流水行船问题练习测试题
流水行船问题综合练习打印前5页

流水行船问题综合练习例 1 小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?分析此题是水中追及问题,已知路程差是2千米,船在顺水中的速度是船速+水速.水壶飘流的速度只等于水速,所以速度差=船顺水速度-水壶飘流的速度=(船速+水速)-水速=船速.解:路程差÷船速=追及时间2÷4=0.5(小时)。
例2 甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?解:①相遇时用的时间336÷(24+32)=336÷56=6(小时)。
②追及用的时间(不论两船同向逆流而上还是顺流而下):336÷(32—24)=42(小时)。
答:两船6小时相遇;乙船追上甲船需要42小时。
例3 一条河上有甲、乙两个码头,甲在乙的上游50千米处。
客船和货船分别从甲、乙两码头同时出发向上游行驶,两船的静水速度相同且始终保持不变,客船出发时有一物品从船上落入水中,10分钟后此物品距客船5千米,客船在行驶20千米后折向下游追赶此物,追上时恰好和货船相遇,求水流的速度。
分析:船在静水中的速度为每分钟5÷10=0.5(千米)。
客船、货船与物品从出发到共同相遇所需的时间为50÷0.5=100(分钟)。
客船掉头时,它与货船相距50千米。
随后两船作相向运动,速度之和为船速的2倍,因此从调头到相遇所用的时间为50÷(0.5+0.5)=50(分钟)。
于是客船逆水行驶20千米所用的时间为100-50=50分钟,从而船的逆水速度是每分钟20÷50=0.4(千米),水流速度为每分钟0.5-0.4=0.1(千米)1、某人上午8点钟乘船逆流而上,10点半才发现一捆竹杆掉在河里,立刻调头顺水去追,只用半小时就追上了。
五年级奥数测试卷-流水行船-答案

A1、某船顺水速度是每小时17千米,逆水速度是每小时10千米,求船速和水速。
2、一只船在静水中的速度是每小时12千米,逆水5小时航行40千米,那么水流速度是每小时多少千米?顺水速度是每小时多少千米?3、一只船从甲港开往乙港,去时顺水19小时到达,返回时逆水比去时多用4小时,已知船的顺水速度是每小时23千米,求水流速度。
4、两个码头相距240千米,轮船顺水行完全程需要8小时,逆水每小时比顺水少行6千米,逆水比顺水多用几小时?5、已知80千米水路,甲船顺流而下需要4小时,逆流而上需要10小时,如果乙船顺流而下需要5小时,问乙船逆流而上需要多少小时?6、已知一艘轮船顺水行48千米需要4小时,逆水行同样的路程需6小时。
现在轮船从上游甲城到下游乙城,已知两城的水路长96千米。
开船时船上掉下一木板,问船到乙城时,木板离乙城还有多少路?7、一条大河,河中间(主航道)水速为每小时8千米,沿岸边水速为每小时6千米。
一条船在河沿岸边逆流而上,20小时行驶520千米,这条船走主航道顺流而下返回原出发点,需要多少小时?8、甲、乙两船在静水中的速度相同,他们同时从沿河的两个码头相对开出,4小时以后相遇。
如果这条河的水速是每小时4千米,那么甲、乙两船航行的距离相差多少千米?9、一只帆船的速度是每分钟60米,船在水流速度为每分钟20米的河中,从上游的一个港口到下游某地共走了30分钟,这两个港口之间相距多少米?10、两个港口相距644千米,甲、乙两艘轮船同时由两港口相对开出,7小时相遇,在静水中甲船比乙船每小时快2千米,那么甲、乙两船在静水中的速度分别是每小时多少千米?11、从甲地到乙地的水路有120千米,河水的速度是每小时2.5千米,某船在静水中的每小时行7.5千米,它在甲乙两地之间往返一次需要多少小时?12、甲乙两码头相距36千米,小王乘船从甲码头去乙码头贩货,已知此河水流速度是每小时5千米。
船速比水流速度的2倍还多3千米,那么往返甲、乙两码头一次需要多少小时?B1、一只船在静水中每小时行15千米,逆水3小时行24千米,那么水流速度是每小时多少千米?顺水速度是每小时多少千米?2、某条河中间有甲、乙两码头,甲、乙的水路是91千米,一条船从甲到乙顺流从上午8时出发,下午3时到达,已知次船从乙码头返回甲码头所用的时间比来时多用6小时,那么船速是每小时多少千米?水速是每小时多少千米?3、一艘轮船在静水中的速度是每小时18千米,它顺水航行8小时走了160千米,那么这艘船逆水速度是每小时多少千米?返回原地需要多少小时?4、某船顺水航行5小时共行120千米,返回原地需要8小时,那么该船在静水中的速度是每小时多少千米,水流速度是每小时多少千米?5、一只小船第一次顺流航行48千米,逆流航行8千米,共用10小时,第二次用同样的时间顺流航行24千米,逆流航行14千米。
流水行船问题练习题

流水行船问题练习题集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)1.一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?2.一只小船静水中速度为每小时 30 千米 . 在 176 千米长河中逆水而行用了 11 个小时 . 求返回原处需用几个小时。
3.一只船每小时行 14 千米,水流速度为每小时 6 千米,问这只船逆水航行 112 千米,需要几小时?4.一只船顺水每小时航行 12 千米,逆水每小时航行 8 千米,问这只船在静水中的速度和水流速度各是多少?6.甲、乙两码头相距 72 千米,一艘轮船顺水行需要 6 小时,逆水行需要 9 小时,求船在静水中的速度和水流速度。
7.静水中,甲船速度是每小时 22 千米,乙船速度是每小时 18 千米,乙船先从某港开出顺水航行, 2 小时后,甲船同地同方向开出,若水流速度为每小时 4 千米,求甲船几小时可以追上乙船?8.一条大河有 A 、 B 两个港口,水从 A 流向 B ,水流速度为每小时4 千米,甲、乙同时由 A 向 B 行驶,各自不停的在 A 、 B 间往返航行,甲船在静水中的速度是每小时 28 千米,乙船在静水中的速度为每小时 20 千米,已知两船第二次迎面相遇的地点与甲船第二次追上乙船的地点相距 40 千米,求 A 、 B 两港之间的距离。
9.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
10.某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?11.甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?12.小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?13.甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?14.A、B两码头间河流长为90千米,甲、乙两船分别从A、B码头同时启航.如果相向而行3小时相遇,如果同向而行15小时甲船追上乙船,求两船在静水中的速度。
小学数学流水行船习题附答案65题

流水行船习题汇总附答案-小学数学
1.A、B两码头间河流长为90千米,甲、乙两船分别从A、B码头同时起航.如
果相向而行3小时相遇,如果同向而行15小时甲船追上乙船.求两船在静水中的速度.
2.甲、乙两船的船速分别为每小时17千米和每小时13千米.两船先后从同一
港口顺水开出,乙船比甲船早出发 3小时,如果水速是每小时 3千米,问:甲船开出后几小时能追上乙船?
3.甲、乙两艘游艇,静水中甲艇每小时行3.3千米,乙艇每小时行2.1千米.现
在甲、乙两游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.水流速度是每小时________千米.
1/ 24。
小学数学五年级《流水行船问题》练习题(含答案)

《流水行船问题》练习题(含答案)在行程问题的基础上,这一讲我们将研究流水行船的问题.船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.另外一种与流水行船问题相类似的问题是“在风中跑步或行车”的问题,其实处理方法是和流水行船完全一致的.行船问题是一类特殊的行程问题,它的特殊之处就是多了一个水流速度,船速:在静水中行船,单位时间内所走的路程叫船速;逆水速度:逆水上行的速度叫逆水速度;顺水速度:顺水下行的速度叫顺水速度;水速:船在水中不借助其他外力只借助水流力量单位时间所漂流的路程叫水流速度(以下简称水速),顺水速度=船速+水速;逆水速度=船速-水速 .顺水行程=顺水速度×顺水时间逆水行程=逆水速度×逆水时间船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2 .(可理解为和差问题)【例1】甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?分析:从甲到乙顺水速度:234÷9=26(千米/小时);从乙到甲逆水速度:234÷13=18(千米/小时);船速是:(26+18)÷2=22(千米/小时);水速是:(26-18)÷2=4(千米/小时).【前铺】轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时到达相距144千米的乙港,再从乙港返回甲港需要多少小时?分析:要求轮船从乙港返回甲港所需的时间,即轮船顺水航行144千米所需时间,就要求出顺水航行的速度。
现在知道轮船在静水中的速度,只需求出水流速度.根据已知,自甲港逆水航行8小时,到达相距144千米的乙港,由此可求出轮船的逆水航行的速度.再根据逆水速度与船速、水速的关系即可求出水速.水流速度:21—144÷8=21—18=3(千米/小时),顺水速度:2l+3=24(千米/小时),乙港返回甲港所需时间:144÷24=6(小时).【巩固】甲、乙两港相距208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达.水流速度是多少?分析:顺水速度=208÷8=26(千米/小时),逆水速度=208÷13=16(千米/小时),水速=(顺水速度-逆水速度)÷2=(26-16)÷2=5(千米/小时).【例2】A、B两港相距560千米,甲船往返两港需要105小时,逆流航行比顺流航行多了35小时,乙船的静水速度是甲船静水速度的2倍,那么乙船往返两港需要多少小时?分析:先求出甲船往返航行的时间分别是:(105+35)÷2=70小时,(105-35)÷2=35.再求出甲船逆水速度每小时560÷70=8千米,顺水速度每小时560÷35=16千米,那么甲船在静水中的速度是每小时(16+8)÷2=12千米,水流的速度是每小时12-8=4千米,乙船在静水中的速度是每小时12×2=24千米,所以乙船往返一次所需要的时间是560÷(24+4)+560÷(24-4)=20+28=48小时.【例3】甲河是乙河的支流,甲河水速为每小时3千米,乙河水速为每小时2千米.一艘船沿甲河顺水航行7小时,行了133千米到达乙河,在乙河中还要逆水航行84千米,问:这艘船还要航行几小时?分析:船在甲河中的顺水速度为:133÷7=19(千米/小时),船速=19-3=16(千米/小时).船在乙河中的逆水速度=船速一水速=16-2=14(千米/小时),逆水时间=逆水行程÷逆水速度=84÷14=6(小时).【例4】一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离.分析:两港口间的距离=顺水速度×顺水时间=(船速+水速)×顺水时间=(船速+6)×4 ;两港口间的距离=逆水速度×逆水时间=(船速-6)×7;所以可得:(船速+6)×4=(船速-6)×7,解得:船速=22,可得两港口间的距离为:(22+6)×4=(22—6) ×7=112(千米).【例5】某船从甲地顺流而下,5天到达乙地;该船从乙地返回甲地用了7天.问:水从甲地流到乙地用了多少时间?分析:(法1)水流的时间=甲乙两地间的距离÷水速,而此题并未告诉我们“甲乙两地间距离”,且根据已知,顺水时间及逆水时间也无法求出,而它又是解决此题顺水速度、逆水速度和水速的关键.将甲、乙两地距离看成单位“1”,则顺水每天走全程的15,逆水每天走全程的17.水速=(顺水速度一逆水速度)÷2=135,所以水从甲地流到乙地需:113535÷=(天).当然,我们还可以把甲乙两地的距离设成其他方便计算的数字,这其实就是特殊值代入法!(法2)用方程思路,5×(船速+水速)=7×(船速—水速),即船速=6×水速,所以轮船顺流行5天的路程等于水流5+5×5=35(天)的路程,即木筏从A城漂到B城需35天.(法3)逆水比顺水多2天到达,即船要多行驶2天,为什么会多2天呢,因为顺水时得到了5天的水速帮助,逆水时又要去克服7天的水速,这一切都是靠2天的船速所实现的,即船速等于6天的水速;所以轮船顺流行5天的路程等于水流5+5×6=35(天)的路程,即木筏从A城漂到B城需35天.【例6】一艘小船在河中航行,第一次顺流航行33千米,逆流航行11千米,共用11小时;第二次用同样的时间,顺流航行了24千米,逆流航行了14千米.这艘小船的静水速度和水流速度是多少?分析:(法1)两次航行顺流的路程差:33-24=9 (千米),逆流的路程差:14-11=3 (千米),也就是说顺流航行9千米所用的时间和逆流航行3千米所用时间相同,那么顺流航行33千米与逆流航行33÷3=11 (千米)时间相同,则逆流速度:(11+11)÷11=2(千米/小时),同样可得顺流速度为:(24+14×3)÷11=6(千米/小时),静水速度:(6+2)÷2=4(千米/小时),水流速度:(6-2)÷2=2(千米/小时).(法2)根据顺流航行9千米所用的时间和逆流航行3千米所用时间相同,9千米=顺流速度×时间=逆流速度×3倍的时间,可得:顺流速度=3×逆流速度,而后仿照法1部分思路解答.【例7】一只船在河里航行,顺流而下每小时行18千米.已知这只船下行2小时恰好与上行3小时所行的路程相等.求船速和水速.分析:逆水速度:18×2÷3=12(千米/小时),船速:(18+12)÷2=15(千米/小时)。
行测数量关系流水行船问题专项练习

行测数量关系流水行船问题专项练习资料来源:中政申论在线备考平台1. 一条船从甲地到乙地要航行4小时,从乙地到甲地要航行5小时(假定船自身的速度保持不变),今有一木筏从甲地漂流到乙地所需小时为()A. 12B. 40C. 32D. 302. 小刚和小强租一条小船,向上游划去,不慎把空塑料水壶掉进江中,当他们发现并掉过头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?()A. 0.2小时B. 0.3小时C. 0.4小时D. 0.5小时3. 河道赛道长120米,水流速度为2米/秒,甲船速度为6米/秒,乙船速度为4米/秒。
比赛进行两次往返,甲、乙同时从起点出发,先顺水航行,问多少秒后甲、乙船第二次迎面相遇?()A. 48B. 50C. 52D. 544. 一只船沿河顺水而行的航速为30 千米/小时,已知按同样的航速在该河上顺水航行3 小时和逆水航行5 小时的航程相等,则此船在该河上顺水漂流半小时的航程为()A. 1千米B. 2千米C. 3千米D. 6千米5. 甲乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船,求在静水中甲乙两船的速度各为多少千米/小时?A. 14、16B. 16、14C. 12、18D. 18、126. 乙船顺水航行2小时,行了120千米,返回原地用了4小时。
甲船顺水航行同一段水路,用了3小时。
甲船返回原地比去时多用了几个小时?A. 7B. 9C. 11D. 177. 一艘轮船在两码头之间航行。
如果顺水航行需8小时,如果逆水航行需11小时。
已知水速为每小时3千米,那么两码头之间的距离是多少千米?()A. 180B. 185C. 190D. 1768. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。
那么甲、乙两地之间的距离是多少千米?()A. 15B. 16C. 24D. 309. 河水的流速是每小时2000米,一只船从这条河的上游甲地顺流到达下游的丙地,然后调头逆行向上到达中游的乙地,共用时6小时。
五年级奥数流水行船问题专项习题

流水行船问题顺水速度=船速+水速逆水速度=船速-水速船速(顺水速度•逆水速度)"2 水速(顺水速度-逆水速度)亠2例题1、一艘客轮以每小时35千米的速度,在河水中逆水航行124千米,水速为每小时4千米。
这艘客轮需要航行多少小时?1、一艘船每小时行25千米,在大河中顺水航行140千米。
已知水速是每小时3千米,这艘船行完全程需要航行几小时?2、一位少年短跑选手,顺风跑90米用了10秒。
在同样的风速下逆风跑70米, 也用了10秒钟。
在无风的时候,他跑100米要用多少秒?3、甲乙两码头相距140米,一只船从甲码头顺水驶向乙码头,船在静水中的速度是每小时25千米,水流速度是每小时25千米,水流速度是每小时3千米。
船到达乙码头需几小时?例题2、静水中客船的速度是每小时25千米,货船的速度是每小时15千米,货船先从某港开出顺水航行,3小时后客船同方向开出。
若水流速度为每小时5千米,客船几小时可以追上客船?1、静水中,甲乙两船的速度分别是每小时20千米和16千米,两船先后自某港顺水开出,乙比甲早出发2小时,若水速是每小时4千米,甲开出后几小时追上乙?2、静水中,甲船和乙船的速度分别是每小时28千米和每小时36千米,水流的速度是每小时3千米,甲船和乙船分别从A港逆水驶向B港。
甲船先行2小时, 问乙船几小时后追上甲船。
3、静水中,甲船速度是每小时22千米,乙船速度是是每小时18千米,乙船先从某港开出顺水航行,2小时后甲船同方向开出,若水流速度为每小时4千米,求甲船几小时可以追上乙船。
例题3、一轮船在两码头间航行,顺水航行需3小时,逆水航行要4小时,水速是每小时3千米,两码头间有多少千米?1、一艘轮船在两个码头间航行,顺流需要4小时,逆流需要5小时。
已知水流的速度为每小时2千米,求两港之间的距离.2、一艘轮船在两个码头间航行,顺流需要6小时,逆流需要8小时。
已知水流的速度为每小时2千米,求两港之间的距离.3、某船在静水中的是每小时18千米,水速是每小时2千米,这船从甲地到乙地逆水行驶需15小时,则甲乙两地相距多少千米?例题4、某河有相距90千米的上下两个码头,每天定时有甲乙两艘船速相同的客船分别从两码头同时出发相向而行。
(完整版)流水行船问题及答案

流水行船问题顺水速度=船速+水速逆水速度=船速-水速2÷+=逆水速度)(顺水速度船速2-÷=逆水速度)(顺水速度水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流水行船问题练习测试
题
文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-
1.一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时
2.一只小船静水中速度为每小时 30 千米 . 在 176 千米长河中逆水而行用了 11 个小时 . 求返回原处需用几个小时。
3.一只船每小时行 14 千米,水流速度为每小时 6 千米,问这只船逆水航行 112 千米,需要几小时
4.一只船顺水每小时航行 12 千米,逆水每小时航行 8 千米,问这只船在静水中的速度和水流速度各是多少
6.甲、乙两码头相距 72 千米,一艘轮船顺水行需要 6 小时,逆水行需要 9 小时,求船在静水中的速度和水流速度。
7.静水中,甲船速度是每小时 22 千米,乙船速度是每小时 18 千米,乙船先从某港开出顺水航行, 2 小时后,甲船同地同方向开出,若水流速度为每小时 4 千米,求甲船几小时可以追上乙船
8.一条大河有 A 、 B 两个港口,水从 A 流向 B ,水流速度为每小时 4 千米,甲、乙同时由 A 向 B 行驶,各自不停的在 A 、 B 间往返航行,甲船在静水中的速度是每小时28 千米,乙船在静水中的速度为每小时 20 千米,已知两船第二次迎面相遇的地点与甲船第二次追上乙船的地点相距 40 千米,求 A 、 B 两港之间的距离。
9.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
10.某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间
11.甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时12.小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间
13.甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船
14.A、B两码头间河流长为90千米,甲、乙两船分别从A、B码头同时启航.如果相向而行3小时相遇,如果同向而行15小时甲船追上乙船,求两船在静水中的速度。
16.甲河是乙河的支流,甲河水流速度为每小时 3 千米,乙河水流速度为每小时 2 千米,一艘船沿乙河逆水航行 6 小时,行了 84 千米到达甲河,在甲河还要顺水航行 133 千米,这艘船一共航行多少小时
17. 一条小河流过 A 、 B 、 C 三镇。
A 、 B 两镇间有汽船来往,汽船在静水中的速度为每小时 11 千米。
B 、 C 两镇间有木船摆渡,木船在静水中的速度为每小时 3.5 千米。
已知 A 、 C 两地水路相距 50 千米,水流速度为每小时 1.5 千米。
某人从 A 镇
顺流而下去 B 镇,吃午饭用了 1 个小时,接着又顺流而下去 C 镇,共用 8 个小时,那么 A 、 B 两镇间的距离是多少
18.甲、乙两船分别在一条河的 A 、 B 两地同时相向而行,甲顺流而下,乙逆流而上。
相遇时,甲乙两船行了相等的航程,相遇后继续前进。
甲到达 B ,乙到达 A 后,都按照原路返航,两船第二次相遇时,甲船比乙船少行 1000 米。
如果从第一次相遇到第二次相遇时间间隔 1 小时 20 分,则河水的流速是多少
19。
甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
20。
某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间。