人教版九年级上学期数学《旋转》单元测试题附答案

合集下载

人教版九年级上册数学《旋转》单元测试题(附答案)

人教版九年级上册数学《旋转》单元测试题(附答案)

人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、单选题1.如图,在ABC ∆中,90,4,3C AC BC ︒∠===,将ABC ∆绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则,B D 两点间的距离为( )A B .C .3 D 2.如图,Rt △ABC 中,∠ACB =90°,线段BC 绕点B 逆时针旋转α°(0<α<180)得到线段BD ,过点A 作AE ⊥射线CD 于点E ,则∠CAE 的度数是( )A .90﹣αB .αC .902α- D .2α3.下列图案是中心对称图形的是( )A .B .C .D .4.直角坐标系中,点()2,3-与()2,3-关于( )A .原点中心对称B .Y 轴轴对称C .X 轴轴对称D .以上都不对5.如果点()A 3,a -是点()B 3,4-关于原点的对称点,则a 的值是( )A .-4B .4C .4或-4D .无法确定6.平面直角坐标系中,线段OA 的两个端点的坐标分别为O (0,0),A (-3,5),将线段OA 绕点O 旋转180°到O 'A 的位置,则点'A 的坐标为( )A .(3,-5)B .(3,5)C .(5,-3)D .(-5,-3)7.如图,将△ABC 绕顶点C 逆时针旋转得到△A′B′C′,且点B 刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则∠A′BA 等于( )A .30°B .35°C .40°D .45°8.如图,△ABC 与△A ′B ′C ′关于点O 成中心对称,则下列结论不成立的是( )A .点A 与点A ′是对称点B .BO =B ′OC .AB ∥A ′B ′D .∠ACB =∠C ′A ′B ′9.己知点(A ,将点A 绕原点O 顺时针旋转60后的对应点为1A ,将点1A 绕原点O 顺时针旋转60后的对应点为2A ,依此作法继续下去,则点2012A 的坐标是( )A .(-B .(1,C .(1,--D .()2,0-10.已知点A(-3,a)是点B(3,-4)关于原点的对称点,那么a 的值的是( )A .-4B .4C .4或-4D .不能确定11.下列图形中,旋转60后可以和原图形重合的是 ( )A .正三角形B .正方形C .正五边形D .正六边形12.如图,△ABC 中,∠A =90∘,∠C =30∘,BC =12cm ,把△ABC 绕着它的斜边中点P 逆时针旋转90∘至△DEF 的位置,DF 交BC 于点H .△ABC 与△DEF 重叠部分的面积为( )cm 2.A .8B .9C .10D .12二、填空题 13.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过12分钟旋转了________. 14.如图所示的四个两两相联的等圆,是我国“一汽”生产的大众汽车的车牌标志,右边的三个圆环可以看做是左边的圆环经过________ 得到的.15.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知8AB AC cm ==,将MED 绕点()A M 逆时针旋转60后(图2),两个三角形重叠(阴影)部分的面积约是________2cm (结果精确到0.1 1.73≈).16.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是第1个图案经过平移而得,那么第2017个图案中有白色六边形地面砖________块.三、解答题17.如图,将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,BC的延长线交DE于F,连接BD,若BC=2EF,试证明△BED是等腰三角形.18.某居民小区搞绿化,小区的居民们把一块矩形垃圾场地清理干净后,准备建几个花坛,老张说:花坛应该有圆有方;老李说:花坛和整个矩形空地应该成中心对称图案,这样比较漂亮.你能设计一个让大家都满意的方案吗?试试看(将你设计的方案画在下面的矩形方框中).19.如图1所示,某产品的标志图案,要在所给的图形图2中,把A,B,C三个菱形通过一种或几种变换,使之变为与图1一样的图案:(1)请你在图2中作出变换后的图案(最终图案用实线表示);(2)你所用的变换方法是________(在以下变换方法中,选择一种正确的填到横线上,也可以用自己的话表述).①将菱形B 向上平移;②将菱形B 绕点O 旋转120;③将菱形B 绕点O 旋转180.20.如图,四边形ABCD 是平行四边形,AC 是对角线,将ADC 绕点A 逆时针旋转90后得到''AD C ,若32ACB ∠=,2BC =,求'C AD ∠的度数及'AD 的长.21.()1如图1,在正方形网格中,每个小正方形的边长均为1个单位.将ABC 向绕点C 逆时针旋转90,得到A B C ''',请你画出A B C '''(不要求写画法).() 2如图2,已知点O 和ABC ,试画出与ABC 关于点O 成中心对称的图形.22.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,ABC 的三个顶点都在格点上(每个小方格的顶点叫格点).()1建立直角坐标系,使点B的坐标为()2,2-,则点A的坐标为________;-,点C的坐标为()5,2()2画出ABC绕点P顺时针旋转90后的111A的坐标为________.A B C并写出点123.如图,△ABC由△EDC绕C点旋转得到,B、C、E三点在同一条直线上,∠ACD=∠B,求证:△ABC 是等腰三角形.24.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B 交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.参考答案一、单选题1.如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为( )AB .C . D【答案】A【解析】【分析】先利用勾股定理计算出AB ,再在Rt △BDE 中,求出BD 即可;【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=5,∵△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,∴AE=AC=4,DE=BC=3,∴BE=AB-AE=5-4=1,在Rt △DBE 中,故选A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.ABC ∆90,4,3C AC BC ︒∠===ABC ∆A C AB E B D ,B D 3=2.如图,Rt △ABC 中,∠ACB =90°,线段BC 绕点B 逆时针旋转α°(0<α<180)得到线段BD ,过点A 作AE ⊥射线CD 于点E ,则∠CAE 的度数是( )A .90﹣αB .αC .D . 【答案】C【解析】【分析】 先利用旋转的性质得,,再根据等腰三角形的性质和三角形内角和定理得到然后利用互余表示出,从而利用互余可得到的度数. 【详解】线段绕点逆时针旋转()得到线段,,,,, ,, ,.故选:. 902α-2αCBD α∠=BC BD =1902BCD α∠=︒-ACE ∠CAE ∠BC B α︒0180α<<BD ∴CBD α∠=BC BD =∴BCD BDC ∠=∠∴()111809022BCD αα∠=︒-=︒-90ACB ∠=︒∴1190909022ACE BCD αα⎛⎫∠=︒-∠=︒-︒-=⎪⎝⎭AE CE ⊥∴190902CAE ACE α∠=︒-∠=︒-C【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.3.下列图案是中心对称图形的是( )A .B .C .D .【答案】A【解析】【分析】根据中心对称图形的概念求解.【详解】A .是中心对称图形.故本选项正确;B .不是中心对称图形.故本选项错误;C .不是中心对称图形.故本选项错误;D .不是中心对称图形.故本选项错误.故选A .【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合. 4.直角坐标系中,点与关于( )A .原点中心对称B .Y 轴轴对称C .X 轴轴对称D .以上都不对【答案】A【解析】【分析】观察点A 与点B 的坐标,依据关于原点对称的点,横坐标与纵坐标都互为相反数可得答案.【详解】 ()2,3-()2,3-根据题意,易得点(-2,3)与(2,-3)的纵横坐标互为相反数,则这两点关于原点中心对称.故选:A .【点评】本题考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,注意掌握关于原点对称的点,横坐标与纵坐标都互为相反数5.如果点是点关于原点的对称点,则的值是( )A .-4B .4C .4或-4D .无法确定 【答案】B【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x ,y)关于原点O 的对称点是P′(-x ,-y),求出即可.【详解】∵点A(-3,a)是点B(3,-4)关于原点的对称点,∴a=4.故选:B .【点评】此题主要考查了关于原点对称点的坐标性质,熟练掌握相关性质是解题关键.6.平面直角坐标系中,线段OA 的两个端点的坐标分别为O (0,0),A (-3,5),将线段OA 绕点O 旋转180°到O 的位置,则点的坐标为( )A .(3,-5)B .(3,5)C .(5,-3)D .(-5,-3) 【答案】A【解析】试题分析:∵线段OA 绕原点O 顺时针旋转180°,得到OA ′,∴点A 与点A ′关于原点对称, ()A 3,a -()B 3,4-a 'A 'A而点A的坐标为(-3,5),∴点A′的坐标为(3,-5).故选A.7.如图,将△ABC绕顶点C逆时针旋转得到△A′B′C′,且点B刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则∠A′BA等于()A.30°B.35°C.40°D.45°【答案】C【解析】【分析】首先根据旋转的性质以及三角形外角的性质得出∠BCA′+∠A′=∠B′BC=45°+25°=70°,以及∠BB′C=∠B′BC=70°,再利用三角形内角和定理得出∠ACA′=∠A′BA=40°.【详解】解:∵∠A=25°,∠BCA′=45°,∴∠BCA′+∠A′=∠B′BC=45°+25°=70°,∵CB=CB′,∴∠BB′C=∠B′BC=70°,∴∠B′CB=40°,∴∠ACA′=40°,∵∠A=∠A′,∠A′DB=∠ADC,∴∠ACA′=∠A′BA=40°.故选C.【点评】此题考查旋转的性质以及三角形的外角的性质和三角形内角和定理等知识,解题关键根据已知得出∠ACA′=40°.8.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′【答案】D【解析】【分析】根据中心对称的性质对各选项分析判断后利用排除法求解.【详解】观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选D.【点评】本题考查了中心对称,熟悉中心对称的性质是解题的关键.9.己知点,将点绕原点顺时针旋转后的对应点为,将点绕原点顺时针旋转后的对应点为,依此作法继续下去,则点的坐标是( ) A .B .C .D .【答案】B【解析】【分析】 根据图形旋转的规律得出每旋转6次坐标一循环,求出点的坐标与点坐标相同,进而可得出答案.【详解】解:将点A 绕原点O 顺时针旋转60后的对应点为A ,将点A 绕原点O 顺时针旋转60后的对应点为A ,依此作法继续下去,得出每旋转=6次坐标一循环,得出20126=335余2,即点A 的坐标与点A 坐标相同,即可得出点A 与点A 关于x 轴对称,A 点坐标为所以B 选项是正确的.【点评】此题主要考查了坐标与图形的旋转与规律问题,解答此题的关键是明确图形旋转的变化规律每旋转6次坐标一循环.10.已知点A(-3,a)是点B(3,-4)关于原点的对称点,那么a 的值的是( )A .-4B .4C .4或-4D .不能确定【答案】B【解析】【分析】(A A O 601A 1A O 602A 2012A (-(1,(1,-()2,0-2012A 2A o 11o 2∴36060÷201222∴2平面直角坐标系中任意一点P(x ,y),关于原点的对称点是(-x ,-y),由此即可解答.【详解】∵点A(-3,a)是点B(3,-4)关于原点的对称点,∴a=4.故选B.【点评】本题考查了关于原点对称的点坐标的关系,熟记平面直角坐标系中任意一点P(x ,y),关于原点的对称点是(-x ,-y)是解题的关键.11.下列图形中,旋转后可以和原图形重合的是 ( )A .正三角形B .正方形C .正五边形D .正六边形【答案】D【解析】【分析】根据旋转对称图形性质求出各图的中心角,度数若为60°,即为正确答案.【详解】 A:正三角形旋转的最小角为:,故选项错误; B:正方形旋转的最小角为:,故选项错误; C:正五边形旋转的最小角为:,故选项错误; D:正六边形旋转的最小角为:,故选项正确. 所以答案为D 选项.【点评】本题主要考查了旋转对称图形,熟练掌握相关概念是解题关键.12.如图,△ABC 中,∠A =90∘,∠C =30∘,BC =12cm ,把△ABC 绕着它的斜边中点P 逆时针旋转90∘至△DEF 603601203︒=︒360904︒=︒360725︒=︒360606︒=︒的位置,DF交BC于点H.△ABC与△DEF重叠部分的面积为()cm2.A.8 B.9 C.10 D.12【答案】B【解析】【分析】BC=6,再根据旋转的性质得PF=PC=6,∠FPC=90°,∠F=∠C=30°,如图,由点P为斜边BC的中点得到PC=12PF=2√3;在Rt△CPM中计算出根据含30度的直角三角形三边的关系,在Rt△PFH中计算出PH=√33PC=2√3,且∠PMC=60°,则∠FMN=∠PMC=60°,于是有∠FNM=90°,FM=PF-PM=6-2√3,则在PM=√33Rt△FMN中可计算出MN=1FM=3-√3,FN=√3MN=3√3-3,然后根据三角形面积公式和利用△ABC与△DEF2重叠部分的面积=S△FPH-S△FMN进行计算即可.【详解】解:如图,∵点P为斜边BC的中点,BC=6,∴PB=PC=12∵△ABC 绕着它的斜边中点P 逆时针旋转90°至△DEF 的位置,∴PF=PC=6,∠FPC=90°,∠F=∠C=30°,在Rt △PFH 中,∵∠F=30°,∴PH=√33PF=√33×6=2√3, 在Rt △CPM 中,∵∠C=30°,∴PM=√33PC=√33×6=2√3,∠PMC=60°, ∴∠FMN=∠PMC=60°,∴∠FNM=90°,而FM=PF-PM=6-2√3,在Rt △FMN 中,∵∠F=30°,∴MN=12FM=3-√3, ∴FN=√3MN=3√3-3,∴△ABC 与△DEF 重叠部分的面积=S △FPH -S △FMN=12×6×2√3-12(3-√3)(3√3-3)=9(cm 2).故选B .【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.二、填空题13.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过分钟旋转了________. 12【答案】【解析】【分析】先求出时钟上的分针匀速旋转一分钟时的度数为6°,再求20分钟分针旋转的度数.【详解】∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么20分钟,分针旋转了12×6°=72°.故答案为:72°.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.14.如图所示的四个两两相联的等圆,是我国“一汽”生产的大众汽车的车牌标志,右边的三个圆环可以看做是左边的圆环经过________ 得到的.【答案】平移【解析】【分析】观察本题中图案的特点,根据平移的定义作答.【详解】解:观察“一汽”生产的大众汽车的车牌标志,可知右边的三个圆环可以看做是左边的圆环经过平移得到的.【点评】考查图形的四种变换方式:对称、平移、旋转、位似.对称有轴对称和中心对称,轴对称的特点是一个图形绕着一条直线对折,直线两旁的图形能够完全重合;中心对称的特点是一个图形绕着一点旋转180后与另一个图形完全重合,它是旋转变换的一种特殊情况;平移是将一个图形沿某一直线方向移动,得到的新图形与原图形的形状、大小和方向完全相同;旋转是指将一个图形绕72112着一点转动一个角度的变换;位似的特点是几个相似图形的对应点所在的直线交于一点.观察时要紧扣图形变换特点,认真判断.15.将一副三角板按如图位置摆放,使得两块三角板的直角边和重合.已知,将绕点逆时针旋转后(图),两个三角形重叠(阴影)部分的面积约是________(结果精确到).【答案】【解析】【分析】设BC,AD 交于点G,过交点G 作GFLAC 与AC 交于点F,根据AC=8,就可求出GF 的长,从而求解.【详解】解:如图设BC 、AD 交于点G,过交点G 作GF ⊥AC 与AC 交于点F,设FC=x,则GF=FC=x,旋转角为60,即可得∠FAG=60,AF=GFcot ∠FAG=x. 所以则x=1AC MD 8AB AC cm ==MED ()A M 6022cm 0.1 1.73≈20.3o o ∴3所以=8(.故答案为:20.3.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:1定点-旋转中心;2旋转方向;3旋转角度.16.如图所示,第个图案是由黑白两种颜色的六边形地面砖组成的,第个,第个图案可以看成是第个图案经过平移而得,那么第个图案中有白色六边形地面砖________块.【答案】8070【解析】【分析】根据图形规律可得第n个图形的白色六边形地砖的数量为2+4n,然后将2017代入求解即可.【详解】解:第1个图形的白色六边形地砖的数量为:2+4=6块;第2个图形的白色六边形地砖的数量为:2+4×2=10块;第3个图形的白色六边形地砖的数量为:2+4×3=14块;······第n个图形的白色六边形地砖的数量为:2+4n块;则第个图案中有白色六边形地面砖为2+4×2017=8070块.故答案为:8070.【点评】本题【点评】图形规律题.SAGC12⨯⨯2123120172017三、解答题17.如图,将Rt △ABC 绕直角顶点A 逆时针旋转90°得到△ADE ,BC 的延长线交DE 于F ,连接BD ,若BC =2EF ,试证明△BED 是等腰三角形.【答案】见解析【解析】【分析】根据直角三角形的两锐角互余,以及对顶角相等,旋转的性质,即可证得是的垂直平分线,据此即可证得.【详解】证明:∵将Rt △ABC 绕直角顶点A 逆时针旋转90°得到△ADE ,∴DE =BC ,∠ADF =∠ABC ,∵BC =2EF ,∴DF =EF ,∴DE =2EF ,∵在直角△ABC 中,∠ABC+∠ACB =90°,又∵∠ABC =∠ADE ,∴∠ACB+∠ADE =90°.∵∠FCD =∠ACB ,∴∠FCD+∠ADE =90°,∴∠CFD =90°,BF DE∴BF⊥DE,∵EF=FD,∴BF垂直平分DE,∴BD=BE,∴△BDE是等腰三角形.【点评】本题考查了旋转的性质、等腰三角形的判定、线段垂直平分线的判定和性质,熟练掌握各定理是解题的关键.18.某居民小区搞绿化,小区的居民们把一块矩形垃圾场地清理干净后,准备建几个花坛,老张说:花坛应该有圆有方;老李说:花坛和整个矩形空地应该成中心对称图案,这样比较漂亮.你能设计一个让大家都满意的方案吗?试试看(将你设计的方案画在下面的矩形方框中).【答案】见解析【解析】【分析】根据题目要求画出图形, 注意花坛和整个矩形空地应该成中心对称图案.【详解】如图所示:【点评】此题主要考查了利用旋转设计图案以及中心对称图形定义, 利用中心对称图形的性质设计是解题关键.19.如图所示,某产品的标志图案,要在所给的图形图中,把,,三个菱形通过一种或几种变换,使之变为与图一样的图案:(1)请你在图中作出变换后的图案(最终图案用实线表示);(2)你所用的变换方法是________(在以下变换方法中,选择一种正确的填到横线上,也可以用自己的话表述).①将菱形向上平移;②将菱形绕点旋转;③将菱形绕点旋转.【答案】(1)详见解析;(2)③.【解析】【分析】首先分析①②的不同,变化前后,A 、C 的位置不变,只有B 的位置由O 的下方变为0的上方,据此即可作出判断.【详解】解:(1)观察分析②的不同,变化前后,A 、C 的位置不变,而B 的位置由由O 的下方变为O 的上方,进而可得两者对应点的连线交于点O,即进行了中心对称变化,变换方法是将菱形B 绕点O 旋转180,可作图得:(2)变换方法是将菱形B 绕点O 旋转180°,即③.故答案为:③.【点评】本题考查几何变化的运用与作图,注意观察时要紧扣图形变换特点,认真判断其几何变化类型.12A B C 12B B O 120B O 18020.如图,四边形是平行四边形,是对角线,将绕点逆时针旋转后得到,若,,求的度数及的长.【答案】,.【解析】【分析】先由平行四边形的性质求出∠DAC ,再由旋转的性质求出结论.【详解】在平行四边形ABCD 中,AD ∥BC ,AD =BC ,∴∠DAC =∠ACB =32°,由旋转的性质得∠C 'AD =90°﹣∠DAC =58°,∴AD '=AD =BC =2.【点评】本题是旋转的性质,主要考查了平行四边形的性质,旋转的性质,解答本题的关键是用旋转的性质得到对应边相等,对应角线段.21.如图,在正方形网格中,每个小正方形的边长均为个单位.将向绕点逆时针旋转,得到,请你画出(不要求写画法).如图,已知点和,试画出与关于点成中心对称的图形.【答案】详见解析.【解析】【分析】(1)根据旋转的性质得出旋转后A ,B 两点对应坐标,即可得出答案;ABCD AC ADC A 90''AD C 32ACB ∠=2BC ='C AD ∠'AD 58C AD ∠='2AD '=()111ABC C 90A B C '''A B C '''() 22O ABC ABCO(2)根据中心对称图形的性质,连接AO ,BO ,CO ,并延长,使OA ″=OA ,C ″O =CO ,B ″O =BO ,再连接A ″B ″,B ″C ″,A ″C ″即可.【详解】(1)(2)如图所示:【点评】本题主要考查了坐标与图形的性质以及中心对称图形的性质,根据已知得出对应点的位置是解题的关键.22.在如图的方格纸中,每个小方格都是边长为个单位的正方形,的三个顶点都在格点上(每个小方格的顶点叫格点).建立直角坐标系,使点的坐标为,点的坐标为,则点的坐标为________; 画出绕点顺时针旋转后的并写出点的坐标为________.【答案】 .【解析】【分析】1ABC ()1B ()5,2-C ()2,2-A ()2ABC P 90111A B C 1A ()4,4-()1,5(1)根据点B、C的坐标作出直角坐标系,然后写出点A的坐标;(2)分别作出点A、B、C绕点P顺时针旋转90°后的点,然后顺次连接,写出点A1的坐标.【详解】(1)坐标系如图所示:点A坐标为(-4,4);(2)所作图形如图所示:点A1的坐标为(1,5).故答案为(-4,4);(1,5).【点评】本题考查了根据旋转变换作图,解答本题的关键是根据坐标系的性质作出直角坐标系,根据网格结构作出对应点的坐标.23.如图,△ABC由△EDC绕C点旋转得到,B、C、E三点在同一条直线上,∠ACD=∠B,求证:△ABC 是等腰三角形.【答案】见解析【解析】【分析】由旋转的性质可知∠D=∠B,再根据已知条件证明AC∥DE,进而证明∠ACB=∠A,所以△ABC是等腰三角形.【详解】证明:由旋转知∠D=∠B,∵∠ACD=∠B,∴∠ACD=∠D,AC∥DE,∴∠ACB=∠E,又∵∠A=∠E,∴∠ACB=∠A,∴△ABC是等腰三角形.【点评】本题考查了旋转的性质以及等腰三角形的判定,对于旋转的性质用到最多的是:旋转前、后的图形全等.24.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B 交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.【答案】(1)BE=DF;(2)四边形BC1DA是菱形.【解析】【分析】(1)由AB=BC得到∠A=∠C,再根据旋转的性质得AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,则可证明△ABE≌△C1BF,于是得到BE=BF(2)根据等腰三角形的性质得∠A=∠C=30°,利用旋转的性质得∠A1=∠C1=30°,∠ABA1=∠CBC1=30°,则利用平行线的判定方法得到A1C1∥AB,AC∥BC1,于是可判断四边形BC1DA是平行四边形,然后加上AB=BC1可判断四边形BC1DA是菱形.【详解】(1)解:BE=DF.理由如下:∵AB=BC,∴∠A=∠C,∵△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,∴AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,在△ABE和△C1BF中,∴△ABE≌△C1BF,∴BE=BF(2)解:四边形BC1DA是菱形.理由如下:∵AB=BC=2,∠ABC=120°,∴∠A=∠C=30°,∴∠A1=∠C1=30°,∵∠ABA1=∠CBC1=30°,∴∠ABA1=∠A1,∠CBC1=∠C,∴A1C1∥AB,AC∥BC1,∴四边形BC1DA是平行四边形.又∵AB=BC1,∴四边形BC1DA是菱形【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的判定方法.。

人教版九年级上学期数学《旋转》单元测试题(附答案)

人教版九年级上学期数学《旋转》单元测试题(附答案)
轴对称图形的特性:关于某直线对称的两个图形是全等的;图形的对应点连线段被同一条直线垂直平分;对应线段或延长线与对称轴交于一点.
二、填空题(每小题3分,共24分)
11.请写出一个是中心对称图形的几何图形的名称:.
[答案]平行四边形(答案不唯一).
[解析]
解:平行四边形是中心对称图形.
故答案可为:平行四边形.
三、解答题(共66分)
19.如图,A C是正方形A B C D的对角线,△A B C经过旋转后到达△AEF的位置.
(1)指出它 旋转中心;
(2)说出它的旋转方向和旋转角是多少度;
(3)分别写出点A,B,C的对应点.
20.如图,已知四边形A B C D,画四边形A1B1C1D1,使它与四边形A B C D关于C点中心对称.
答案:D.
点睛:此类题目综合考查了旋转、平移及轴对称的特性:
旋转的特性:不改变图形的形状和大小;经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.对应角相等,对应线段也相等.
平移的特性:平移只改变图形的位置,不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等.
14.如图,在4×4的正方形网格中,每个小正方形的边长均为1,将△AOB绕点O逆时针旋转90°得到△COD,则旋转过程中形成的阴影部分的面积为________.
15.如图,将等边 绕顶点A顺时针方向旋转,使边A B与A C重合得 , 的中点E的对应点为F,则 的度数是_______.
16.如图所示,已知抛物线C1,抛物线C2关于原点中心对称.如果抛物线C1的解析式为y= (x+2)2-1,那么抛物线C2的解析式为:___________________________

人教版九年级上册数学《旋转》单元综合测试卷(带答案)

人教版九年级上册数学《旋转》单元综合测试卷(带答案)
故选B.
7.正方形 中的顶点 在平面坐标系中的坐标为 ,若将正方形 绕着原点 按逆时针旋转 .则旋转后的点 坐标为()
A.(-1, 1)B.(1, -1)C.(0, - )D.(- , 0)
【答案】D
【解析】
【分析】
根据旋转中心为原点,旋转方向逆时针,旋转角度135°,作出点A的对称图形A′,求得OA的长度,也就求得了OA′的长度,可得所求点的坐标.
26.如图 , 中, , , , ,将 绕着点 旋转一定的角度,得到 .
(1)若点 为 边上中点,连接 ,则线段 的范围为________.
(2)如图 ,当 直角顶点 在 边上时,延长 ,交 边于点 ,请问线段 、 、 具有怎样的数量关系,请写出探索过程.
参考答案
一、选择题(共10小题,每小题3分,共30分)
【详解】根据题意,易得点(-2,3)与(2,-3)的纵横坐标互为相反数,则这两点关于原点中心对称.
故选A.
【点睛】本题考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,注意掌握关于原点对称的点,横坐标与纵坐标都互为相反数
9.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()
A. B. C. D.
∵∠AOD=90°,
∴∠BOC=90°-38°-38°=14°.
故选B.
【点睛】此题主要考查了旋转的性质,正确得出∠AOC=∠BOD是解题关键.
5.下面关于中心对称图形的描述,正确的是()
A. 中心对称图形与中心对称是同一个概念
B. 中心对称描述的是两个图形的位置关系,中心对称图形是一个图形的性质
C. 一个图形绕着某一点旋转的过程中,只要能与原来的图形重合,那么这个图形就叫做中心对称图形

人教版九年级上学期数学《旋转》单元测试卷含答案

人教版九年级上学期数学《旋转》单元测试卷含答案
以点 为对称中心,画出 ,使 与 关于点 对称,并写出下列点的坐标: ________, ________;
多边形 的面积是________.
三、解答题
21.下图是一个风车图案的一部分,风车图案是一个关于点 的中心对称图形,请你把它补全.
22.如图,在 中, , ,将 绕点 按顺时针方向旋转后得到 ,此时点 在 边上,求旋转角的大小.
[详解]解:如图,
∵点P为斜边B C的中点,
∴PB=PC= B C=6,
∵△A B C绕着它的斜边中点P逆时针旋转90°至△DEF的位置,
∴PF=PC=6,∠FPC=90°,∠F=∠C=30°,
在Rt△PFH中,∵∠F=30°,
∴PH= PF= ×6=2 ,
在Rt△CPM中,∵∠C=30°,
∴PM= PC= ×6=2 ,∠PMC=60°,
纵坐标为为2× = ,
∴点C′的坐标为( , ).
故选A.
[点睛]本题考查了坐标与图形变化-旋转,正方形的性质,熟记性质并判断出点C′的位置是解题的关键.
7.如图, 是一张矩形纸片,点 为矩形对角线的交点,直线 经过点 交 于 ,交 于 .
操作:先沿直线 剪开,并将直角梯形 绕 点旋转 后,恰好与直角梯形 完全重合,再将重合后的直角梯形 以直线 为轴翻转 后所得的图形可能是( )
25.如图,已知点A,B的坐标分别为(4,0),(3,2).
(1)画出△AOB关于原点O对称的图形△COD;
(2)将△AOB绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;
(3)点D的坐标是,点F的坐标是,此图中线段BF和DF的关系是.
26.我们知道,在平面内,如果一个图形绕着一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.例如,正方形绕着它的对角线的交点旋转 后能与自身重合所以正方形是旋转对称图形,它有一个旋转角为 .

人教版九年级上册数学《旋转》单元综合测试(带答案)

人教版九年级上册数学《旋转》单元综合测试(带答案)
(3)根据图2,请直接写出AD、BD、CD三条线段之间的数量关系.
附加题(20分,不计入总分)
26.如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.
(1)试猜想线段BG和AE 数量系是_____;
(2)将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),
人教版数学九年级上学期
《旋转》单元测试
(满分120分,考试用时120分钟)
一、选择题(每小题3分,共30分)
1.下列图形是中心对称图形的是【】
A. B. C. D.
2.观察下列图案,能通过左图顺时针旋转90°得到的()
A. B. C. D.
3.在平面直角坐标系中,点M(3,-5)关于原点对称的点的坐标是()
8. 如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()
A. 4,30°B. 2,60°C. 1,30°D. 3,60°
9.如图,在 中, .将 绕点 按顺时针方向旋转 度后得到 ,此时点 在 边上,斜边 交 边于点 ,则 的大小和图中阴影部分的面积分别为()
C. 黑(3,3),白(3,1)D. 黑(3,1),白(3,3)
7.有两个完全重合 矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②……则第10次旋转后得到的图形与图①~④中相同的是().
A 图①B.图②C.图③D.图④
【答案】D

人教版九年级上学期数学《旋转》单元测试卷(附答案)

人教版九年级上学期数学《旋转》单元测试卷(附答案)

九年级上册数学《旋转》单元测试卷(满分120分,考试用时120分钟)一、选择题(本大题共8小题,每小题3分,共24分)每小题只有一个正确选项,把正确 选项的代号填在题后的括号内.1.下列图形中,中心对称图形有 [ ]A .4个B .3个C .2个D .1个2. 已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图2.则旋转的牌是[ ]3.D 是等腰Rt △A B C 内一点,B C 是斜边,如果将△A B D 绕点A 逆时针方向旋转到△A C D ′的位置,则∠A D D ′的度数是 [ ] A . 45° B . 35° C . 30° D . 25°4.将等腰直角三角形A OB 按如图所示放置,然后绕点O 逆时针旋转90︒至A OB ''∆的位置,点B 的横坐标为2,则点A '的坐标为 [ ]A .(1,1)B .(2,2)C .(-1,1)D .(2,2-)5.在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是 [ ] A .点A B .点B C .点C D .点D6.如图,已知两个全等直角三角形的直角顶点及一条直角边重合,将ACB △绕点C 按顺时针方向旋转到A CB ''△的位置,其中A C '交直线AD 于点E ,A B ''分别交直线AD AC ,于点F G ,,则旋转后的图中,全等三角形共有 [ ] A .2对 B .3对 C .4对 D .5对7.已知A <0,则点2(1,3)P aa ---+关于原点的对称点P '在 [ ]A .第一象限B .第二象限C .第三象限D .第四象限 8.如图,在△A B C 中,A B =B C ,将△A B C 绕点B 顺时针 旋转α度,得到△A 1B C 1,A 1B 交A C 于点E ,A 1C 1分别交(第3题)A B CDMNP P 1 M 1 N 1(第5题)AB C DA A 'CDB ' GFE (第6题)A .B .C .D . 图1图2(第16题)(第4题)A C 、BC 于点D 、F ,下列结论:①∠C D F = ,②A 1E =CF , ③D F =FC ,④A D =C E ,⑤A 1F =C E .其中正确结论的序号的是: [ ] A .①②③B .①②④C .①②⑤D .②③⑤二、填空题(本大题共6小题,每小题3分,共18分)9.图形:①线段,②等边三角形,③平行四边形,④矩形,⑤梯形,⑥圆,其中既是轴对称图形又是中心对称图形的序号是_______.10.如图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数是___ _. 11.如图,在△A B C 中, ∠C A B =70°,在同一平面内, 将△A B C 绕点A 旋转到△A B ′C ′的位置, 使得C C ′∥A B , 则∠B A B ′= .12.小亮从A 点出发前进10m ,向右转15°,再前进10m ,又向右转15°,…,这样一直走下去,他第一次回到出发点A 时,一共走了______m .13.将边长为3的正方形A B C D 绕点A 逆时针方向旋转30o 后得到正方形A ′B ′C ′D ′,则图中阴影部分面积为______平方单位. 14.如图正方形A B C D 与正三角形A EF 的顶点A 重合,将△A EF 绕其顶点A 旋转,在旋转过程中,当B E=D F 时,∠B A E 的大小可以是 . .三、(本大题共2小题,第15题6分,第16题6分,共12分)15.如图,在平面直角坐标系中,△A B C 和△A 1B 1C 1关于点E 成中心对称.(1)画出对称中心E ,并写出点E 、A 、C 的坐标; (2)P (A ,B )是△A B C 的边A C 上一点,△A B C 经平移后点P 的对应点为P 2(A +6, B +2),请画出上述平移后 的△A 2B 2C 2,并写出点A 2、C 2的坐标;(3)判断△A 2B 2C 2和△A 1B 1C 1的位置关系(直接写出结果).16.如图,四边形A B C D 是正方形,△A D F 旋转一定角度后得到△A B E ,如图所示,如果A F =4,A B =7,(1)指出旋转中心和旋转角度;(第11题)(第12题) (第10题) (第13题)(第15题)(第14题)(2)求D E的长度;(3)B E与A D 有什么位置关系?请简要说明理由.(第16题)四、(本大题共2小题,每小题7分,共14分)17.认真观察下面图(1)4个图中阴影部分构成的图案,回答下列问题:(第16题图1)(第16题图2)(1)请写出这四个图案都具有的两个共同特征: . (2)请在图(2)中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.18.如图,在Rt OAB ∆中,90OAB ∠=︒,6OA AB ==,将OAB ∆绕点O 沿逆时针方向旋转90︒得到11OA B ∆.(1)线段1OA 的长是 ,1AOB ∠的度数是 ; (2)连结1AA ,求证:四边形11OAA B 是平行四边形;五、(本大题共2小题,每小题8分,共16分)19.如图,正方形A B C D 的对角线相交于点O ,点O 也是 正方形A ′B ′C ′O 的一个顶点,如果两个正方形的边长都是2, 求两个正方形重叠部分的面积.20.如图,在Rt △A B C 中,∠A C B =90°, ∠B =60°,B C =2.点O 是A C 的中点,过点O 的直线l 从与A C 重合的位置开始,绕点O 作逆时针旋转,交A B 边于点D .过点C 作C E ∥A B 交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=________度时,四边形ED B C 是等腰梯形,此时A D 的长为_________; ②当α=________度时,四边形ED B C 是直角梯形,此时A D 的长为_________;(第19题)B 1AOA 1(第18题)(2)当α=90°时,判断四边形ED B C 是否为菱形,并说明理由.六、填空题(本大题共2小题,每小题8分,共16分)21.如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=,.将BOC △绕点C 按顺时针方向旋转60得ADC △,连接OD . (1)求证:△C OD 是等边三角形;(2)当α=150°时,试判断△A OD 的形状,并说明理由; (3)探究:当α为多少度时,△A OD 是等腰三角形?(第20题) ABCDO110α(第21题)22.在正方形A B C D 的边A B 上任取一点E,作EF⊥A B 交B D 于点F,取FD 的中点G,连接EG、C G,如图(1),易证EG=C G且EG⊥C G.(1)将△B EF绕点B 逆时针旋转90°,如图(2),则线段EG和C G有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△B EF绕点B 逆时针旋转180°,如图(3),则线段EG和C G又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.E第22题图1 第22题图2参考答案一、1.B 2.A 3.A 4.C 5.B 6.C 7.D 8.C二、9.①④⑥ ; 10.45; 11.40; 12.240 ; 13.33-; 14. 15或165 三、15.解:(1)如图,E (-3,-1),A (-3,2),C (-2,0);(2)如图,A 2(3,4),C 2(4,2);(3)△A 2B 2C 2与△A 1B 1C 1关于原点O 成中心对称.16.解:(1)旋转中心是A ,旋转角度是90°;(2)3;(3)B E ⊥A D .延长B E 交D F 于G .∵,GDE EBA GED AEB ∠=∠∠=∠ ∴90DGE EAB ∠=∠=∴B E ⊥A D四、17.解:(1)既是轴对称图形,也是中心对称图形.(2)图略18.解:(1)6,135°;(2)11190AOA OA B ∠=∠=︒∴ 11//OA A B 又11OA AB A B ==∴四边形11OAA B 是平行四边形五、19.解:不变化,易证ONC OMD ∆≅∆,所以,S 阴= S COD ∆=114S ABCD =正方形. 20. 解:(1)①30,1;②60,1.5; (2)当∠α=900时,四边形ED B C 是菱形.∵∠α=∠A C B =900,∴B C //ED . ∵C E //A B , ∴四边形ED B C 是平行四边形. 在Rt △A B C 中,∠A C B =900,∠B =600,B C =2,∴∠A =300.∴A B =4,A C =23.∴A O =12AC =3 . 在Rt △A OD 中,∠A =300,∴A D =2.∴B D =2.∴B D =B C . 又∵四边形ED B C 是平行四边形, ∴四边形ED B C 是菱形六、21.解:(1)由题意可得C O =C D ,∠OC D = 60°,可证△C OD 是等边三角形;(2)直角三角形. α=150°=∠C D A ,由(1)得∠C D O = 60°,所以∠A D O=90°, 所以△A OD 为直角三角形. (3)∵∠A D O =α-60°,∠A OD =190°-α,∴∠D A O =50°.ABD CEFG若α-60°=190°-α,则α=125°; 若α-60°=50°,则α=110°; 若190°-α=50°,则α=140°. 综上所述,当α的度数为125°或110°或140°时,△A OD 是等腰三角形.22.解:(1)EG =C G ,EG ⊥C G .(2)EG =C G ,EG ⊥C G .证明:如图,延长FE 交D C 延长线于M ,连MG . ∵∠A EM =90°,∠EB C =90°,∠B C M =90°,∴四边形B EMC 是矩形.∴B E =C M ,∠EMC =90°, 又∵B E =EF ,∴EF =C M .∵∠EMC =90°,FG =D G ,∴MG =FD =FG . ∵B C =EM ,B C =C D ,∴EM =C D . ∵EF=C M ,∴FM =D M ,∴∠F =45°. 又FG=D G ,∠C MG =∠EMC =45°, ∴∠F =∠GMC .∴△GFE ≌△GMC . ∴EG =C G ,∠FGE =∠MGC . ∵∠FMC =90°,MF =MD ,FG =D G , ∴MG ⊥FD ,∴∠FGE +∠EGM =90°, ∴∠MGC +∠EGM =90°,即∠EGC =90°, ∴EG ⊥C G .MGEB C AD。

人教版九年级上册数学《旋转》单元检测含答案

人教版九年级上册数学《旋转》单元检测含答案
A B.
C. D.
4.如图,△ABC与△A′B′C′成中心对称,下列说法不正确的是( )
A.S△ABC=S△A′B′C′B.AB=A′B′,AC=A′C′,BC=B′C′
C.AB∥A′B′,AC∥A′C′,BC∥B′C′D.S△ACO=S△A′B′O
5.如图,Rt△ABC向右翻滚,下列说法正确的有( )
②将△ABC绕点A顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少?点C的坐标又是什么?
24.感知:如图①,在△ABC中,∠C=90°,AC=BC,D是边BC上一点(点D不与点B,C重合).连接AD,将AD绕着点D逆时针旋转90°,得到DE,连接BE,过点D作DF∥AC交AB于点F,可知△ADF≌△EDB,则∠ABE的大小为________.
正确的有三种,
故选C.
点睛:在平移和旋转图形中,对应角相等,平移中对应线段相等且平行,旋转图形对应线段相等但不一定平行.
6.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()
A.(0,0)B.(1,0)C.(1,﹣1)D.(2.5,0.5)
21.如图,在平面直角坐标系中,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC,AD.
(1)求证:OC=AD;
(2)求OC的长.
22.如图,在网格中有一个四边形图案.
(1)请你分别画出△ABC绕点O顺时针旋转90°的图形,关于点O对称的图形以及逆时针旋转90°的图形,并将它们涂黑;
8.如图,E,F分别是正方形ABCD的边CD,AD上的点,CE=DF,AE,BF相交于点O.下列结论:①AE=BF;②AE⊥BF;③△ABF与△DAE成中心对称.其中,正确的结论有( )

(人教版)九年级上册数学《旋转》单元测试题(含答案)

(人教版)九年级上册数学《旋转》单元测试题(含答案)

一.选择1. ( 20XX?广东)在以下交通标记中,既是轴对称图形,又是中心对称图形的是())度,才能与自己重合.2. 一个等边三角形绕其旋转中心起码旋转(A. 30°B . 60°C . 120XXD . 180°【评论】本题考察旋转对称图形的观点:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这类图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.3.在平面直角坐标系中,点(3 ,- 2) 对于原点对称点的坐标是()A.(3,2)B.(-3,-2)C.(-3,2)D.(-3,-2)4.如图,正方形ABCD经过旋转获得正方形AB′C′D′,则旋转的角度为()A. 30 ° B.45 °C. 60°D. 90°5.在等边三角形、平行四边形、矩形和圆这四个图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2 个C.3 个D.4 个【答案】B6. ( 20XX?苏州)如图,△AOB为等腰三角形,极点 A 的坐标( 2,),底边OB在x轴上.将△AOB绕点 B 按顺时针方向旋转必定角度后得△A′ O′ B′,点A 的对应点A′在x 轴上,则点 O′的坐标为()A.(,)B.(,)C.(,)D.(,4)∴O′D=4×=,7. ( 20XX·浙江金华)如图,将Rt △ ABC绕直角极点顺时针旋90°,获得△ A′B′C,连转结 AA′,若∠1=20XX则∠ B 的度数是【】A.70°B.65°C.60°D.55°在 Rt △ ABC中,∠ B=90° - ∠BAC=90°-25 ° =65°【评论】本题考察了旋转的性质和等腰三角形的性质,娴熟掌握旋转的性质是重点8.( 20XX?天津)如图,在△ ABC 中, AC=BC,点 D、 E 分别是边 AB、AC的中点,将△ ADE 绕点 E 旋转 180°得△ CFE,则四边形ADCF必定是()A.矩形B.菱形C.正方形D.梯形9.(南通中考)如 Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且 AC在直 l 上,将△ ABC点 A 旋到①,可获得点P1,此 AP1=2;将地点①的三角形点P1旋到地点②,可获得点P2,此 AP2=2+ 3 ;将地点②的三角形点P2旋到地点③,可获得点P3,此 AP3=3+ 3 ;⋯按此律旋,直到点P20XX止,AP20XX等于()A. 20XX+6713B. 20XX+6713C. 20XX+6713D. 20XX+671310.( 20XX?孝感)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D( 5, 3)在边 AB上,以 C为中心,把△ CDB旋转90°,则旋转后点D的对应点 D′的坐标是()A.( 2, 10) B .(﹣ 2, 0) C .( 2,10)或(﹣ 2, 0) D .( 10, 2)或(﹣ 2, 0)二.填空题11.(20XX?益阳)如图,将等边△绕极点A 顺时针方向旋转, 使边 AB 与 重合得△ ,ABCACACD的中点E 的对应点为,则∠的度数是.BC F EAF【答案】 60°【考点】旋转的性质【分析】由旋转的性质找到旋转角即可.12(. 20XX 年广东汕尾)如图,把△ ABC 绕点C 按顺时针方向旋转35°,获得△ A ′ B ′ C ,A ′ B ′交 AC 于点D .若∠ A ′ DC =90°,则∠A =.13. ( 20XX?铁岭)如图,在△ ABC 中, AB=2, BC=3.6,∠ B=60°,将△ ABC 绕点 A 按顺时针旋转必定角度获得△ ADE,当点 B 的对应点 D 恰巧落在BC边上时,则CD的长为.【答案】 1.614.( 20XX?邵阳)如图,在平面直角坐标系xOy中,已知点 A(3,4),将 OA绕坐标原点 O 逆时针旋转90°至OA′,则点A′的坐标是.15.( 20XX?广东)如图,△ABC绕点A顺时针旋转 45°获得△A′B′C′,若∠BAC=90°,AB=AC=,则图中暗影部分的面积等于.∵A B=AC三.解答题16. ( 20XX?毕节)在以下网格图中,每个小正方形的边长均为 1 个单位.在Rt △ ABC中,∠C=90°, AC=3, BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点 B 的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、 C两点的坐标;(3)依据( 2)的坐标系作出与△ABC对于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.17.( 20XX?扬州)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△ DBE后,再把△ ABC沿射线平移至△ FEG, DF、 FG订交于点 H.(1)判断线段DE、FG的地点关系,并说明原因;(2)连结CG,求证:四边形CBEG是正方形.(2)依据旋转和平移的性质可得找出对应线段和角,而后再证明是矩形,后依据邻边相等可得四边形 CBEG是正方形.【解答】(1)解:FG⊥E D原因:【评论】本题主要考察了图形的旋转和平移,娴熟掌握旋转和平移的性质是解决本题的重点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册数学《旋转》单元测试卷(满分120分,考试用时120分钟)一、单选题1.如图,将△A B C 绕点A 按逆时针方向旋转100°,得到△A B 1C 1,若点B 1在线段B C 的延长线上,则∠B B 1C 1的大小为( )A .70°B .80°C .84°D .86°2.点P(3,5)关于原点对称的点的坐标是()A .(﹣3,5)B .(3,﹣5)C .(5,3)D .(﹣3,﹣5)3.观察下列四个图形.其中两个三角形的组合方式与另外三个不同的是( )A .B .C .D .4.正方形ABCD中的顶点A在平面坐标系中的坐标为()1,1,若将正方形ABCD绕着原点O按逆时针旋转135.则旋转后的点A坐标为( )A .(-1, 1)B .(1, -1)C .(0, -D .(-5.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A .1个B .2个C .3个D .4个6.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-7.下列不是图形的旋转、平移、轴对称的共同特征的是( )A .对应线段与对应角不变B .图形的大小不变C .图形的形状不变D .对应线段平行8.根据指令[],(0,0360)s A s A ≥≤<机器人在平面上能完成如下动作:先在原地顺时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点()3,0-,应下的指令是( ) A . 3,90?⎡⎤⎣⎦ B . 90,3⎡⎤⎣⎦ C . 3,90⎡⎤-⎣⎦ D . 3,270⎡⎤⎣⎦9.下列关于等腰三角形的叙述错误的是( )A .等腰三角形两底角相等B .等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合C .等腰三角形的三边相等D .等腰三角形是轴对称图形但不是中心对称图形10.如图,Rt △A B C 中,∠A C B =90°,A C =4,将斜边A B 绕点A 逆时针旋转90°至A B ′.连接B 'C ,则△A B 'C 的面积为( )A .4B .6C .8D .1011.如图,点E 是正方形A B C D 的边D C 上一点,把△A D E 绕点A 顺时针旋转90°到△A B F 的位置,若四边形A EC F 的面积为25,D E=3,则A E 的长为( )A B .5 C .8 D .412.如图,Rt ABC 中,C 90∠=,A 60∠=,AC 6=,以斜边AB 的中点D 为旋转中心,把这个三角形按逆时针方向旋转90得到Rt A'B'C',则旋转后两个直角三角形重叠部分的面积为( )A .6B .9C .D .二、填空题 13.如图,把一个直角三角尺A C B 绕着30°角的顶点B 顺时针旋转,使得点A 与C B 的延长线上的点E重合连接C D ,则∠B D C 的度数为_____度.14.在平面直角坐标系中,O为坐标原点,点A 的坐标为,1),将OA 绕原点逆时针方向旋转90°得OB ,则点B 的坐标为_____.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A ,O,B 的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A ,O,B ,P 四颗棋子成为一个中心对称图形,请写出棋子P 的位置坐标_____(写出1 个即可).16.如图,在△B D E中,∠B D E=90°,,点D 的坐标是(5,0),∠B D O=15°,将△B D E旋转到△A B C 的位置,点C 在B D 上,则旋转中心的坐标为_______ .三、解答题17.如图,P是正ABC内的一点,若将PAC绕点A逆时针旋转到P'AB,(1)求PAP'∠的度数.(2)若AP 3=,BP 4=,PC 5=,求PAB ∠的度数.18.如图,ABC 的顶点坐标分别为()A 2,2-,()B 4,4,()C 1,2.将ABC 绕坐标原点O 逆时针旋转90,得到A B C '''(A '、B '、C '分别为A 、B 、C 的对应点),在坐标系中画出A B C ''',并写出A '、B '、C '三点的坐标.19.如图1,ABC 中,C 90∠=,BC 3=,AC 4=,AB 5=,将ABC 绕着点B 旋转一定的角度,得到DEB .(1)若点F 为AB 边上中点,连接EF ,则线段EF 的范围为________.(2)如图2,当DEB 直角顶点E 在AB 边上时,延长DE ,交AC 边于点G ,请问线段DE 、EG 、AG 具有怎样的数量关系,请写出探索过程.20.如图,四边形A B C D 是正方形,△A D F 绕着点A 顺时旋转90°得到△A B E ,若A F =4,A B =7.(1)求D E 的长度;(2)指出B E 与D F 的关系如何?并说明由.21.如图,已知点A ,B 的坐标分别为(4,0),(3,2).(1)画出△A OB 关于原点O对称的图形△C OD ;(2)将△A OB 绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D 的坐标是,点F的坐标是,此图中线段B F和D F的关系是.22.如图①,在Rt ABC 中,90C ∠=.将ABC 绕点C 逆时针旋转得到''A B C ,旋转角为α,且0180α<<.在旋转过程中,点'B 可以恰好落在AB 的中点处,如图②.()1求A ∠的度数;()2当点C 到'AA 的距离等于AC 的一半时,求α的度数.23.在Rt △A B C 中,∠A C B =90°,,点D 是斜边A B 上一动点(点D 与点A 、B 不重合),连接C D ,将C D 绕点C 顺时针旋转90°得到C E ,连接A E ,D E .(1)求△A D E 的周长的最小值;(2)若C D =4,求A E 的长度.24.两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)αα<<角度,如图2所示. ()1利用图2证明AC BD =且AC BD ⊥;()2当BD 与CD 在同一直线上(如图3)时,求AC 的长和α的正弦值.参考答案一、单选题1.如图,将△A B C 绕点A 按逆时针方向旋转100°,得到△A B 1C 1,若点B 1在线段B C 的延长线上,则∠B B 1C 1的大小为( )A .70°B .80°C .84°D .86°[答案]B[解析][分析]由旋转的性质可知∠B =∠A B 1C 1,A B =A B 1,由等腰三角形的性质和三角形的内角和定理可求得∠B =∠B B 1A =∠A B 1C 1=40°,从而可求得∠B B 1C 1=80°.[详解]由旋转的性质可知:∠B =∠A B 1C 1,A B =A B 1,∠B A B 1=100°.∵A B =A B 1,∠B A B 1=100°,∴∠B =∠B B 1A =40°.∴∠A B 1C 1=40°.∴∠B B 1C 1=∠B B 1A +∠A B 1C 1=40°+40°=80°.故选:B .[点评]本题主要考查的是旋转的性质,由旋转的性质得到△A B B 1为等腰三角形是解题的关键.2.点P(3,5)关于原点对称的点的坐标是()A .(﹣3,5)B .(3,﹣5)C .(5,3)D .(﹣3,﹣5)[答案]D[解析][分析]根据关于原点对称的点的坐标特点:两个点关于原点对称时,横纵坐标的坐标符号均相反,根据这一特征求出对称点坐标.[详解]解:点P(3,5)关于原点对称的点的坐标是(-3,-5),故选D .[点评]本题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律.3.观察下列四个图形.其中两个三角形的组合方式与另外三个不同的是( )A .B .C .D .[答案]C[解析][分析]根据两三角形的位置关系确定几何变换类型,继而得出答案.[详解]A 、图形通过旋转得到;B 、图形通过旋转得到;C 、图形通过平移得到;D 、图形通过旋转得到;故选:C .[点评]本题考查了几何变换的类型,属于基础题,关键是掌握几种几何变换的特点.4.正方形中的顶点在平面坐标系中的坐标为,若将正方形绕着原点按逆时针旋转.则旋转后的点坐标为( )A .(-1, 1)B .(1, -1)C .(0, -)D .(-, 0)[答案]D[解析][分析]根据旋转中心为原点,旋转方向逆时针,旋转角度135°,作出点A 的对称图形A ′,求得OA 的长度,也就求得了OA ′的长度,可得所求点的坐标.[详解]如图:∵∴OA ′=O,∴A′0).故选:D .[点评]本题考查了由图形旋转得到相应坐标,根据旋转中心,旋转方向及角度得到相应图形是解决本题的关键.ABCD A ()1,1ABCD O 135A5.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A .1个B .2个C .3个D .4个[答案]B[解析][分析] 根据轴对称图形与中心对称图形的概念对各图形分析判断即可求解.[详解]解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B .[点评]此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握6.如图,正方形的两边、分别在轴、轴上,点在边上,以为中心,把旋转,则旋转后点的对应点的坐标是( )A .B .C .或D .或OABC OA OC x y ()5,3D AB C CDB △90︒D 'D ()2,10()2,0-()2,10()2,0-()10, 2()2,0-[答案]C[解析][分析]先根据正方形的性质求出B D 、B C 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.[详解]四边形OA B C 是正方形,由题意,分以下两种情况:(1)如图,把逆时针旋转,此时旋转后点B 的对应点落在y 轴上,旋转后点D 的对应点落在第一象限由旋转的性质得:点的坐标为(2)如图,把顺时针旋转,此时旋转后点B 的对应点与原点O 重合,旋转后点D 的对应点落在x 轴负半轴上由旋转的性质得:点的坐标为综上,旋转后点D 的对应点的坐标为或故选:C .(5,3)D 5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒CDB △90︒B 'D 2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴D (2,10)CDB △90︒B ''D ''2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴D ''(2,0)-D (2,10)(2,0)-[点评]本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键. 7.下列不是图形的旋转、平移、轴对称的共同特征的是( )A .对应线段与对应角不变B .图形的大小不变C .图形的形状不变D .对应线段平行 [答案]D[解析][分析]根据三种变换得到的图形都与原图形全等,进行分析.[详解]解:根据平移、旋转和轴对称的基本性质,知A . B . C 都是正确的;D . 在旋转中,对应线段不一定平行,故错误.故选D .[点评]本题主要考查几何变换的类型,熟悉掌握是关键.8.根据指令机器人在平面上能完成如下动作:先在原地顺时针旋转角度,再朝其面对的方向沿直线行走距离.现在机器人在平面直角坐标系的原点,且面对轴的负方向,为使其移动到点,应下的指令是( ) [],(0,0360)s A s A ≥≤<A s y ()3,0-A .B .C .D .[答案]A[解析][分析] 若顺时针旋转90°,则机器人面对x 轴负方向,根据向x 轴负半轴走3个单位可得相应坐标.[详解]解:根据点(0,0)到点(−3,0),即可知机器人先顺时针转动,再向左平移3个单位,于是应下指令为[3,].故选A .[点评]本题主要考查坐标与图形变化-旋转,熟悉掌握是关键.9.下列关于等腰三角形的叙述错误的是( )A .等腰三角形两底角相等B .等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合C .等腰三角形的三边相等D .等腰三角形是轴对称图形但不是中心对称图形[答案]C[解析][分析]直接利用等腰三角形的性质分别分析得出答案.[详解]A 、等腰三角形两底角相等,正确,不合题意;B 、等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合,正确,不合题意;3,90?⎡⎤⎣⎦ 90,3⎡⎤⎣⎦ 3,90⎡⎤-⎣⎦ 3,270⎡⎤⎣⎦9090C 、等腰三角形的三边相等,错误,符合题意;D 、等腰三角形是轴对称图形但不是中心对称图形,正确,不合题意;故选:C .[点评]此题主要考查了等腰三角形的性质,正确掌握等腰三角形的性质是解题关键.10.如图,Rt△A B C 中,∠A C B =90°,A C =4,将斜边A B 绕点A 逆时针旋转90°至A B ′.连接B 'C ,则△A B 'C 的面积为()A .4B .6C .8D .10[答案]C[解析][分析]过点B '作B 'E⊥A C 于点E,由题意可证△A B C ≌△B 'A E,可得A C =B 'E=4,即可求△A B 'C 的面积.[详解]如图:过点B '作B 'E⊥A C 于点E∵旋转∴A B =A B ',∠B A B '=90°∴∠B A C +∠B 'A C =90°,且∠B 'A C +∠A B 'E =90°∴∠B A C =∠A B 'E ,且∠A EB '=∠A C B =90°,A B =A B '∴△A B C ≌△B 'A E (A A S )∴A C =B 'E =4∴S △A B 'C =×A C ×B 'E =×4×4=8 故选C .[点评]本题考查了旋转的性质,全等三角形的判定和性质,熟练运用旋转的性质是解决本题的关键. 11.如图,点E 是正方形A B C D 的边D C 上一点,把△A D E 绕点A 顺时针旋转90°到△A B F 的位置,若四边形A EC F 的面积为25,D E=3,则A E 的长为( )AB .5C .8D .4[答案]A[解析][分析] 利用旋转的性质得出四边形A EC F 的面积等于正方形A B C D 的面积,进而可求出正方形的边长,再利用勾股定理得出答案.[详解]把顺时针旋转的位置,1212ADE ABF四边形A EC F 的面积等于正方形A B C D 的面积等于25,,,中,故选A .[点评]此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键. 12.如图,中,,,,以斜边的中点为旋转中心,把这个三角形按逆时针方向旋转得到,则旋转后两个直角三角形重叠部分的面积为( )A .B .C .D .[答案]B[解析][分析] 如图,先计算出A B =2A C =12,根据中点定义则可得B D =6,根据旋转的性质可得 D =B D =6,在Rt △BD M 中,可求得D M 、B M 的长,从而可求得B ′M 的长,然后在Rt △B ′MN 中求出MN 的长,继而求得B N 的长,在Rt △B NG 中求出B N 的长,然后利用S 阴影=S △B NG -S △B MD 进行计算即可得.[详解]如图,∵∠C =90°,∠A =60°,A C =6,∴A B =2A C =12,∠B =30°,∵点D 为A B 的中点,∴AD DC 5∴==DE 3=Rt ADE ∴AE ==Rt ABC C 90∠=A 60∠=AC 6=AB D 90Rt A'B'C'69B'∴B D =6,∵△A B C 绕点D 按逆时针方向旋转得到, ∴ D =B D =6,在Rt △B D M 中,∠B =30°,∠B D M=90°, ∴B M=2D M ,B D 2+D M 2=B M 2,∴D M=∴B ′M=B ′D -D M=6-在Rt △B ′MN中,∠B ′=30°,∴MN= B ′M=3∴,在Rt△B NG 中,B G=2NG ,B G2=NG 2+B N 2, ∴∴S 阴影=S △B NG -S △B MD ==9, 故选B .[点评]本题考查了旋转的性质、含30度角的直角三角形的性质、勾股定理、三角形的面积等,熟练掌握旋90Rt A'B'C'B'12((1133622⨯+⨯+-⨯转的性质是解题的关键.二、填空题13.如图,把一个直角三角尺A C B 绕着30°角的顶点B 顺时针旋转,使得点A 与C B 的延长线上的点E 重合连接C D ,则∠B D C 的度数为_____度.[答案]15[解析][分析]根据△EB D 由△A B C 旋转而成,得到△A B C ≌△EB D ,则B C =B D ,∠EB D =∠A B C =30°,则有∠B D C =∠B C D ,∠D B C =180﹣30°=150°,化简计算即可得出.[详解]解:∵△EB D 由△A B C 旋转而成,∴△A B C ≌△EB D ,∴B C =B D ,∠EB D =∠A B C =30°,∴∠B D C =∠B C D ,∠D B C =180﹣30°=150°,∴; 故答案为:15.[点评]此题考查旋转的性质,即图形旋转后与原图形全等.14.在平面直角坐标系中,O 为坐标原点,点A 的坐标为1),将OA 绕原点逆时针方向旋转90°得OB ,则点B 的坐标为_____. 15BDC ∠=︒()1180150152BDC BCD ∠=∠=︒-︒=︒[答案](﹣1[解析][分析]根据旋转的性质可知△OC A ≌△OD B ,进而得即可解题.[详解]解:如下图,由旋转的性质可知,△OC A ≌△OD B , ∵A 的坐标为1),∴∴∴B 的坐标为(﹣1)[点评]本题考查了图形的旋转,属于简单题,熟悉概念是解题关键.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子 A ,O ,B 的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子 P ,使 A ,O ,B ,P 四颗棋子成为一个中心对称图形,请写出棋子 P 的位置坐标_____(写出 1 个即可).[答案](0,1).[解析][分析]直接利用中心对称图形的性质得出答案.[详解]如图所示:点P(0,1)答案不唯一.故答案为:(0,1).[点评]此题主要考查了中心对称图形的性质,正确把握定义是解题关键.16.如图,在△B D E 中,∠B D E=90°,,点D 的坐标是(5,0),∠B D O=15°,将△B D E 旋转到△A B C 的位置,点C 在B D 上,则旋转中心的坐标为_______ .[答案](3,[解析][分析]根据旋转的性质,A B 与B D 的垂直平分线的交点即为旋转中心P ,连接PD,过P 作PF ⊥x轴于F ,再根据点C 在B D 上确定出∠PD B =45°并求出PD 的长,然后求出∠PD O=60°,根据直角三角形两锐角互余求出∠D PF=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得D F=PD ,利用勾股定理列式求出PF ,再求出OF ,即可得到点P ,即旋转中心的坐标.[详解]如图,A B 与B D 的垂直平分线的交点即为旋转中心P ,连接PD ,过P 作PF ⊥x 轴于F ,∵点C 在B D 上,∴点P 到A B 、B D 的距离相等,都是 B D ,即× ∴∠PD B =45°,121212=4,∵∠B D O=15°,∴∠PD O=45°+15°=60°,∴∠D PF=30°,∴D F=PD =×4=2, ∵点D 的坐标是(5,0),∴OF=OD -D F=5-2=3,由勾股定理得,∴旋转中心的坐标为(3,. 故答案为:(3,.[点评]本题考查了坐标与图形变化-旋转,熟练掌握旋转的性质确定出旋转中心的位置并得到含有30°角的直角三角形是解题的关键.三、解答题17.如图,是正内的一点,若将绕点逆时针旋转到,(1)求的度数.(2)若,,,求的度数.[答案](1);(2).1212P ABC PAC A P'AB PAP'∠AP 3=BP 4=PC 5=PAB ∠PAP'60∠=APB 150∠=[解析][分析](1)根据旋转的性质,找出∠PA P′=∠B A C ,根据等边三角形的性质,即可解答;(2)连接PP′,根据旋转的性质及已知可得到△A PP′是等边三角形,△B PP′是直角三角形,从而求得答案.[详解]如图,根据旋转的性质得,,∵是等边三角形,∴,∴;如图,连接,由旋转可知:,所以,,又∵,∴,()1PAP'BAC ∠∠=ABC BAC 60∠=PAP'60∠=()2PP 'P AB PAC ≅'CAP BAP ∠∠'=AP AP 3='=CP BP 5='=CAP PAB 60∠∠+=P AP BAP BAP 60∠∠∠=+=''∴是等边三角形,∴,∴,∵,∴,∴是直角三角形,∴∴.[点评]本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.18.如图,的顶点坐标分别为,,.将绕坐标原点逆时针旋转,得到(、、分别为、、的对应点),在坐标系中画出,并写出、、三点的坐标.[答案],,,画图见解析.[解析][分析]根据点的坐标的特点可知,点A 在第四象限的平分线上,所以绕点O 逆时针旋转90°在第一象限的平分线上,点B 在第一象限的平分线上,所以绕点O 逆时针旋转90°后在第二象限的平分线上,分别求出点A ′,B ′的坐标,然后再找出点C 旋转后的点C ′,顺次连接即可.P AP 'AP AP PP 3=='='APP 60∠'=222345+=222P P PB P B '='+P PB 'P PB 90∠'=APB P PB APP 150∠∠∠=+=''ABC ()A 2,2-()B 4,4()C 1,2ABC O 90A B C '''A 'B 'C 'A B C A B C '''A 'B 'C'()A 2,2'()B 4,4'-()C 2,1'-[详解]∵,,,∴,,.画图[点评]本题考查旋转变换作图,做这类题的关键是按要求旋转后找对应点,然后顺次连接.19.如图,中,,,,,将绕着点旋转一定的角度,得到 .(1)若点为边上中点,连接,则线段的范围为________.(2)如图,当直角顶点在边上时,延长,交边于点,请问线段、、具有怎样的数量关系,请写出探索过程.[答案](1);(2)A G+EG=D E ,理由见解析.[解析][分析](1)图1中,利用旋转的性质得B E=B C =3,再根据三角形三边的关系得B E-B F≤EF≤B E+B F(当且仅当B 、()A 2,2-()B 4,4()C 1,2()A 2,2'()B 4,4'-()C 2,1'-1ABC C 90∠=BC 3=AC 4=AB 5=ABC B DEB F AB EF EF 2DEB E AB DE AC G DE EGAG 0.5EF 5.5≤≤E 、F 共线时取等号),从而得到线段EF 的范围;(2)图2中,利用旋转的性质得B E=B C =3,B D =B A =5,D E=A C =4,∠A =∠D ,再判断△A GE ∽△D EB ,然后利用相似比计算出A G 、EG ,从而可得到线段D E 、EG 、A G 的数量关系.[详解](1)∵点F 为A B 边上中点,∴B F=2.5,∵△A B C 绕着点B 旋转一定的角度得到△D EB ,∴B E=B C =3,∵B E-B F≤EF≤B E+B F(当且仅当B 、E 、F 共线时取等号),∴0.5≤EF≤5.5,故答案为0.5≤EF≤5.5;(2).理由如下:∵绕着点旋转一定的角度得到,∴,,,,∴,∵,,∴,∴,即, ∴,,∴,AG EG DE +=ABC B DE BE BC 3==BD BA 5==DE AC 4==A D ∠∠=AE AB BE 2=-=A D ∠∠=AEG BED ∠∠=AGE DEB ∽AG EG AE BD BE DE ==AG EG 2534==AG 2.5=EG 1.5=AG EG 4+=∴.[点评]本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.20.如图,四边形A B C D 是正方形,△A D F 绕着点A 顺时旋转90°得到△A B E ,若A F =4,A B =7.(1)求D E 的长度;(2)指出B E 与D F 的关系如何?并说明由.[答案](1)3;(2)B E =D F ,B E ⊥D F .[解析][分析](1)根据旋转的性质可得A E =A F ,A D =A B ,然后根据D E =A D ﹣A E 计算即可得解;(2)根据旋转可得△A B E 和△A D F 全等,根据全等三角形对应边相等可得B E =D F ,全等三角形对应角相等可得∠A B E =∠A D F ,然后求出∠A B E +∠F =90°,判断出B E ⊥D F .[详解]解:(1)∵△A D F 按顺时针方向旋转一定角度后得到△A B E ,∴A E =A F =4,A D =A B =7,∴D E =A D ﹣A E =7﹣4=3;(2)B E 、D F 的关系为:B E =D F ,B E ⊥D F .理由如下:∵△A D F 按顺时针方向旋转一定角度后得到△A B E ,∴△A B E ≌△A D F , AG EG DE +=∴B E=D F,∠A B E=∠A D F,∵∠A D F+∠F=180°﹣90°=90°,∴∠A B E+∠F=90°,∴B E⊥D F,∴B E、D F的关系为:B E=D F,B E⊥D F.[点评]考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.如图,已知点A ,B 的坐标分别为(4,0),(3,2).(1)画出△A OB 关于原点O对称的图形△C OD ;(2)将△A OB 绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D 的坐标是,点F的坐标是,此图中线段B F和D F的关系是.[答案](1)见解析;(2)见解析;(3)D (﹣3,﹣2),F(﹣2,3),垂直且相等[解析][分析](1)分别延长B O,A O到占D ,C ,使D O=B O,C O=A O,再顺次连接成△C OD 即可;(2)将A ,B 绕点O按逆时针方向旋转90°得到对应点E,F,再顺次连接即可得出△EOF;(3)利用图象即可得出点的坐标,以及线段B F和D F的关系.[详解](1)如图所示:(2)如图所示:(3)结合图象即可得出:D (﹣3,﹣2),F (﹣2,3),线段B F 和D F 的关系是:垂直且相等.[点评]此题考查了图形的旋转变换以及图形旋转的性质,难度不大,注意掌握解答此类题目的关键步骤. 22.如图①,在中,.将绕点逆时针旋转得到,旋转角为,且.在旋转过程中,点可以恰好落在的中点处,如图②.求的度数;当点到的距离等于的一半时,求的度数.[答案](1);(2).[解析][分析]Rt ABC 90C ∠=ABC C ''A B C α0180α<<'BAB ()1A ∠()2C 'AA AC α 30A ∠= 120α=(1)利用旋转的性质结合直角三角形的性质得出△C B B ′是等边三角形,进而得出答案;(2)利用锐角三角函数关系得出sin ∠C A D =,即可得出∠C A D =30°,进而得出α的度数. [详解] 将绕点逆时针旋转得到,旋转角为,∴∵点可以恰好落在的中点处,∴点是的中点.∵,∴, ∴,即是等边三角形.∴.∵,∴;如图,过点作于点,点到的距离等于的一半,即. 在中,,, ∴,∵,12CD AC =()1ABC C ''A B C α'CB CB ='B AB 'B AB 90ACB ∠=1''2CB AB BB ==''CB CB BB =='CBB 60B ∠=90ACB ∠=30A ∠=()2C 'CD AA ⊥D C 'AA AC 12CD AC =Rt ADC 90ADC ∠=1sin 2CD CAD AC ∠==30CAD ∠='CA CA =∴.∴,即.[点评]考查旋转的性质以及等边三角形的判定等知识,解题关键是正确掌握直角三角形的性质. 23.在Rt △A B C 中,∠A C B =90°,,点D 是斜边A B 上一动点(点D 与点A 、B不重合),连接C D ,将C D 绕点C 顺时针旋转90°得到C E ,连接A E ,DE .(1)求△A D E 的周长的最小值;(2)若C D =4,求A E 的长度.[答案](1)6+或[解析][分析](1)根据勾股定理得到 A C =6,根据全等三角形的性质得到A E=B D ,当D E 最小时,△A D E 的周长最小,过点C 作C F ⊥A B 于点F ,于是得到结论;(2)当点D 在C F 的右侧,当点D 在C F 的左侧,根据勾股定理即可得到结论[详解]解:(1)∵在Rt △A B C 中,∠A C B =90°,'30A CAD ∠=∠='120ACA ∠=120α=∴A C =6,∵∠EC D =∠A C B =90°,∴∠A C E=∠B C D ,在△A C E 与△BC D中, ,∴△A C E ≌△B C D (SA S),∴A E=B D ,∴△A D E 的周长=A E+A D +D E=AB +D E ,∴当D E 最小时,△A D E 的周长最小,过点C 作C F ⊥A B 于点F ,当C D ⊥A B 时,C D 最短,等于3,此时∴△A D E 的周长的最小值是;(2)当点D 在C F 的右侧,∵C F= A B =3,C D =4, ∴∴A E=B D =B F ﹣D F=3;当点D 在C F 的左侧,同理可得=AC BC ACE BCD CE CE =⎧⎪∠∠⎨⎪=⎩12综上所述:A E 的长度为3或.[点评]本题考查旋转的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.24.两块等腰直角三角形纸片和按图所示放置,直角顶点重合在点处,,.保持纸片不动,将纸片绕点逆时针旋转角度,如图所示. 利用图证明且;当与在同一直线上(如图)时,求的长和的正弦值.[答案](1)详见解析;(2)7,. [解析][分析] (1)图形经过旋转以后明确没有变化的边长,证明,得出A C =B D ,延长B D 交A C 于E ,证明∠A EB =90,从而得到.(2) 如图3中,设A C =x ,在Rt △A B C 中,利用勾股定理求出x ,再根据sinα=sin ∠A B C =即可解决问题[详解] 证明:如图中,延长交于,交于.AOB COD 1O 25AB =17CD =AOB COD O (090)αα<<2()12AC BD =AC BD ⊥()2BD CD 3AC α725AOC BOD ≅︒BD AC ⊥AC AB()12BD OA G AC E∵,∴,在和中,,∴,∴,,∵,∵,∴,∴,∴.解:如图中,设,∵、在同一直线上,,∴是直角三角形,90AOB COD ∠=∠=AOC DOB ∠=∠AOC BOD OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩AOC BOD ≅AC BD =CAO DBO ∠=∠90DBO GOB ∠+∠=OGB AGE ∠=∠90CAO AGE ∠+∠=90AEG ∠=BD AC ⊥()23AC x=BD CD BD AC ⊥ABC∴,∴,解得,∵,,∴,∴. [点评]本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,第二个问题的关键是利用(1)的结论解决问题,属于中考常考题型. 222AC BC AB +=222(17)25x x ++=7x =45ODC DBO α∠=∠+∠=45ABC DBO ∠+∠=ABC α∠=∠7sin sin 25AC ABC AB α=∠==。

相关文档
最新文档