas conventional sensor units for tire pressure measurements have a mass of approx.20 grams,the integrated pressure sensor itself(fig.5) has a mass of less than one gram.The complete SAW sensor unit's mass in worst case is only a few grams.Conventional systems are powered by a Lithium battery.In case of a worntire,since the battery cannot be checked,the sensor should be replaced too,yielding problems of waste disposal.For a system integrated in the car electronic,it is needless to display the pressure of each tire continuously.Here,only a malfunction should trigger an alert.The system's display can be canceled,reducing system's cost.CONCLUSIONTheadvantagews of passive SAW sensors make thwemell suited for vehicular applications.Especially for measurement of tire pressure low mass and the fact thatthey are free of maintenance makethem to be superior over the competitors.The SAW sensors for pressure measurement,the implementation in tires and the system for interrogation were discussed.Experimental results out of a lot of measurement rides were presented.REFERENCES[l]Reindl,F.Muller,C.Ruppel,WE.Bulst and F.Seifert,Passive surface wave sensors which can be.wirelessly interrogated,International Patent Appl WO 93/13495(1992).[2]Seifert F.,Bulst W.E.,Ruppel C.,Mechanical sensors based on surface acoustic waves,Sensors andActuators,A44(1994)231-239[3]G.Scholl,T.Ostertag,L.Reindl,H.Scherr,0.Sczesny,U.Wolff,Wireless SAW Sensors for Remote Measurement of Physical Parameters,Proc.IEEE Intern.Workshopon Commercial Radio Sensors and Communication Techniques,1997,pp.51-58.[4]H.Scherr,G.Scholl,F.Seifert,R.Weigel,Quartz Pressure Sensor Based on SAW Reflective Delay Line,Proc.IEEE Ultrasonics Symposium 1996,pp.347-350.译文轮胎压力监测在汽车使用被动声表面波传感器摘要:在我们的文件,我们目前的应用表面声波(声表面波)传感器不断的轮胎压力在道路车辆。
汽车轮胎压力监测中英文对照外文翻译文献

中英文资料翻译参考文献Monitoring the Tire Pressure at Cars Using Passive SAW SensorsAbstract:In our paper we present the application of surface acoustic wave (SAW) sensors to the continuous manitaring of the tire pressure in road ve hicles. With these, the tire pressure can be read out in every phase of driving. We show the implemented prototype setup for measurement of the tire pressu re, the applied SAW sensors, improved versions and the interrogation setup. The problems in practical application are discussed. Experimental result s measuring the tire pressure during test rides are presented.INTRODUCTIONOperating a road vehicle, a malfunction of the tires in motion due to a tire puncture can cause serious accidents and endanger human life. Furthermore, nowadays manufacturers of cars try to save the spare wheel in vehicles. Usually it only costs weight and space, therefore it yields a higher fuel consumption,although it will be required less than one time in more than ten years of a car's life. This only can be done, if the air pressure in the tires can be measured even during driving. Currently used sensors contain active components, powered by a Lithium battery. The mass of these sensor assemblies is about 20 grams causing high dynamic load. A few years ago,wirelessIy interrogable SAW devices far sensor applications were invented. [1,2, 3]. Using an one port SAW delay line connected to an antenna only, an RF interrogation signal is fed into and the sensor response,carrying thesensor information is retransmitted wirelessly to the interrogator. These sensors are capable for measurement of temperature, mechanical load, force and displacement, etc. The advantage is, that SAW sensors are totally passive devices and contain neither power supply nor semiconductors. They withstand temperatures up to several hundreds of degree centigrades, their lifetime is much longer than that of battery powered systems.Further,in vehicles strong electromagnetic pollution is generated by ignition systems etc.SAW sensors operate without risk of damage even in rough environments. First we discuss pressure measurement employing SAW sensors with wireless interrogation.We present some types of sensor assemblies and the interrogation system.Next we discuss the implementation into thecar and thenwepresent experimentally results.Finally a brief summary concludes the content of the paper.SAW PRESSURE SENSORSThe electrical behaviour of a passive SAW pressure sensor always is that of a one port delay line with multiple reflectors or a resonator,respectively. In the delay linecase,the interrogator transmits a burst signal,the sensor responds with a chain of bursts,one for every reflector arranged at the substrate's surface.The differential delay between two or more response signals is evaluated.To measure some physical value,the parameter has to be converted into a change of sensor's surface length or surface acoustic wave's velocity,respectively.The delay ri of the response of areflector i is the ratio of SAW propagation length Li on the substrate's surface and propagation velocityv,.Affecting the sensor with a measurand causes a scaling of the sensor's response to be observed as individual delay shifts Ari of the response signals si originating frotmhe reflectors i.Mechanical measurands can be collected by loading the sensor mechanically.Apart from stretching and compressing,utilized for wireless measurement of torque,etc.the SAW sensor's substrate can be bent.Pressure can affect the sensor by bending a membrane,shifting the edge of a sensor fixed on theother side.Here the sensor is loaded to be bent due to a shift of the center of a membrane loaded by the pressure.On the other hand the sensor can directly be fitted to the membrane or a piezoelectric membrane representing the SAW substrate can be used.Figure 1 shows these methods.Fig.1:a)Membrane converting pressureto shift bendingthe SAW sensor(SAWS)b)SAW sensor fitted to the membraneThe next step is to cover the sensor membrane by a cap consisting of a spacer frame and a quartz cover plate.This yieldsanintegratedpressure chamber SAW sensor[4](fig.2).Fig.2:Integrated pressure chamber SAW sensorThecover protects theSAW generating metallic structure from oxidation and thesurface from dust.The cavity can befiIledwith a gas at reference pressure.If the cavity is evacuated,absolute pressure values can bemeasured.Measurement is made byinterrogationusing simple RF burst signals.The response impulses are evaluated in magnitude and phase.Bending the membrane due to pressure loadyields a phase shift of for instance 100 degree for lo4 Pascal.With this theairpressure in car tires can be measuredwith a resolutioonf approx.IO'Pascal(0.01 Bar).To reduce the amount of data to process,for the implementation in cars the resolution was reduced to 50 mBar.IMPLEMENTATIONThe first prototype used for the experimental measuremenwtsas a pressure chamber with a membrane made of brass.The sensor unit was fitted to a hub cap andwas connected to the valve by a pressure assembly(fig.3).Fig.3:First prototype of pressure chamber formeasurement of tire pressureFor serial manufacture the sensor system~have tobe much smaller and able to be integrated in the tire.Therefore we implemented the integrated pressure chamber(fig.2)into the tire.The sensor was fixed to the rim,the metallic valve shaft was used as the sensor's antenna(fig.4).Fig.4:Integrated pressure chamber fixed to the rim,valve used as antennaFoirmproved implementation a sensor assembly only fitted to the valve was developed(fig.5).The total mass of the unit is only a few grams,the dynamic load is small even driving at high speed.Fig.5:Pressure sensor forfitting into the valve shaftThcear based interrogation system uses space diversity to distinguish the sensors in the tires.Therefore below every car wing an antenna has to be employed.We used coaxial cables,hut it is difficult and expensive to use them in cars.Our investigationsshow the applicability of twisted pair wires too.Fig.6:Interrogation antenna on carFor measurement we developed a small sized interrogation system transmitting bursts and looking for the phase shift between the response signal bursts.The system was controlled by a one chip microcontroller and abisle to display the measurement result on aLCD display.In fig.7 a photograph of the system is shown.Fig.7:System for wireless interrogation of passiveSAW sensors(50 x 100 x 160 mm’)MEASUREMENTRESULTSTo test our sensors and our system we made a lot of test rides within the area and around the city of Vienna.The interrogation system was coupled to alaptop computer.The pressure values were measured and recorded to a file. Thefigures 8 and 9 show characteristic behaviour of tire pressure for different driving conditions. Due to the shocks from a rugged lane,in the left part of fig.8 the absolute pressure value swings around the mean value by the least significant bit,0.05 Bar.The narrow higher peaks of tire pressure belong to braking maneuvers(the sensor was mounted toa front wheel).The longer increase of tire pressure and the following period of decay is due to riding over a curbstone.The system showed high reliability even when driving in a heavy snow storm. tire pressure[Bar]Fig.8:Tire pressure for different driving conditionsIn figure 9 the pressure in the right front wheel can be observed zoomed in time while passing a two track grade crossing with an adjacent water channel across the lane.Due to the dilapidated arrangement of the grade crossing,hard shocks are transmitted to thecar body causing hard pressure shocks in the tires.Fig.9:Tire pressure crossing a grade crossing withtwo tracks and a water channel across the laneDISCUSSIONSAW sensors with wirelessly interrogation are free of maintenance and withstand high thermal and mechanical load.The measurement performance is comparable to that of competitors.The effort in car based system is higher for SAW sensors,since theactive sensor units transmit preconditioned digital information containing pressure valueand sensor The major advantage of SAW devices in identification. applications,where high revolutions per time occur, is their low mass.The centrifugal force is m.v*/r,with the mass m,the velocity v and the radius r.To minimize dynamic mechanical load,the mass of a system applied to rotating parts should be as low as possible.Whereas conventional sensor units for tire pressure measurements have a mass of approx.20 grams,the integrated pressure sensor itself(fig.5) has a mass of less than one gram.The complete SAW sensor unit's mass in worst case is only a few grams.Conventional systems are powered by a Lithium battery.In case of a worntire,since the battery cannot be checked,the sensor should be replaced too,yielding problems of waste disposal.For a system integrated in the car electronic,it is needless to display the pressure of each tire continuously.Here,only a malfunction should trigger an alert.The system's display can be canceled,reducing system's cost.CONCLUSIONTheadvantagews of passive SAW sensors make thwemell suited for vehicular applications.Especially for measurement of tire pressure low mass and the fact thatthey are free of maintenance makethem to be superior over the competitors.The SAW sensors for pressure measurement,the implementation in tires and the system for interrogation were discussed.Experimental results out of a lot of measurement rides were presented.REFERENCES[l]Reindl,F.Muller,C.Ruppel,WE.Bulst and F.Seifert,Passive surface wave sensors which can be.wirelessly interrogated,International Patent Appl WO 93/13495(1992).[2]Seifert F.,Bulst W.E.,Ruppel C.,Mechanical sensors based on surface acoustic waves,Sensors andActuators,A44(1994)231-239[3]G.Scholl,T.Ostertag,L.Reindl,H.Scherr,0.Sczesny,U.Wolff,Wireless SAW Sensors for Remote Measurement of Physical Parameters,Proc.IEEE Intern.Workshopon Commercial Radio Sensors and Communication Techniques,1997,pp.51-58.[4]H.Scherr,G.Scholl,F.Seifert,R.Weigel,Quartz Pressure Sensor Based on SAW Reflective Delay Line,Proc.IEEE Ultrasonics Symposium 1996,pp.347-350.译文轮胎压力监测在汽车使用被动声表面波传感器摘要:在我们的文件,我们目前的应用表面声波(声表面波)传感器不断的轮胎压力在道路车辆。
机械毕业设计英文外文翻译108低滚动阻力轮胎 - 副本

附录附录A:LOW ROLLING RESISTANCE TIRESAccording to the report,80% or more of a car’s fuel energy is wasted by friction and other such losses. 1.5 to 4.5% of total gasoline use could be saved if allreplacement tires in use had low rolling resistance. About 237 million replacement tires are sold in the U.S. each year – none has rolling resistance labeling.1. America’s Fuel Use, Its Impacts,and Opportunities for SavingsThe environmental impacts of America’s gasoline use are profound. With over 160 million passenger cars and light trucks on the road, we burn about 126 billion gallons of gasoline per year. Our fuel use continues to rise about 3% annually, propelled by continued increases in total number of vehicles, rising average distance driven per car, and falling average fuel economy.Today, light-duty vehicles (cars & light trucks) are responsible for about 20% of the nitrogen oxides, 27% of the volatile organic compounds, 51% of the carbon monoxide, and roughly 30% of all the carbon dioxide (the main greenhouse gas) emitted from human activities nationwide. Rising fuel use also has enormous implications for protection of wilderness and public lands (vulnerable to increasedexploration), water resources (vulnerable to tanker and pipeline accidents), and national security. So the opportunity to save money and improve environmental quality through fuel use reductions is clear.One of the most promising opportunities for fuel savings across the entire fleet of existing vehicles is to utilize low rolling resistance tires instead of standard replacement models. This change improves the inherent efficiency of the vehicle, automatically saving fuel over the typical 30,000 to 50,000 mile lifetime of a set of tires.This report examines the opportunity for saving gasoline through use of improved tire technology and recommends particular tire models for which our initial test data suggest environmental advantages. Its findings are applicable to government and corporate fleet managers as well as individual tire buyers.2. How Tires Can Reduce Fuel ConsumptionAccording to the National Academy of Sciences, about 80 to 88% of the energy in a vehicle’s gasoline tank is wasted in various thermal, frictional, and standby losses in the engine and exhaust system. This leaves only about 12 to 20% of the potential energy actually converted to vehicle motion. One of the key ways to improve that efficiency is to reduce the rolling resistance of vehicle tires. This is not a measure of a tire’s traction or “grip” on the road surface, but rather simply indicates how easily a tire rolls down the road, minimizing the energy wasted asheat between the tire and the road, within the tire sidewall itself, and between the tire and the rim.Detailed modeling conducted by the National Renewable Energy Laboratory concluded that a 10% reduction in tire rolling resistance should yield fuel savings of about 1 to 2%, depending on driving conditions and vehicle type. According to research for the California Energy Commission, about 1.5 to 4.5% of total gasoline use could be saved if all replacement tires in use had low rollingresistance. This translates roughly into average savings of up to 30 gallons of gasoline savings per vehicle per year, or from $2.5 to $7.5 billion worth of national average gasoline savings.As part of their efforts to meet Federal fuel economy standards, automakers routinely specify low rolling resistance tires on their new vehicles. Between 1980 and 1994, the lowest rolling resistance tire models available achieved a 48% reduction in rolling resistance, and have likely continued to improve thereafter. These original equipment (OE) tire models are occasionally available in the replacement tire market, but often only by special order. In general, the tires marketed to the replacement tire market tend to place greater emphasis on longevity and low price, and therefore often have higher rolling resistance than OE tires.Unfortunately both OE and replacement tires lack any sort of rollingresistance labeling currently, so fleet managers and consumers that wish to buy highly energy-efficient tires when their first set of OE tires wear out have been stymied. Even when tire makers claim that particular replacement models are more fuelefficient than others, they do not always use consistent test methods or independent laboratory data to back up those claims. About 237 million replacement tires are sold in the U.S. each year for cars and light trucks, and none of them provides rolling resistance labeling.In 2002, the Energy Foundation funded Ecos Consulting to analyze the tire market, select representative models for rolling resistance testing, and work with Green Seal to recommend particular models that perform well while achieving low rolling resistance. Those findings are being published for the first time in this Choose Green Report. Additional background on Ecos Consulting’s key findings can be found in a separate report prepared for the California Energy Commission, available at3. Balancing Tire Resistance and Other ConsiderationsThe manufacture of tires, like other industrial processes, involves material extraction and production, as well as energy consumption and the emission of various pollutants. Each of these manufacturing stages impacts the environment in different ways. However, tires, like a number of other consumer products, are actually responsible for more environmental impacts in their use and ultimate disposition than in theirmanufacturing. They significantly impact the amount of fuel consumed by the vehicle to which they are attached, leading to global warming emissions as well as local and regional air pollution. They create particulate air pollution in the process of wearing, and they can be a significant solid waste problem if not properly recycled.An analysis conducted by Italian tire manufacturer Pirelli (Figure 1) revealed the dominance of tire use in overall life-cycle energy consumption. Fully 82% of the lifecycle energy use occurs from t he tire’s contribution to vehicle fuel use, compared to roughly 18% associated with obtaining the raw materials and manufacturing the tire itself. Thus, a tire’s rolling resistance is likely to be a larger factor in its life-cycle environmental impact than its composition, longevity, or ultimate fate, though those factors merit consideration as well.This report places greatest significance on the measured rolling resistance of tires, followed closely by consideration of the tire’s expected longevity and performance characteristics. A tire with high rolling resistance can cause profound environmental impact, even if it capably grips the road and lasts for 80,000 miles. By contrast, a very low rolling resistance tire may not be worth recommending if its lifetime is unusually short or test data indicate that it provides poor traction.Every tire currently on the market represents a balance between a wide assortment of desired performance characteristics and price (wesurveyed tires ranging from $25 to over $200 per tire). Careful balancing of these characteristics can yield not only a high-performing tire, but also one that is better for the environment than others currently available on the market.4.Rating Tire Rolling Resistance and Related FactorsRolling resistance has traditionally been measured through an official Society of Automotive Engineers (SAE) test procedure known as J1269. It measures the force required to roll a tire against a dynamometer at a fixed speed of 50 miles per hour. A newer procedure, SAE J2452, promises improved accuracy by assessing rolling resistance at a variety of speeds, but no independent laboratory currently has the capability to conduct such testing in-house. As a result, all of our testing was conducted at a single independent laboratory according to SAE J1269.The highest and lowest rolling resistance tires we tested differed in efficiency by 60%, indicating that tire choice can have a bigger impact on fuel economy than most people realize. Rolling resistance differences of 20 to 30% are not uncommon among tires of an otherwise similar size, type, and level of performance. This means an individual vehicle could save up to 6% of its gasoline use if it were fitted with very efficient tires, paying for the modest additional cost of low rolling resistance tires in approximately a year of fuel savings. In other words, a typical compactcar such as a Ford Focus can improve its mileage from 30 mpg to 32 mpg simply by using lower rolling resistance tires. For a car averaging 15,000 miles per year the fuel savings is about $50 (at $1.50 per gallon).All tires have imprinted information on their sidewalls indicating size, type, load, and speed ratings, as described in Figure 2. The majority of tire models employ a “P” designation for passe nger vehicle use, but some bear the “LT” designation for use with light trucks. In general, “P” tires appear to be gaining in popularity relative to “LT” tires of a given size.In addition, the U.S. Department of Transportation requires each manufacturer to grade its tires under the Uniform Tire Quality Grading System (UTQGS) and establish ratings for the following characteristics: tread wear, traction, and temperature resistance. Unfortunately, the ultimate results published for each tire model are less “uniform” than they should be. The government specifies how each test should be conducted and prevents a manufacturer from claiming better performance than measured. However, it does not prevent manufacturers from claiming worse performance than measured. And, curiously enough, many do, primarily to amplify marketing distinctions among their tires at different price points and encourage buyers to move up from a “good” to a “better” or “best” model in a particular category.Given the variability of ratings and the number of relevant factors, we have compiled our own composite metrics of performance for assessing tires, including the Federal ratings noted below and a variety of other published data.5.Rolling On to the FutureEfforts to differentiate replacement tires on the basis of rolling resistance are still in their very early stages. Without data on the rolling resistance of all tire models across a range of sizes, it is impossible to say for sure if the models identified in this report represent the most efficient models or simply a subset of them. For now, consumers and fleet managers can start with the data shown here and request additional information directly from retailers and manufacturers.附录B:低滚动阻力轮胎根据报告80%的或更多的汽车的燃料是由摩擦和其他类似的损失所消耗的。
欧洲汽车轮胎滚动阻力及噪声测量方法

欧洲汽车轮胎滚动阻力及噪声测量方法李玲;佘翔;杨小峰【摘要】文章综述了欧洲关于汽车轮胎滚动阻力及噪声的测量方法,剖析了轮胎滚动阻力及噪声的测试设备、测试条件、测试过程以及测试计算方法和评价,为优化和改进我国的汽车轮胎滚动阻力和噪声测试提供参考。
%This paper summarizes the methods of measuring the rolling resistance and noise of automobile tires in Europe, and analysis of the tire rolling resistance and noise of test equipment, test conditions, test process and test calculation methods and evaluation, Provide a reference for optimization and improve-ment of China's automobile tire rolling resistance and noise tests .【期刊名称】《交通节能与环保》【年(卷),期】2015(000)004【总页数】5页(P27-31)【关键词】汽车轮胎;滚动阻力;噪声;试验;测量方法【作者】李玲;佘翔;杨小峰【作者单位】交通运输部公路科学研究院,北京100088;浙江交通职业技术学院,浙江杭州 311112;长安大学,陕西西安 710064【正文语种】中文【中图分类】U463.341李玲1,佘翔2,杨小峰3(1.交通运输部公路科学研究院,北京100088;2.浙江交通职业技术学院,浙江杭州311112;3.长安大学,陕西西安710064)Method for Measuring Rolling Resistance and Noise of Automobile Tires in EuropeLi Ling1,She Xiang2,Yang Xiaofeng3(1.Research Institute of Highway MOT,Beijing 100088,China;2.Zhejiang Institute of Communications,Zhejiang Hangzhou 311112,China;3.School of Automotive,Chang’an University,Shaanxi Xi’an 710064,China)众所周知,轮胎是汽车的重要组成部分,是保证车辆在凸凹不平的路面上安全、自由、迅速、舒适行驶的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Study of automobile tire rolling resistance and testing technology Human activities on the ecological damage to the environment has become a global problem, to reduce fuel consumption, reduce automobile exhaust emissions is energy conservation, prevention of air pollution in an important measure. Vehicle energy consumption is closely related with the tire rolling resistance. On cars or light trucks, the 3.4% ~ 6.6% of fuel consumption used to overcome rolling resistance tires; of loaded radial truck tire with the car example, 12.4% ~ 14.5% of fuel consumption to overcome the rolling resistance tires . Tire rolling resistance by 10%, fuel-efficient cars will be 1.2 percent, 4 percent savings trucks. To this end,the tire manufacturers have at home and abroad to develop new low-power tires to reduce rolling resistance, saving fuel.Automobile tires in the rolling process, the total vehicle rolling resistance accounts for about 20% of the resistance, if reduced by 10% per tire rolling resistance, lower 2% ~ 3% of fuel, then rolling resistance tires to enhance the level of control of vehicle contribution to fuel economy will be significant, but also in a wide range can be achieved. Therefore, how to effectively control the tire's rolling resistance is the industry facing a key issue. This article will explore the various angles and analysis as well as tire rolling resistance testing technology.I. SummaryIn the tire rolling process, the cycle of changes in the stress and strain lead to energy loss, the formation of tire rolling resistance, also known as the tire hysteresis energy loss. Studies have shown that to overcome tire rolling resistance on fuel consumption of the general accounting for the total fuel consumption of motor vehicles more than 10%. Reduce rolling resistance tires can reduce vehicle energy consumption, so that the car farther away from efficient. Tire rolling resistance is the overall energy consumption of material, equivalent to the tire rolling units of energy loss from the rolling units in addition to its distance, the dimensionless N • m / m, although its equivalent to the dimensionless force, but from the point of view of energy analysis and understanding more convenient and reasonable.Through the measurement of rolling resistance tires can study the best section. However, the results of lab experiments can only make a comparison, the final road test should be used as the basis of the results.Second, research the history ofAs early as age 60 in the 20th century, Beijing Research and Design Institute of Rubber Industry in turn on the drum machine and measured the wire cotton tire cord tire power loss, also measured on the road when the vehicle speed steady traction resistance. At that time, due to restrictions on the use of equipment, the pilot is in its early exploratory phase of long-term. Since the mid-80s, with the accelerated development of China's tire needs, a small number of tire manufacturers from the United States, Japan and Germany with the introduction of the rolling resistance of the switch position test tire drum testing machine, combined with the development of a new type of radial tire and the analysis of foreign samples a number of tire rolling resistance tires test.Inspection. 70s from the 20th century in the United States, Japan and Europe, such as the economically developed countries, in order to solve energy shortages and the deterioration of environmental quality issues and the rolling resistance tires for a large number of experiments and research work. At the same time, tire rolling resistance testing technologies have also made remarkable progress. Beginning in 2004, the U.S. National Research Center on the control of rolling resistance tires to start a new round of extensive research. In 2007, the European Rubber Manufacturers Association also made to the EU to control the level of rolling resistance of the recommendations. Therefore, China will also face the control of rolling resistance.Third, testing technologyAt present, China has established a laboratory test-based, supplemented by the direction of the outdoor experiment. Steady-state conditions in the interior that is a constant load and speed, the tires when driving to reach thermal equilibrium Tire rolling resistance measurement method of standardization has been achieved.Preliminary results show that the simulation of the city of tire rolling resistance condition than under the conditions of steady-state rolling resistance by 26% ~ 47% of the difference between the two aroused people's interest in the emergence of a simulation of various operating conditions of automobile tires non-steady-state test. But so far did not see a unified standard test methods or test protocols. Carried out in the outdoor tire rolling resistance test methods are mainly trailer Act, taxiways and three kinds of torque method, in which a wider application of the trailer Act.Fourth, laboratory equipmentLaboratory test equipment, through decades of effort, has appeared in various types of tire rolling resistance testing machine. Their roads in accordance with the form of simulation points, and to have a steel drum two broad categories. Strip-type test machine to simulate the continuous flat surface, is very expensive test equipment tires. At present, it is the most widely to drum testing machine, in particular, a diameter of 1.7 meters to the drum. These test equipment measuring tire rolling resistance by way of points, and measuring method, torque law, power law and reduce the rate of four kinds of law. The use of existing equipment to load and torque of law are most welcome. In the past two decades, the accuracy of test equipment greatly enhanced to reduce the double measurement error, and has formed a set of test data to ensure the repeatability of the equipment necessary for accuracy. Has the full realization of China's current industrial production equipment is Jiurong Tianjin rolling resistance testing machine, is divided into car and truck tire with two types of tires, and its accuracy in line with the requirements of ISO. As the outdoor test line tire rolling resistance of non-standard test, the test equipment they use is not changed. Association for the Study of the British automobile industry with the use of the pilot housing trailers, all kinds of tires for air resistance in the same test under the conditions created.V. Test Methods1. Indoor and outdoor test testIndoor and outdoor test test test is based on the distinction between the two types of tire place test method. Indoor test of tire rolling resistance testing machine were conducted, and its experimental conditions, although the Department of simulated conditions of use but can be under control, so that good reproducibility of experimental data. Outdoor test rolling resistance tires are used on test vehicles on the road completed, it is true although the experimental conditions, but susceptible to external factors, pilot error, and therefore tire rolling resistance test to test the main indoor and outdoor test Des.2. Steady-state conditions and non-steady-state conditionsSteady-state conditions in the constant refers to the tire load and speed, and traveling in the tire to reach thermal equilibrium when measuring rolling resistance; non-steady-state conditions, it means the tire change with time in the load and speed, and tire temperature in the process of moving measuring rolling resistance. Of course, the tires in the car on the non-steady-state condition is varied. To the total points, tire condition of the car has the city,the suburbs of the car and coach on. However, a breakdown, and another empty, heavy vehicles, drive, driven, acceleration, deceleration, taxiways, brake, turn, etc. and combinations there of. Typical working condition of the tires as the standard test of non-steady-state conditions, needs to be done to investigate and test a large number of research work. So whether it is the latest ISO 18164 or the existing SAEJ 1269, they were under steady-state conditions. In addition, SAEJ 2452 slowdown is a complex experiment, the experimental conditions than under the uniform steady-state movement is much more complicated, but it is not completely under non-steady-state experiment. As can accurately predict tire rolling resistance is uniform or slowdown, more tests need to be verified, such comparison tests being investigated. However, the tire manufacturer's tire rolling resistance testing machine mostly for the use of steady-state conditions, if used for non-steady-state conditions by the test needs Plus many new features, testing may be a substantial increase in cost.First of all, to deal with the choice of tires to test full consideration, such as the representativeness of the sample, the tire size, type, rated speed, the original production equipment and the type of wheel rim, as well as the technological level of producers and industry status.Secondly, the performance evaluation of the establishment of test methods. Is not any test method can be used to evaluate the performance level, especially the study of test methods, and therefore take into account the actual tire, the combination of existing technology and the means test, set up in line with the experimental detection conditions.Third, laboratory equipment to ensure precision and accuracy of the equipment of the establishment of standards to ensure that test reproducibility and repeatability, such as samples of the same specifications of the rolling resistance tires are consistent and repeatable, with the control tire for the different experiments comparison.Fourth, the establishment of quality control procedures to ensure that the different rolling resistance testing machine test results are consistent and repeatable, the data in these experiments should also include information such as equipment.Fifth, repeat the same tire test, test results are consistent and repeatable.Sixth, tire prices and the relationship between the dynamic resistance.Seventh, most importantly, in the protection of national industries and safeguard the environment and conserve fuel, to resist the flow of low-quality tires to enter the market, the need for serious thinking.A lot of tests in measuring very small load rolling resistance tire rolling resistance is measured the basic characteristics of the tire positioning accuracy, therefore, control precision and accuracy requirements and other equipment is key. According to many years of experience confirm the accuracy of test equipment requirements is necessary, otherwise the test data can not be guaranteed to reach the standards of repeatability and comparability.Lower rolling resistance tires can significantly save energy and protect the environment, with considerable economic and social benefits. Under the conditions of typical use of the tire rolling resistance and fuel consumption the relationship between the steady-state conditions with non-steady-state conditions compared with the torque method, power law and measured by the speed difference in rolling resistance tires will be The next step of our research objectives.Should be established and planned research projects, and used to determine the appropriate control of the rolling resistance or grade; from different points of view to promote and strengthen the grasp of the concept of rolling resistance and applications.探讨汽车轮胎滚动阻力以及测试技术人类活动对生态环境的破坏已成为全球性问题,减少燃料消耗、降低汽车尾气排放量是节约能源、防止大气污染的重要措施。