凯氏定氮法
凯氏定氮法课件

2NH4Cl + 4H3BO3
(注: NCOC, Nitrogen containing organic compounds )
整个过程分三步:消化、蒸馏与吸收、滴定
1. 消化
要预防暴沸
<1>加硫酸钾 作为增温剂,提升溶液沸点, 纯硫酸沸点 340℃,加入硫酸钾之后能够提升 至400℃以上。也可加入硫酸钠,氯化钾等提 高沸点,但效果不如硫酸钾。
凯氏定氮法
测定蛋白质含量旳措施 凯氏定氮法
双缩脲法
Folin-酚试剂法
紫外吸收法
• 其中: • 凯氏定氮法——最常用旳,国内外应用普遍。
凯氏定氮法
• 凯氏定氮法可分为全量法、微量法及经改 善后旳改良凯氏定氮法。
微量法:取消化液旳10%加碱蒸馏
常量法:取消化液旳全部加减蒸馏。
(一)常量凯氏定氮法
(NH4)2SO4 检验
⑩蒸馏前加NaOH要足量,溶液应变为深蓝色或 黑褐色↓(Cu(OH)2、CuO、铜氨离子),如 颜色不变可能碱不够 。
⑾蒸馏完毕后,应先将冷凝管下端提离液面清洗 管口,再蒸1分钟后关掉热源.不然可能造成吸 收液倒吸。
⑿H3BO3吸收液旳温度不应超出40℃,不然对 NH3旳吸收作用减弱而造成损失。
原理
样品与浓硫酸和催化剂一同加热消化,使蛋白质分 解,其中碳和氢被氧化为二氧化碳和水逸出,而样品中 旳有机氮转化为氨与硫酸结合成硫酸铵。然后加碱蒸馏, 使氨蒸出。
① 用H3BO3吸收后再以原则HCl滴定或H2SO4溶液滴定。 根据原则酸消耗量能够计算出蛋白质旳含量。
② 也能够用过量旳原则H2SO4或原则HCl溶液吸收后再ቤተ መጻሕፍቲ ባይዱ以原则NaOH滴定过量旳酸。
马铃薯含非蛋白氮多。
总结凯氏定氮法

注意事项: 在蛋白质测定过程中应注意与采用氨试剂的检测项目 时间错开,确保环境空气中无氨气的存在,否则将影响蛋白质的测定 结果,使最终结果偏高。 三、结果计算:
X4(干基)= (V1 - V0)×0.014×C×6.25 W(1-水分%)×0.1 ×100……… (4)
式中: X4 W V1 V0 C 0.014 6.25 试样的干基蛋白质含量, (%) ; 试样质量, (g) ; 滴定样品所消耗盐标准溶液体积, (mL) ; 滴定空白所消耗盐酸标准溶液体积, (mL) ; 盐酸标准溶液的浓度, (mol/L) ; 1mL1mol/L 盐酸溶液相当于氮的质量, (g) ; 氮换算为蛋白质的系数。
c·2%的硼酸溶液:2g 硼酸加蒸馏水定容至 100mL; d·浓硫酸: e· 复合催化剂: 硫酸钾或硫酸钠 97g 和无水硫酸铜 3g 的混合物; f·混合指示液:0.1%的甲基红乙醇溶液 20mL 与 0.2%溴甲酚绿 乙醇溶液 30mL 混合摇匀。 二、 分析步骤 a·消化:称取混匀的样品 3g(精确至 0.001g) ,放入干燥的凯 氏烧瓶中(避免样品粘在瓶颈内壁上) ,加入混合催化剂 10g,硫酸 25mL,轻轻摇动烧瓶,使样品完全湿润。然后将烧瓶以 45 角斜放在 支架上,用电炉缓慢加热,当瓶内泡沫消失后强热至沸。待瓶壁不附 有炭化物时,且瓶内液体为澄清浅绿色后,继续加热 30min 使其完全 分解(以上操作应在通风橱内进行) 。 b·蒸馏:将消化好并冷却至室温的样品溶液全部转移到 100mL 容量瓶中, 用蒸馏水定容到刻度摇匀。 向 100mL 接受瓶中加入 20mL2% 硼酸溶液和 2~3 滴混合指示液,将接收瓶置于冷凝管下口,使下口 浸入到硼酸接收液中。再吸取 10mL 定容后的样品液,沿小玻璃杯移 入反应室,并用少量的蒸馏水冲洗小玻璃杯,塞紧棒状杯塞。向小玻 璃杯中加入 20~30mL40%的氢氧化钠溶液(过量) ,慢慢提起棒状杯 塞,使氢氧化钠缓慢流入反应室(防止反应室气体从杯塞处外泄) , 立即塞紧棒状杯塞,并在小玻璃杯中加入蒸馏水使之密封。通入蒸汽 5min,降低接收瓶位置使冷凝管末端离开液面后再继续蒸馏 1min, 用少量蒸馏水冲洗冷凝管末端,洗液并入接收瓶,取下接收瓶。 c·滴定:用 0.01mol/L 的盐酸或硫酸标准溶液滴定接收瓶瓶中 的液体,使之刚刚出现灰紫色即为终点,记录所消耗 0.01mol/L 的盐 酸或硫酸标准溶液的体积(mL) 。
凯氏定氮法

凯氏定氮法中文名称:凯氏定氮法英文名称:Kjeldahl determination定义:测定化合物或混合物中总氮量的一种方法。
即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气馏出并为过量的酸液吸收,再以标准碱滴定,就可计算出样品中的氮量。
由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。
凯氏定氮法凯氏定氮法是测定化合物或混合物中总氮量的一种方法。
即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气馏出并为过量的酸液吸收,再以标准碱滴定,就可计算出样品中的氮量。
由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。
原理蛋白质是含氮的有机化合物。
食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。
然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,蛋白质含量。
含氮量*6.25=蛋白含量.有机物中的胺根在强热和CuSO4,浓H2SO4作用下,硝化生成(NH4)2SO4凯氏定氮法反应式为:2NH2+H2SO4+2H=(NH4)2SO4(其中CuSO4做催化剂)2.在凯氏定氮器中与碱作用,通过蒸馏释放出NH3,收集于H3BO3溶液中反应式为:(NH4)2SO4+2NaOH=2NH3+2H2O+Na2SO42NH3+4H3BO3=(NH4)2B4O7+5H2O3. 用已知浓度的H2SO4(或HCI)标准溶液滴定,根据HCI消耗的量计算出氮的含量,然后乘以相应的换算因子,既得蛋白质的含量反应式为:(NH4)2B4O7+H2SO4+5H2O=(NH4)2SO4+4H3BO3 (NH4)2B4O7+2HCl+5H2O=2NH4Cl+4H3BO3试剂所有试剂均用不含氨的蒸馏水配制。
2.1 硫酸铜。
11.凯氏定氮法名词解释

凯氏定氮法名词解释
凯氏定氮法是一种常用的蛋白质测定方法,其原理是通过测定样品中氮元素的含量来推算蛋白质的含量。
以下是关于凯氏定氮法中涉及的主要步骤的名词解释:
1.样品处理:在凯氏定氮法中,需要对样品进行前处理,即将样品中的蛋白质转化为氨基酸。
这一步通常是通过在样品中加入硫酸和催化剂,然后在高温下进行消化反应来实现的。
消化反应可以将样品中的有机物质转化为硫酸铵,同时将蛋白质转化为氨基酸。
2.蒸馏:在消化反应完成后,需要进行蒸馏操作。
蒸馏的目的是将样品中的氨气从消化液中分离出来,以便后续的吸收和滴定操作。
在蒸馏过程中,需要使用特殊的蒸馏装置和高温炉,以确保氨气能够完全从消化液中逸出。
3.吸收:蒸馏出来的氨气需要被吸收液吸收。
通常使用的是硼酸溶液作为吸收液,因为它具有较高的吸收效率和较低的挥发性。
在吸收过程中,氨气与硼酸反应生成硼酸铵,然后通过滴定操作可以测定硼酸铵的量,从而计算出样品中氮元素的含量。
4.滴定:滴定操作是凯氏定氮法中的最后一步,也是最关键的一步。
在这一步中,使用标准酸溶液对已经被吸收的硼酸铵进行滴定,从而确定硼酸铵的量。
通过与标准酸溶液的对比,可以计算出样品中氮元素的含量,进而推算出蛋白质的含量。
以上就是凯氏定氮法中的主要步骤和相关名词解释。
该方法具有准确度高、适用范围广等优点,被广泛应用于食品、药品、环境等领
域中的蛋白质测定。
凯氏定氮法

2.4 注意事项
(1) 所用试剂应用无氨蒸馏水配制。加
指示剂数滴及硫酸数毫升,以保持水呈 酸性。 (2) 若样品含脂肪或糖较多时,应注意 发生的大量泡沫 应加入少量辛醇或液体 石蜡,或硅消泡剂,防止其溢出瓶外, 并注意适当控制热源强度。 (3) 若样品消化液不易澄清透明,可加 入300g/L2~3ml 过氧化氢后再加热。
消化反应方程式如下: 2NH2(CH)2COOH+13H2SO4 =(NH4)2SO4+6CO2+12SO2 COOH+ +16H2O 浓硫酸具有脱水性: 浓硫酸具有脱水性:使有机物脱水后被炭化为碳、氢、 氮。 硫酸又具有氧化性: 硫酸又具有氧化性:将有机物炭化后的碳化为二氧化 碳,硫酸则被还原成二氧化硫 2H2SO4 +C =2SO2+ 2H2O +CO2 二氧化硫使氮还原为氨,本身则被氧化为三氧化硫, 氨随之与硫酸作用生成硫酸铵留在酸性溶液中。 H2SO4+2NH3 = (NH4)2SO4
③ 滴定 滴定:取下接受瓶,以0.01000mol/L盐酸标 准溶液滴定至微红色为终点。
(V1 − V0 ) × c × 0.014 × F (5) 结果计算: W = ×100% V2 m× 100
式中W—蛋白质的质量分数,%; V0—滴定空白蒸馏液消耗盐酸标准液体积,mL; V1—滴定样品蒸馏液消耗盐酸标准液体积,mL; V2—蒸馏时吸取样品稀释液体积,mL; C—盐酸标准液的浓度,mol/L; 0.014—氮的毫摩尔质量,g/mmol; F—蛋白质系数; m—样品质量,g。
② 蒸馏 在消化完全的样品溶液中加入浓氢氧化钠使呈碱性, 在消化完全的样品溶液中加入浓氢氧化钠使呈碱性, 加热蒸馏,即可释放出氨气,反应方程式如下: 加热蒸馏,即可释放出氨气,反应方程式如下: 2NaOH+ (NH4)2SO4= 2NH3↓+ Na2SO4 + 2H2O OH+
凯氏定氮法

常量法 原理:
样品中含氮有机化合物经浓硫酸加消化,硫酸使有机物脱 水; 同时有机物炭化生成炭;
碳将硫酸氧化C成CO2自身还原为SO2 ;
2H2SO4+C=2SO2+2H2O+CO2
SO2使氮还原为氨,本身则氧化为SO3; 在反应过程中生成的氢,又加速氨的形成; 生成物中水和SO2逸去,氨与硫酸结合生硫酸铵留在溶液 中。 H2SO4+2NH3=(NH4)2SO4
有关加入K2SO4 CuSO4说明:
(1)、K2SO4的作用:提高溶液沸点从而加快 有机物分解(较其他硫酸盐效果好) 原理: K2SO4+H2SO4=2KHSO4 2KHSO4=K2SO4+H2O+SO2
• 但加入过多硫酸钾会导致体系温度过高, 引起生成的(NH4)2SO4热解造成N损失。 • (NH4)2SO4=NH3+NH4HSO4 • NH4HSO4=NH3+SO3+H2O
NH3+H2O
3、吸收与滴定
• 加热放出的氨用硼酸吸收,待吸收完后, 用盐酸标准液滴定
NH3 + H5BO3 NH4+ + H2BO3-
H2BO3- + H+
H3BO3
以上离子方程式说明:硼酸是弱酸,盐酸为强酸, 强酸制弱酸,且不影响指示剂显色结果
凯氏定氮法—原理小结
消化
• 2NH2+H2SO4+2H=(NH4)2SO4 • (其中CuSO4做催化剂)
• • • • •
重要试剂的作用: 浓H2SO4:脱水、氧化 CuSO4溶液:催化剂(加速有机物氧化) 消化指示剂 K2SO4溶液:提高溶液沸点
( ) 仪 器
凯氏定氮法

凯氏定氮装置仪器使用->凯氏定氮装置凯氏定氮仪由蒸汽发生器、反应室、冷凝管三部分组成(见下图)。
凯氏定氮蒸馏装置示意图1.电炉2.蒸气发生器3.安全管4.橡皮管5.碱液室6.反应室7.加样口8..安全管9.冷凝管10.接受瓶 11.棒状玻塞12.夹子仪器原理:含氮有机物与浓硫酸共热,有机物中所含氮转变成氨,并与硫酸结合为硫酸氢铵和硫酸铵,用氢氧化钠碱化后,释出氨,随水蒸馏出,用硼酸溶液或定量的酸吸收后,用标准酸液或标准碱液滴定,用空白试验校正。
使用方法:1. 定氮仪的构造和安装蒸汽发生器包括一个电炉(1)及一个3~5升容积的烧瓶(2).蒸汽发生器借橡皮管(4)与反应室相连。
反应室上边有二个小烧杯,一个叫加样口(7) 上面有棒状玻塞(11)供加样用;一个叫碱液室(5) 盛放液。
样品和碱液由此可直接到反应室 (6)中。
反应室中心有一长玻璃管,其上端通到反应室外层,下端靠近反应室的底部。
反应室外壳下端底部有一开口,连有橡皮管和管夹 (12),由此放出反应废液。
反应所产生的氨可通过反应室上端气液分离器 (8)经冷凝管 (9)通入收集瓶 (10)中。
反应室与冷凝管之间由橡皮管相连。
2. 样品的处理固体样品随机取一定量研磨细的样品放入恒重的称量瓶中,置于105℃的烘箱中干燥4h用坩锅钳将称量瓶取出放入干燥器内,待降至室温后称重,随后继续干燥样品,每干燥1h,称重一次,恒重即可。
血清样品取人血(或猪血)放入离心管中,于冰箱中放置过夜。
次日离心除去血凝块,上层透明清液,即为血清。
吸出1ml血清加到50ml容量瓶中,用蒸馏水稀释至刻度,混匀备用。
3. 消化取3支消化管并编号,在1、2号管中各加入精确称取的干燥样品0.5~1g,加催化剂6.4g,浓硫酸10ml和2粒玻珠,在3号管中各加相同量的催化剂和硫酸(若样品是液体时,还要加与样品等体积的蒸馏水)作为对照,用以测定试剂中可能含有的微量含氮物质。
摇匀后,将瓶口上放一小漏斗,再把烧瓶斜置铁筐内放在通风厨内的电炉上消化。
凯氏定氮法原理

凯氏定氮法原理
凯氏定氮法(Kjeldahl method)是一种常用的确定有机物中氮含量的化学测定方法。
其原理是将样品中的有机氮化合物经过一系列化学反应转化为无机氮化合物,再以标准化的方法测定生成的无机氮化合物的氮含量。
具体的步骤如下:
1. 取一个已知质量的样品,在水中溶解或者研磨成细粉末。
2. 将样品转移到凯氏消解瓶中,加入适量的浓硫酸。
3. 使用适当的消解器对样品进行消解。
在这个过程中,硫酸将有机氮化合物氧化为氨。
4. 将消解瓶中的溶液加热,使硫酸与氨反应生成硫酸铵。
H2SO4 + 2NH3 → (NH4)2SO4
5. 硬蒸发:将反应产物溶液转移到蒸发皿中,连续加热使溶液蒸发,直至生成块状固体。
6. 汲取蒸发皿中的固体,转移到蒸发烧杯中,加入适量的蒸馏水。
7. 加入酚酞指示剂,用稀氨水滴定生成的硫酸铵溶液,直至溶液呈现由粉红色到淡红色的变化。
8. 记录滴定过程中用掉的氨水体积,根据滴定液的浓度计算出氨的摩尔浓度。
9. 根据反应平衡关系计算出样品中有机氮化合物的质量,从而确定氮的含量。
凯氏定氮法主要适用于测定含氨基的有机化合物,如蛋白质、碱性氨基酸等的氮含量。
这种方法的优点是准确性高,并且适用范围广。
然而,它的操作步骤较为繁琐,消耗时间较长,且需要使用一些具有腐蚀性的试剂,需注意安全操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凯氏定氮法凯氏定氮法(英语:Kjeldahl method,全称凯耶达尔定氮法,简称凯氮法)是分析化学中一种常用的确定有机化合物中氮含量的检测方法。
这种方法是由凯耶达尔于在1883年发明。
凯氏定氮法是分析有机化合物含氮量的常用方法。
要测定有机物含氮量,通常是设法使其转变成无机氮,再进行测定。
一、原理:凯氏定氮法首先将含氮有机物与浓硫酸共热,经一系列的分解、碳化和氧化还原反应等复杂过程,最后有机氮转变为无机氮硫酸铵,这一过程称为有机物的消化。
为了加速和完全有机物质的分解,缩短消化时间,在消化时通常加入硫酸钾、硫酸铜、氧化汞、过氧化氢等试剂,加入硫酸钾可以提高消化液的沸点而加快有机物分解,除硫酸钾外,也可以加入硫酸钠、氯化钾等盐类类提高沸点,但效果不如硫酸钾。
硫酸铜起催化剂的作用。
凯氏定氮法中可用的催化剂种类很多,除硫酸铜外,还有氧化汞、汞、硒粉、钼酸钠等,但考虑到效果、价格及环境污染等多种因素,应用最广泛的是硫酸铜。
使用时常加入少量过氧化氢、次氯酸钾等作为氧化剂以加速有机物氧化。
消化完成后,将消化液转入凯氏定氮仪反应室,加入过量的浓氢氧化钠,将NH4+转变成NH3,通过蒸馏把NH3驱入过量的硼酸溶液接受瓶内,硼酸接受氨后,形成四硼酸铵,然后用标准盐酸滴定,直到硼酸溶液恢复原来的氢离子浓度。
滴定消耗的标准盐酸摩尔数即为NH3的摩尔数,通过计算即可得出总氮量。
在滴定过程中,滴定终点采用甲基红-次甲基蓝混合指示剂颜色变化来判定。
测定出的含氮量是样品的总氮量,其中包括有机氮和无机氮。
以蛋白质为例,反应式如下:消化:蛋白质+ H2SO4→(NH4)2SO4+ SO2↑+ CO2 ↑+ H2O蒸馏:(NH4)2SO4 + 2NaOH→ Na2SO4+ 2 H2O + 2NH3 ↑2NH3 + 4H3BO3→(NH4)2B4O7+ 5H2O滴定:(NH4)2B4O7+ 2HCl + 5H2O→2NH4Cl + 4 H3BO3蛋白质是一类复杂的含氮化合物,每种蛋白质都有其恒定的含氮量[约在14%~18%,平均为16%(质量分数)]。
凯氏定氮法测定出的含氮量,再乘以系数6.25,即为蛋白质含量。
本法适用于测定0.2~1.0mg氮的样品测定。
通过本实验使学生能理解凯氏定氮法的原理,掌握凯氏定氮法的操作方法。
二、方法与步骤将有机化合物与硫酸共热使其中的氮转化为硫酸铵。
在这一步中,经常会向混合物中加入硫酸钾来提高中间产物的沸点(从169℃到189℃)。
样本的分解过程的终点很好判断,因为这时混合物会变得无色且透明(开始时很暗)。
在得到的溶液中加入少量氢氧化钠,然后蒸馏。
这一步会将铵盐转化成氨。
而总氨量(由样本的含氮量直接决定)会由反滴定法确定:冷凝管的末端会浸在硼酸溶液中。
氨会和酸反应,而过量的酸则会在甲基橙的指示下用碳酸钠滴定。
滴定所得的结果乘以特定的转换因子就可以得到结果。
通过凯氏定氮法测得的含氮量一般被称作总凯氮量页面总凯氮量并不存在,英语维基百科对应页面为Total Kjeldahl Nitrogen。
总凯氮量有时并不能真正地反映样本中的蛋白质含量,因为所测定的部分含氮量可能不是由蛋白质转化来的。
(一)消化1、准备6个凯氏烧瓶,标号。
1、2、3号烧瓶中分别加入适当浓度的蛋白溶液 1.0mL,样品要加到烧瓶底部,切勿沾在瓶口及瓶颈上。
再依次加入硫酸钾-硫酸铜接触剂0.3g,浓硫酸2.0mL,30%过氧化氢1.0mL。
4、5、6号烧瓶作为空白对照,用以测定试剂中可能含有的微量含氮物质,对样品测定进行校正。
4、5、6号烧瓶中加入蒸馏水1.0mL代替样液,其余所加试剂与1、2、3号烧瓶相同。
2、将加好试剂的各烧瓶放置消化架上,接好抽气装置。
先用微火加热煮沸,此时烧瓶内物质炭化变黑,并产生大量泡沫,务必注意防止气泡冲出管口。
待泡沫消失停止产生后,加大火力,保持瓶内液体微沸,至溶液澄清后,再继续加热使消化液微沸15min。
在消化过程中要随时转动烧瓶,以使内壁粘着物质均能流入底部,以保证样品完全消化。
消化时放出的气体内含SO2,具有强烈刺激性,因此自始自终应打开抽水泵将气体抽入自来水排出。
整个消化过程均应在通风橱中进行。
消化完全后,关闭火焰,使烧瓶冷却至室温。
(二)蒸馏和吸收蒸馏和吸收是在微量凯氏定氮仪内进行的。
凯氏定氮蒸馏装置种类甚多,大体上都由蒸气发生、氨的蒸馏和氨的吸收三部分组成。
1、仪器的洗涤仪器安装前,各部件需经一般方法洗涤干净,所用橡皮管、塞须浸在10%NaOH溶液中,煮约10min,水洗、水煮10min,再水洗数次,然后安装并固定在一只铁架台上。
仪器使用前,微量全部管道都须经水蒸气洗涤,以除去管道内可能残留的氨,正在使用的仪器,每次测样前,蒸气洗涤5min即可。
较长时间未使用的仪器,重复蒸气洗涤,不得少于三次,并检查仪器是否正常。
仔细检查各个连接处,保证不漏气。
首先在蒸气发生器中加约2/3体积蒸馏水,加入数滴硫酸使其保持酸性,以避免水中的氨被蒸出而影响结果,并放入少许沸石(或毛细管等),以防爆沸。
沿小玻杯壁加入蒸馏水约20mL让水经插管流入反应室,但玻杯内的水不要放光,塞上棒状玻塞,保持水封,防止漏气。
蒸气发生后,立即关闭废液排放管上的开关,使蒸气只能进入反应室,导致反应室内的水迅速沸腾,蒸出蒸气由反应室上端口通过定氮球进入冷凝管冷却,在冷凝管下端放置一个锥形瓶接收冷凝水。
从定氮球发烫开始计时,连续蒸煮5min,然后移开煤气灯。
冲洗完毕,夹紧蒸气发生器与收集器之间的连接橡胶管,由于气体冷却压力降低,反应室内废液自动抽到反应室外壳中,打开废液排出口夹子放出废液。
如此清洗2~3次,再在冷凝管下换放一个盛有硼酸-指示剂混合液的锥形瓶使冷凝管下口完全浸没在溶液中,蒸馏1~2min,观察锥形瓶内的溶液是否变色。
如不变色,表示蒸馏装置内部已洗干净。
移去锥形瓶,再蒸馏1~2min,用蒸馏水冲洗冷凝器下口,关闭煤气灯,仪器即可供测样品使用。
2、无机氮标准样品的蒸馏吸收由于定氮操作繁琐,为了熟悉蒸馏和滴定的操作技术,初学者宜先用无机氮标准样品进行反复练习,再进行有机氮未知样品的测定。
常用巳知浓度的标准硫酸铵测试三次。
取洁净的100mL锥形瓶五只,依次加入2%硼酸溶液20mL,次甲基蓝-甲基红混合指示剂(呈紫红色)3~4滴,盖好瓶口待用。
取其中一只锥形瓶承接在冷凝管下端,并使冷凝管的出口浸没在溶液中。
注意:在此操作之前必须先打开收集器活塞,以免锥形瓶内液体倒吸。
准确吸取2mL硫酸铵标准液加到玻杯中,小心提起棒状玻塞使硫酸铵溶液慢慢流入蒸馏瓶中,用少量蒸馏水冲洗小玻杯3次,一并放人蒸馏瓶中。
然后用量筒向小玻杯中加入10 mL 30%NaOH溶液,使碱液慢慢流入蒸馏瓶中,在碱液尚未完全流入时,将棒状玻塞盖紧。
向小玻杯中加约5mL 蒸馏水,再慢慢打开玻塞,使一半水流入蒸馏瓶,一半留在小玻杯中作水封。
关闭收集器活塞,加热蒸气发生器,进行蒸馏。
锥形瓶中的硼酸-指示剂混合液由于吸收了氨,由紫红色变成绿色。
自变色时起,再蒸馏3~5min,移动锥形瓶使瓶内液面离开冷凝管下口约lcm,并用少量蒸馏水冲洗冷凝管下口,再继续蒸馏1min,移开锥形瓶,盖好,准备滴定。
在一次蒸馏完毕后,移去煤气灯,夹紧蒸气发生器与收集器间的橡胶管,排除反应完毕的废液,用水冲洗小玻杯几次,并将废液排除。
如此反复冲洗干净后,即可进行下一个样品的蒸馏。
按以上方法用标准硫酸铵再做两次。
另取2mL蒸馏水代替标准硫酸铵进行空白测定二次。
将各次蒸馏的锥形瓶一起滴定。
3、未知样品及空白的蒸馏吸收将消化好的蛋白样品三支,空白对照液三支,依次作蒸馏吸收。
加5mL热的蒸馏水至消化好的样品或空白对照液中,通过小玻杯加到反应室中,再用热蒸馏水洗涤小玻杯3次,每次用水量约3mL,洗涤液一并倒入反应室内。
其余操作按标准硫酸铵的蒸馏进行。
由于消化液内硫酸钾浓度高而呈粘稠状,不易从凯氏烧瓶内倒出,必须加入热蒸馏水5 mL稀释之,如果有结晶析出,必须微热溶解,趁热加入玻杯,使其流入反应室。
此外,还应当注意趁仪器洗涤尚未完全冷却时立即加入样品或空白对照液,否则消化液通过冷却的管道容易析出结晶,造成堵塞。
(三)滴定样品和空白蒸馏完毕后,一起进行滴定。
打开接受瓶盖,用酸式微量滴定管以0.0100mol/L 的标准盐酸溶液进行滴定。
待滴至瓶内溶液呈暗灰色时,用蒸馏水将锥形瓶内壁四周淋洗一次。
若振摇后复现绿色,应再小心滴入标准盐酸溶液半滴,振摇观察瓶内溶液颜色变化,暗灰色在一二分钟内不变,当视为到达滴定终点。
若呈粉红色,表明已超越滴定终点,可在已滴定耗用的标准盐酸溶液用量中减去0.02mL,每组样品的定氮终点颜色必须完全一致。
空白对照液接受瓶内的溶液颜色不变或略有变化尚未出现绿色,可以不滴定。
记录每次滴定耗用标准盐酸溶液毫升数,供计算用。
三、结果与计算运算下列公式计算出每次无机氮标准样品和未知样品的总含氮量。
式中WN——每毫升样品的含氮毫克数;A——滴定样品消耗的盐酸量(mL);B——滴定空白消耗的盐酸量(mL);C——测定样品所取用量(mL);0.0100——标准盐酸物质的量浓度(mol/L);14.008——每摩尔氮原子质量(g/mol)。
三次样品测定的含氮量相对误差应小于±2%。
样品粗蛋白含量=总氮量× 6.256.25为含氮量换算为蛋白质含量的系数。
.这个系数来自蛋白质平均含氮量为16%,实际上各种蛋白质因氨基酸组成不同,含氮量不完全相同。
四、应用凯氏定氮法的普遍适用性、精确性和可重复性已经得到了国际的广泛认可。
它已经被确定为检测食品中蛋白质含量的标准方法。